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Abstract

We develop a technique for generalising from data in which models are samplers
represented as program text. We establish encouraging empirical results that sug-
gest that Markov chain Monte Carlo probabilistic programming inference tech-
niques coupled with higher-order probabilistic programming languages are now
sufficiently powerful to enable successful inference of this kind in nontrivial do-
mains. We also introduce a new notion of probabilistic program compilation and
show how the same machinery might be used in the future to compile probabilistic
programs for efficient reusable predictive inference.

1 Introduction

In the context of Turing-complete, higher-order probabilistic programming languages [1, 2, 3], a
probabilistic program is simultaneously a generative model and a procedure for sampling from the
same. All probabilistic programming procedures are program text that describe how to generate
a sample value conditioned on the value of arguments. A probabilistic programming procedure is
a constructivist description of a conditional distribution. Deterministic procedures merely encode
particularly simple, degenerate conditional distributions.

Higher-order probabilistic programming languages open up the possibility of doing inference over
generative model program text directly via a generative prior over program text and the higher-order
functionality of eval. This paper is a first step towards the ambitious goal of inferring generative
model program text directly from example data. Inference in the space of program text is hard so,
as a start, we present an account of our effort to directly infer sampler program text that, when
evaluated repeatedly, produces samples with similar summary statistics to observational data.

There are reasons to make this specific effort itself. One is the potential automation of the develop-
ment of new entries in the special collection of efficient sampling procedures that humankind has
painstakingly developed over many decades for common distributions, for example the Marsaglia
[4] and Box-Muller [5] samplers for the normal distribution (see [6] for others). In this paper we
develop preliminary evidence that suggests that such automated discovery might indeed be possi-
ble. In particular we perform successful leave-one-out experiments in which we are able to learn
a sampling procedure for one distribution, i.e. Bernoulli, given only program text for others and
observed samples. We do this by imposing a hierarchical generative model of sampling procedure
text, fitting it to out-of-sample, human-written sampler program text, then inferring the program text
for the left-out random variate distribution type given only sample values drawn from the same.

The second reason for making such an effort has to do with “compiling” probabilistic programs.
What we mean by compilation of probabilistic programs is somewhat more broad than both trans-
formational compilation [7] which compiles a probabilistic program into an MH sampler for the
same and normal compilation of a probabilistic program to machine code that encodes a parallel
forward inference algorithm [8]. What we mean by probabilistic program compilation is the auto-
matic generation of program text that when run will generate samples distributed ideally identically
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to the posterior distribution of quantities of interest in the original program, conditioned on the ob-
served data. Concisely; given samples resulting from posterior inference in a probabilistic program,
our aim is to learn program text that when evaluated generate samples from the same directly. The
reason for expressing and approaching compilation in this generality is that simpler approaches to
generalizing probabilistic programming posterior samples via a less-expressive model families will
suffer precisely due to the compromise in expressivity. Distributions over expressions are valid
posterior marginals in higher-order probabilistic programming languages. Compiled probabilistic
programs must be capable of generating the same. This effort is also a first step towards such a
compiler.

2 Related Work

Our approach to learning probabilistic programs relates to both program induction and statistical
generalization from sampled observations. The former is usually treated as search in the space of
program text where the objective is to find a deterministic function that exactly matches outputs
given parameters. The latter, generalizing from data, is usually referred to as either density estima-
tion or learning.

2.1 Automatic programming

An extensive review and introduction is given in [9] and its references. Modern examples of func-
tional inductive programming include IGOR2 [10] in which search is utilized to find programs that
match constraints specified by equations and MagicHaskeller [11] which uses traditional search and
brute force enumeration to find programs that obey constraints specified in terms of parameter/output
pairs. Similar search procedures are used to find constraint satisfying hypotheses in inductive logic
programming [12, 13] and probabilistic variants thereof [14, 15, 16]. Alternative search techniques
such as genetic programming have also been used to find constraint satisfying programs, and in
some of this work it has been suggested that search is easier in the space of functional programming
languages than in imperative [17].

This insight supports an interesting choice made by Liang et al. [18] in searching over the space of
combinatory logic rather than lambda calculus expressions. Our work is framed similarly to theirs
(and the theoretical suppositions in [19]) in that we impose a prior on the program text and use
Bayesian inference machinery to infer a distribution over program text given observations. Unlike
[18] we learn stochastic programs from sampled observation data rather than deterministic programs
from input/output pairs.

2.2 Generalizing from Data and Automated Modelling

Generalizing from data is one of the main objectives of the fields of machine learning and statistics.
It is important to note that what we are doing here is a substantial departure from almost all prior art
in these fields in the sense that the learned representation of the observed data is that of generative
sampling program text rather than, say, a parametric or nonparametric model from which samples
can be drawn using some extrinsic algorithm. In our work the model is the sampler itself and it is
represented as program code.

The greedy search over generative models structures in [20] and kernel compositions in [21] are
both related to our work in the sense that they search over a highly expressive generalization class
in an unsupervised manner for models that explain observational data well. In contrast we do full
Bayesian inference, not greedy search, and the model family over which we search is ultimately
more expressive as it is a high order language with stochastic primitives and, as a result, is capable
of representing all computable probability distributions [2].

Our work relies heavily on a Turing-complete higher-order probabilistic programming language and
system called Anglican [1], which borrows some of its modelling language syntax and semantics
from Venture [3] and generally inherits principles from Church [2]. What differentiates Anglican
most substantially from the others is that it introduced and uses particle Markov Chain Monte Carlo
[22] for probabilistic programming inference. That we use Anglican means that we use PMCMC
and Metropolis-Hastings algorithm for inference.
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[assume program-text (list ‘lambda ‘() (productions ‘() ‘real))]
[assume program (eval program-text)]
[assume samples (apply-n-times program 10000 ’())]
[observe (normal (mean samples) noise-level) 0.0]
[observe (normal (variance samples) noise-level) 1.0]
[observe (normal (skewness samples) noise-level) 0.0]
[observe (normal (kurtosis samples) noise-level) 0.0]
[predict program-text]

Figure 1: Probabilistic program to infer program text for a Normal(0, 1) sampler.

3 Approach

Our approach can be described in terms of a Markov Chain Monte Carlo (MCMC) approximate
Bayesian computation (ABC) [23] targeting

π(X|X̂ )p(X̂ |T )p(T ), (1)

where at a high level π(X|X̂ ) is a distance between summary statistics computed between observed
data X and data, X̂ , generated by interpreting latent sampler program text T .

Consider first a single given data generating distribution F with parameter vector θ. Let X =
{xi}Ii=1, xi ∼ F (·|θ) be a set of samples from F . Consider the task of learning program text T that
when repeatedly interpreted returns samples whose distribution is close to F . Let X̂ = {x̂j}Jj=1,
x̂j ∼ T (·) be a set of samples generated by repeatedly interpreting T J times..

Let s be a summary function of a set of samples and let d(s(X ), s(X̂ )) = π(X|X̂ ) be an unnor-
malized distribution function that returns high probability when s(X ) ≈ s(X̂ ). We refer to d as a
penalty, distance, or compatibility function interchangeably.

We use probabilistic programming to write and perform inference in such a model, i.e. to gener-
ate samples of T from the marginal of (1) and generalizations to come of the same. The partic-
ular system we employ [1] uses PMCMC and MH for inference. Refer to the probabilistic pro-
gram code in Figure 1 where the first line establishes a correspondence between T and the variable
program-text then samples it from p(T ) where productions is an adaptor-grammar-like [24]
prior on program text that is described in Section 3.1. In this particular example θ is implicitly spec-
ified since the learning goal here is to find a sampler for the standard normal distribution. Also X̂
corresponds to the program variable samples and, here, J = 10000. Here s and d are computed on
the last four lines of the program with s being implicitly defined as returning a four dimensional vec-
tor consisting of the estimated mean, variance, skewness, and kurtosis of the set of samples drawn
from T . The distance function d is also implicitly defined to be a multivariate normal with mean
[0.0, 1.0, 0.0, 0.0]T and diagonal covariance σ2I. Note that this means that we are seeking sampler
text whose output is distributed with mean 0, variance 1, skew 0, and kurtosis 0 and we penalize de-
viations from that by a squared exponential loss function with bandwidth σ2, named noise-level
in the code .

This example highlights an important generalization of the original description of our approach. For
the standard normal example we chose a form of s such that we can compute the first summary
statistic of d(s(F ), s(X̂ )) analytically. There are at least three kinds of scenarios in which d can be
computed in different ways. The first occurs when we search for efficient code for sampling from
known distributions. In many such cases, as in the standard normal case just described, the summary
statistics of F can be computed analytically. The second happens when we can only sample from F .
This corresponds to a situations when, for instance, there is a running, computationally expensive
MCMC sampler that can be asked to produce additional samples. This is how we frame compilation
of probabilistic programs. The third (how we originally described our approach) is the fixed dataset
cardinality setting and corresponds to the setting of learning program text generative model for
arbitrary observed data.
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[assume program-text (list ‘lambda ‘() (productions ‘(real) ‘bool))]
[assume program (eval program-text)]
[assume J 100]
[assume samples-1 (apply-n-times program J ’(0.5))]
[observe (flip (G-test-p-value samples-1 ‘Bernoulli (list 0.5))) true]
. . .

[assume samples-N (apply-n-times program J ’(0.7))]
[observe (flip (G-test-p-value samples-N ‘Bernoulli (list 0.7))) true]
[predict program-text]
[predict (apply-n-times program J ’(0.3))]

Figure 2: Probabilistic program to infer program text for a Bernoulli(θ) sampler and generate J
samples from the resulting procedure at a novel input argument value, 0.3.

[ assume box−muller−normal
( lambda ( mean s t d )

(+ mean (∗ s t d
(∗ ( cos (∗ 2 (∗ 3 .14159
( un i fo rm−con t inuous 0 . 0 1 . 0 ) ) ) )
( s q r t (∗ −2

( l o g ( un i fo rm−con t inuous 0 . 0 1 . 0 ) ) ) ) ) ) ) ) ]

[ assume p o i s s o n ( lambda ( r a t e )
( b e g i n ( d e f i n e L ( exp (∗ −1 r a t e ) ) )

( d e f i n e inner− loop ( lambda ( k p )
( i f (< p L ) ( dec k )

( b e g i n ( d e f i n e u ( un i fo rm−con t inuous 0 1 ) )
( inner− loop ( i n c k ) (∗ p u ) ) ) ) ) )

( inner− loop 1 ( un i fo rm−con t inuous 0 1 ) ) ) ) ]

Figure 3: Human-written sampling procedure program text for, left, Normal(µ, σ) [5] and, right,
Poisson(λ) [25]. Counts of the constants, procedures, and expression expansions in these programs
(and that of several other univariate samplers) are fed into our hierarchical generative prior over
sampler program text.

Figure 2 illustrates the another important generalization of the formulation in (1). When learning a
standard normal sampler we did not have to take into account parameter values. Interesting sampler
program text is endowed with arguments, allowing it to generate samples from an entire family of
parameterised distributions. Consider the well known Box-Muller algorithm shown in Figure 3. It
is parameterized by mean and standard deviation parameters. For this reason we will refer to it
and others like it as a conditional distribution samplers. Learning conditional distribution sampler
program text requires recasting our MCMC-ABC target slightly to include the parameter θ of the
distribution F :

π(X|X̂ , θ)p(X̂ |T , θ)p(T |θ)p(θ). (2)

Here in order to proceed we must begin to make approximating assumptions. This is because in
our case we need p(θ) to be truly improper as our learned sampler program text should work for all
possible input arguments and not simply a just a high prior probability subset of values. Assuming
that program text that works for a few settings of input parameters is fairly likely to generalize well
to other parameter settings we approximately marginalize our MCMC-ABC target (2) by choosing
a small finite N of θn parameters yielding our approximate marginalized MCMC-ABC target:

1

N

N∑
n=1

π(Xn|X̂n, θn)p(X̂n|T , θn)p(T |θn) ≈
∫
π(X|X̂ , θ)p(X̂ |T , θ)p(T |θ)p(θ)dθ. (3)

The probabilistic program for learning conditional sampler program text for Bernoulli(θ) in Figure 2
shows an example of this kind of approximation. It samples from T N times, accumulating summary
statistic penalties for each invocation. In this case each individual summary distance computation
involves computing both a G-test statistic

Gn = 2
∑
i∈0,1

#[X̂n = i]ln

(
#[X̂n = i]

θin(1− θn)(1−i) · |X̂n|

)
,

where #[X̂n = i] is the number of samples in X̂n that take value i and its corresponding p-value
under the null hypothesis that X̂n are samples from Bernoulli(θn). Since the G-test statistic is
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approximately χ2 distributed, i.e. G ∼ χ2(1), we can construct d in this case by computing the
probability of falsely rejecting the null hypothesis H0 : X̂n ∼ Bernoulli(θn). Falsely rejecting a
null hypothesis is equivalent to flipping a coin with probability given by the p-value of the test and
having it turn up heads. These are the summary statistic penalties accumulated in the observe lines
in Figure 2.

As an aside, in the probabilistic programming compilation context θ could be all of the observe’d
data in the original program. By this parameterising compilation links our approach to that of [26].

3.1 Grammar and production rules

As we have the expressive power of a higher-order probabilistic programming language at our dis-
posal, our prior over conditional distribution sampler program text is quite expressive. At a high
level it is similar to the adaptor grammar [24] prior used in [18] but diverges in details, particu-
larly those having to do with creation of local environments and the conditioning of subexpression
choices on type signatures. In pseudocode our prior can be expressed as follows:

1. exprtype|env → a random variable name from the env with type type.

2. exprtype|env → a random constant with the type type. Constants with types integer, real,
etc. are sampled from a Chinese restaurant process (CRP) representation of a marginalized
discrete Dirichlet process prior pair with DPtype(Htype, α) for each type, where the base dis-
tribution Htype is itself a mixture distribution. For example for type real we use a mixture of
(normal 0 10), (uniform-continuous -100 100), and uniform over common constants
like {−1, 0, 1, . . .}.

3. exprtype|env → (proceduretype exprarg 1 type ... exprarg N type), where procedure is a prim-
itive or stochastic procedure in the global environment with output type signature type sampled
randomly.

4. exprtype|env → (compound proceduretype exprarg 1 type ... exprarg N type), where
compound proceduretype is a compound procedure sampled from a CRP representation of a
marginalized discrete Dirichlet process prior pair with DPtype(Gtype, β). The base distribu-
tion Gtype generates compound procedures with return type type, Poisson distributed argument
count, and random parameter types. The body of the compound procedure is generated using
the same production rules given an environment that incorporates argument input variable names
and values.

5. exprtype|env → (let [(gensym) exprreal] exprtype|env ∪ gensym)), where env ∪ gensym is
an extended environment with the variable named (gensym) and its value added).

6. exprtype|env → (if (exprbool) exprtype exprtype).

7. exprtype|env → (recur exprarg 1 type ... exprarg M type), i.e. recursive call to the current
compound procedure.

To avoid numerical errors while interpreting generated programs we replace functions like log(a)
with safe-log(a), which returns 0 if a < 0, and uniform-continuous with safe-uc(a, b)
which swaps arguments if a > b and returns a if a = b.

The set of types we used for our experiments was {real, bool} and the general set of procedures
in the global environment included +, −, *, safe-div, safe-uc.

3.2 Production rule probabilities

While it is possible to manually specify production rule probabilities for the grammar in Section 3.1
we took a hierarchical Bayesian approach instead, learning from human-written sampler source
code. To do this we translated existing implementations of common one-dimensional statistical
distribution samplers [6] into Anglican source. Examples are provided in Figure 3. Conveniently all
of them require only one stochastic procedure uniform-continuous so we also only include that
single stochastic procedure in our grammar.

We compute held-out production rules prior probabilities from this corpus in cross-validation way
so that when we are inferring a probabilistic program to sample from F we update our priors using
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Figure 4: Histograms of samples generated by repeatedly evaluating probabilistic procedures sam-
pled from our prior over probabilistic sampling procedure text. The prior is constrained to generate
samplers with univariate output but is clearly otherwise flexible enough to represent a nontrivial
spectrum of distributions.

counts from all other sampling code in the corpus, specifically excluding the sampler we are at-
tempting to learn. Our production rule probability estimates are smoothed by Dirichlet priors. Note
that in the following experiments (Sections 4.3 and 4.4) the production rule priors were updated then
fixed during inference. True hierarchical coupling and joint inferences approaches are straightfor-
ward from a probabilistic programming perspective [27] but result in inference runs that take longer
to compute.

4 Experiments

The experiments we perform illustrate all three uses cases outlined for automatically learning proba-
bilistic programs. We begin by illustrating the expressiveness of our prior over sampler program text
in Section 4.1. We then report results from experiments in which we test our approach in all three
scenarios for how we can compute the ABC penalty d. The first set of experiments in Section 4.2)
tests our ability to learn probabilistic programs that produce samples from known one-dimensional
probability distributions. In these experiments d either probabilistically conditions on p-values of
one-sample statistical hypothesis tests or on approximate moment matching. The second set of
experiments in Section 4.3) addresses the cases where only a finite number of samples from an un-
known real-world source are provided. The final experiment in Section 4.4) is a preliminary study
in probabilistic program compilation where it is possible to gather a continuing set of samples.

4.1 Samples from sampled probabilistic programs

To illustrate the flexibility of our prior, specifically the production rules we employ, we show sam-
ples generated by probabilistic programs sampled from the prior in Section 3.1. In Figure 4 we
show six histograms of samples from six sampled probabilistic programs from our prior over prob-
abilistic programs. Such randomly generated samplers constructively define considerably different
distributions. Note in particular the variability of the domain, variance, and even number of modes.

4.2 Learning sampler code for common one-dimensional distributions

Source code exists for efficiently sampling from many if not all common one-dimensional distri-
butions. We conducted experiments to test our ability to automatically discover such sampling
procedures and found encouraging results.

In particular we performed a set of leave-one-out styles experiments to infer sampler program text for
six common one-dimensional distributions: Bernoulli(p), Poisson(λ), Gamma(a, 1.0), Beta(a, 1),
Normal(0, 1), Normal(µ, σ). For each distribution we performed MCMC-ABC inference with
approximately marginalizing over the parameter space using a small random set {θ1, . . . , θN} of
parameters and conditioning on statistical hypothesis tests or on moment matching as appropriate.
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Figure 5: Representative histograms of samples (green solid lines) drawn by repeatedly interpreting
inferred sampler program text versus (blue dashed lines) histograms of exact samples drawn from
the corresponding true distribution. Top row left to right: Bernoulli(p), Normal(µ, σ), Poisson(λ).
Bottom row same: Gamma(a, 1.0), Normal(0, 1), Beta(a, 1.0). The parameters used to produce
these plots do not appear in the training data. In the case of Bernoulli(p) we inferred programs that
sample exactly from the true distribution (see Figure 7). Not all finite-time inference converges to
good approximate sampler code as illustrated by the Beta(a, 1.0) example.

( lambda ( p a r s tack− id ) (∗ ( b e g i n ( d e f i n e sym0 0 . 0 )
( exp ( safe−uc −1.0 ( s a f e− s q r t ( safe−uc
( safe−div ( safe−uc 0 . 0 ( safe−uc 0 . 0 3 . 1 4 1 5 9 ) )

p a r ) (+ 1 . 0 ( safe−uc ( b e g i n ( d e f i n e sym2
( lambda ( va r1 va r2 s tack− id ) ( dec va r2 ) ) )
( sym2 ( safe−uc −2.0 (∗ ( safe−uc 0 . 0 ( b e g i n
( d e f i n e sym4 ( safe−uc sym0 (∗ (+ ( b e g i n
( d e f i n e sym5 ( lambda ( va r1 va r2 s tack− id )
( safe−div (+ ( safe− log ( dec 0 . 0 ) ) −1.0) va r1 ) ) )
( sym5 ( exp p a r ) 1 . 0 0 ) ) 1 . 0 ) 1 . 0 ) ) ) ( i f (< ( safe−uc
p a r sym4 ) 1 . 0 ) sym0 ( safe−uc 0 . 0 −1 . 0 ) ) ) ) sym0 ) )
( safe−div sym0 ( exp 1 . 0 ) ) 0 ) ) 0 . 0 ) ) ) ) ) ) ) p a r ) )

( lambda ( s tack− id )
(∗ 2 . 0 (∗ (∗

(∗ −1.0 ( safe−uc 0 . 0 2 . 0 ) )
( safe−uc ( safe−uc 4 . 0

(+ ( safe− log 2 . 0 ) −1.0))
(∗ ( safe−div 2 . 0

−55.61617747203855)
( i f (< ( safe−uc

( safe−uc
27.396810474207317

( safe−uc −1.0 2 . 0 ) ) 2 . 0 ) 2 . 0 )
4 . 0 −1 . 0 ) ) ) ) −1 .0 ) ) )

Figure 6: Inferred univariate sampler program text for (left) Gamma(a, 1) and (right) observational
data of unknown distribution. These two program respectively generated the green histograms on
the bottom left of Figure 5 and the right of Figure 8. These programs were manually simplified for
display, i.e. substitutions like 0.0 for (* 1.0 0.0) were performed.

Note that the pre-training of the hierarchical program text prior was never given the text of the
sampler for the distribution being learned.

Representative histograms of samples from the best posterior program text sample discovered in
terms of summary statistics match are shown in Figure 5. A pleasing result is the discovery of the
exact Bernoulli(p) distribution sampler program, the text of which is shown in Figure 7. Figure 6
shows the inferred sampler text for Gamma(a, 1). How to fully characterize the divergence be-
tween learned sampling algorithms and the true distribution via a mechanisms other than exhaustive
computation and hypothesis testing remains an open question.

(lambda (par stack-id) (if (< (uniform-continuous 0.0 1.0) par) 1.0 0.0))

(lambda (par stack-id)
(if (< 1.0 (safe-sqrt (safe-div par (safe-uc par (dec par))))) 1.0 0.0))

(lambda (par stack-id)
(if (< 1.0 (safe-uc (safe-sqrt par) (+ par (cos par)))) 1.0 0.0))

Figure 7: (top) Human-written exact Bernoulli(p) sampler. (bottom two) Inferred sampler program
text. The first is also an exact sampler for Bernoulli(p). The last is another sampler also assigned
non-zero posterior probability but it is not exact.
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Figure 8: Histograms of samples (green solid lines) generated by repeatedly interpreting inferred
sampler program text and the empirical distributions (blue dashed) which they were trained to match.

[ assume t h e t a ( b e t a 1 . 0 1 . 0 ) ]
[ o b s e r v e ( f l i p t h e t a ) True ]
[ o b s e r v e ( f l i p t h e t a ) True ]
[ o b s e r v e ( f l i p t h e t a ) True ]
[ o b s e r v e ( f l i p t h e t a ) True ]
[ p r e d i c t t h e t a ]

[ assume t h e t a ( sa f e−be t a 4 .440 1 . 0 ) ]
[ assume t h e t a ( s a f e− s q r t ( s a f e−be t a ( sa fe− log 1 1 . 6 0 2 ) 1 . 0 ) ) ]
[ assume t h e t a ( sa f e−be t a ( s a f e− s q r t 2 7 . 8 1 0 ) 1 . 0 ) ]

[ assume t h e t a ( b e t a 5 . 0 1 . 0 ) ]
[ p r e d i c t t h e t a ]

Figure 9: (left) Uncollapsed Beta-Binomial model as a probabilistic program. We are interested in
the posterior distribution over the latent variable θ. (right, top) The salient line from three inferred
probabilistic programs (i.e. the result of probabilistic programs compilation) which produce samples
of θ that are statistically similar in distribution to the posterior distribution induced by the original
probabilistic program. Each complete program ended with the line [predict theta]. (right, bot-
tom) Human-written code for exactly sampling from the analytical posterior. The inferred compiled
posterior samplers are indeed close the exact sampler.

4.3 Generalizing arbitrary data distributions

We also explored using our approach to learn generative models in the form of sampler program
text for real world data of unknown distribution. We arbitrarily chose three continuous indicator
features from a credit approval dataset [28, 29] and inferred sampler program text using two-sample
Kolmogorov-Smirnov distribution equality tests (vs. the empirical data distribution) analogously to
G-test described before. Histograms of samples from the best inferred sampler program text versus
the training empirical distributions are shown in Figure 8. An example inferred program is shown in
Figure 6 (right). The data distribution representation, despite being expressed in the form of sampler
program text, matches salient characteristics of the empirical distribution well.

4.4 Compilation of probabilistic programs

MCMC sampling, particularly in a Bayesian context, is usually quite costly and further, requires
large amounts of storage to represent the learned distribution as samples. Learning an represen-
tation of the posterior in terms of a sampling procedure that directly samples approximately from
the posterior distribution of interest could potentially improve both, particularly for the purposes of
repeated posterior predictive inference. In probabilistic programming where sample-based posterior
representations are the only option the problem is particularly acute. Further, higher-order proba-
bilistic programming languages require that the expressivity class of the approximating distribution
is at least the same as that of another probabilistic program. While the ultimate aim of compilation
of probabilistic program inference to a learned program for sampling directly from the posterior of
interest remains quite far off, our preliminary experiments are encouraging.

To explore this possibility we took an uncollapsed Beta-Binomial model with prior distribution
θ ∼ Beta(1.0, 1.0), and used Metropolis Hastiings to infer a sampled-based representation of the
posterior distribution over θ given four successful trials from Bernoulli(θ). The correspondent prob-
abilistic program is given in Figure 9. Then we used our approach to learn a probabilistic program
that when repeatedly invoked produces samples statistically match the empirical posterior distribu-
tion. Examples of inferred probabilistic procedures are given in Figure 9 (right). The analytical pos-
terior distribution in this case is Beta(5.0, 1.0) to which we found good approximations. Note that
in the probabilistic program compilation experiment additional primitives include beta, normal,
and other higher order stochastic procedures were added to the program text generative model.
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5 Discussion

Our novel approach to program synthesis via probabilistic programming raises at least as many
questions as it answers. One key high level question this kind of work sharpens is, really, what is the
goal of program synthesis? By framing program synthesis as a probabilistic inference problem we
are implicitly naming our goal to be that of estimating a distribution over programs that obey some
constraints rather than as a search for a single best program that does the same. On one hand, the
notion of regularising via a generative model is natural as doing so predisposes inference towards
discovery of programs that preferentially possess characteristics of interest (length, readability, etc.).
On the other hand, exhaustive computational inversion of a generative model that includes evaluation
of program text will clearly remain intractable for the foreseeable future. For this reason greedy and
stochastic search inference strategies are basically the only options available. We employ the latter,
and MCMC in particular, to explore the posterior distribution of programs whose outputs match
constraints knowing full-well that its actual effect in this problem domain, and, in particular finite
time, is more-or-less that of stochastic search. We could add an annealing temperature and schedule
[30] to clarify our use of MCMC as search, however, while ergodic, our system is sufficiently stiff
to not require quenching (and as a result almost certainly will not achieve maxima in general).

It is pleasantly surprising, however, that the Monte Carlo techniques we use were able to find exem-
plar programs in the posterior distribution that actually do a good job of generalising observed data
in the experiments we report. It remains an open question whether or not sampling procedures are
the best stochastic search technique to use for this problem in general however. Perhaps by directly
framing the problem as one of search we might do better, particularly if our goal is a single best
program. Techniques ranging from genetic algorithms [31] to Monte Carlo tree search [32] all show
promise and bear consideration.

One interesting way to take this work forward is to introduce techniques from the cumulative/in-
cremental learning community [33], perhaps by adding time-dependent and hierarchical dimensions
to the program text generative model. In the specific context of learning sampler program text, it
would be convenient if, for instance when learning the program text for sampling from a param-
eterised normal distribution, one had access to an already learned subroutine for sampling from a
standard normal. In related work from the field of inductive programming large gains in performance
were observed when the learning task was structured in this way [34].

Our example inference tasks are just the start. What inspired and continues to inspire us is our the
internal experience of our own ability to reason about procedure. Given examples, humans clearly
are able to generate program text for procedures that compute or otherwise match examples. Humans
can physically simulate Turing machines, and, it would seem clear, are capable doing something at
least as powerful when deducing the action of a particular piece of program text from the text itself.
No candidate artificial intelligence solution will be complete without the inclusion of such ability.
Those without will always be deficient in the sense that it is apparent that humans can internally
represent and reason about procedure. Perhaps some generalised representation of procedure is the
actual expressivity class of human reasoning. It certainly can’t be less.
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