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We address the symbol grounding problem for robot perception through a data-driven
approach to deriving categories from robot sensor data. Unlike model-based approaches,
where human intuitive correspondences are sought between sensor readings and features
of an environment �corners, doors, etc.�, our method learns intrinsic categories �or natural
kinds� from the raw data itself. We approximate a manifold underlying sensor data using
Isomap nonlinear dimension reduction and apply Bayesian clustering �Gaussian mixture
models� with model identification techniques to discover categories �or kinds�. We dem-
onstrate our method through the learning of sensory kinds from trials in various indoor
and outdoor environments with different sensor modalities. Learned kinds are then used
to classify new sensor data �out-of-sample readings�. We present results indicating greater
consistency in classifying sensor data employing mixture models in nonlinear low-
dimensional embeddings. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION

The symbol grounding problem in robotics deals
with connecting arbitrary symbols with entities in the
robot’s world. Names such as “door,” “hallway,” and
“tree,” must be associated with sensor readings so
that an autonomous robot can reason about them at
a higher level. Traditionally, a human programmer is
relied upon to provide these connections by identi-
fying areas in the world that correspond to precon-
ceived labels and building models of how they would
appear to the robot. However, actual sensory infor-

mation is dictated by the robot’s embodiment and
may not accord with models of sensor function. Con-
sequently, our understanding of a robot’s perception
of the world is often biased and heuristic.

A data-driven approach to sensor analysis could
discover a more appropriate interpretation of sensor
readings. Sensor data collected during robot opera-
tion are observations of the underlying sensory pro-
cess and, if teleoperation is involved, the control
policy of the operator. We posit that the intrinsic
structure underlying these observations can be un-
covered using recent techniques from manifold learn-
ing. Once uncovered, this structure can provide a
solid foundation for autonomous sensory under-
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standing as a robot’s perceptual system is allowed to
develop classes of sensor data based on its own,
unique, experiences.

We present such a data-driven method for clas-
sifying robot sensor input via unsupervised dimen-
sionality reduction and Bayesian clustering. We view
the input of the system as a high dimensional space
where each dimension corresponds to a reading from
one of the robot’s sensors. This sensory space is likely
to be sparse and described by a lower dimensional
subspace. Our approach is to embed sensor data non-
linearly into a lower-dimensional manifold that con-
denses this space and captures latent structure. By
clustering in this embedded space we generate sim-
pler probability densities while grouping together ar-
eas that appear similar to the robot. We take each
cluster of sensor readings in the reduced-dimensional
space as a kind1 of entity as viewed by the robot. As
seen in Figure 1, datapoints that are intrinsically simi-
lar may be placed into different clusters if clustering
is performed without manifold learning. A naive ap-
proach might be to do simple linear dimensionality
reduction by finding the dimensions of highest vari-
ance and ignoring others. This approach, however,
would not capture nonlinear structure latent in the
data.

Once classes are learned, we show that new sen-
sor readings can be quickly classified with an out-of-
sample classification procedure. This procedure

projects new samples into the embedding space
where they can be classified into a kind. When a lo-
cation is revisited, this procedure should embed the
new readings near the old ones, allowing the space to
be classified consistently.

We use consistency as an evaluation metric be-
cause ground truth is unknown and often subjective.
The clusters developed by this technique reflect areas
that are perceived similarly by the robot, and as pre-
viously stated, our models of robot perception are bi-
ased and heuristic. Therefore, the discovered classes
may not reflect any categories we would develop our-
selves. It is important, however, that the found kinds
be consistent, by which we mean that similar inputs
should belong to the same kind and be classified
similarly.

2. RELATED WORK

Topological mapping depends on the ability to dis-
cover regions in an explored area �Thrun, 1998�. This
process is usually done by extracting features from
sensor data that indicate the robot’s current location.
When a human decides on a symbol set, or which re-
gion types exist in the robot’s world and which fea-
tures are important �Tomatis, Nourbakhsh & Sieg-
wart, 2003�, biases from models of sensor operation
are introduced. We attempt to remove these biases by
deriving classes directly from sensor data.

Localization techniques also depend on region
identification. Landmarking, or the identification of
unique places, is commonly used to let a robot know

1Philosophically, a natural kind is a collection of objects that all
share salient features. For instance, the “Green Kind,” includes all
green objects. We use the term “kind,” “class,” and “category,”
interchangeably.

Figure 1. An example of clustering three-dimensional “Swiss roll” data generated by a contorted two-dimensional
manifold. Clusters �colors� learned directly in the input space do not necessarily reflect intrinsic structure of the data �here
represented by shape�. That is, proximal datapoints along the underlying manifold may be classified differently. This
problem can be alleviated by applying manifold dimensionality reduction prior to clustering.
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when it has returned to a previously visited location
on a map �i.e., revisiting, loop closure�. The revisiting
problem is key when it comes to map-making be-
cause it allows a robot to discover loops in the world
�Howard, 2004� or, in the case of multiple exploration
robots, it allows one robot to discover when it has en-
tered space explored by another �Stewart, Ko, Fox &
Konolige, 2003�. Often, landmarking is accomplished
by modifying the environment to disambiguate simi-
lar places. We hypothesize that with a data-driven
classification technique, it will become clearer which
areas of the world look similar to the robot and re-
quire disambiguation. Without landmarking, local-
ization depends on estimating the location of the ro-
bot using, for example, a hidden Markov model
�Shatkay, 1998� or the connections between regions al-
ready seen �Howard, Matarić & Sukhatme, 2001�. All
of these approaches require a robust way of identi-
fying the kind of space that the robot currently
occupies.

There has been much work in the area of symbol
grounding, particularly as it applies to region iden-
tification. Usually in this scenario, an example of a re-
gion is provided by a human and the algorithms learn
to classify new stimuli. Because the regions �and
therefore the symbols� are selected by humans, their
biases can have adverse effects on the efficacy of the
system.

A semisupervised approach to discovering these
regions in vision data is introduced in Grudic & Mul-
ligan �2005�. By allowing each cluster to self-optimize
its parameters, they are able to discover clusters that
more accurately correspond to the predefined ones,
as well as detect outlying points that do not belong to
any cluster. However, exemplar photographs of each
cluster are required by the algorithm. In contrast, our
approach is completely unsupervised and allows for
the discovery of space classes and outliers that are po-
tentially nonobvious to humans.

One of the obstacles that has to be surmounted
when learning region types is that a region’s type has
to be identifiable from many different viewpoints if
the classification system is to be robust. In addition,
every place within a region should be classified the
same. When the sensor modality is vision, this means
that any image of a space has to be recognized as
coming from that space, even if the image was pre-
viously unseen. In Kosecká & Li �2004�, features were
extracted from multiple hand-segmented and labeled
camera images of a space to come up with a repre-
sentation of images of the space itself. This allows for

new images to be correctly classified as being of that
space. Additionally, Weng & Chen �2000� use linear
subspace methods with a partition tree on robot vi-
sion data. Because robot sensor data is potentially
nonlinear, we consider a nonlinear alternative to sub-
space embedding.

In a more general case, Tapus, Tomatis & Sieg-
wart �2004� learn a ring of features �a fingerprint�
around the robot to identify a place. The features cor-
respond to aspects of the environment, and function
as grounded symbols. The fingerprints themselves
involve data from both vision and laser sensors and
by modeling the occlusion of features in their iden-
tification algorithm, they enable the robot to identify
a location from multiple positions inside the location.

In order to tie sensing and action together, Kling-
spor, Morik & Rieger �1996� learn sensory and action
concepts directly from the sonar data of a robot, after
the data are segmented and categorized by hand. By
utilizing sensor information related to actions �such
as teleoperation data�, we can determine the usual ac-
tion performed in each space class in an unsuper-
vised way and use these actions as a first-attempt
control policy.

In the field of dimension reduction �DR�, princi-
pal components analysis �PCA� �Bishop, 1995� is the
most widely utilized and accessible method for un-
covering subspace embeddings. PCA, however is
only suitable for uncovering linear subspaces. Re-
cently, Isomap �Tenenbaum, de Silva & Langford,
2000� has emerged as a very good nonlinear DR al-
gorithm. It has been successfully applied to 4096-
dimensional pixel data to recover the three actual im-
age dimensions embedded within. For spatio-
temporal data, Jenkins & Matarić �2004� has extended
Isomap to leverage temporal structure along with
spatial nonlinearities. In order to apply a previously
learned embedding to new points, Bengio et al. �2004�
present a framework for extending discovered em-
beddings to out-of-sample data points. Recently, DR
and manifold learning have been shown to have ben-
eficial effects on reinforcement learning �Roy & Gor-
don, 2003; Mahadevan, 2005�. We believe our ap-
proach can help apply these benefits towards
autonomous robot understanding.

3. METHODOLOGY

Our method, outlined in Figure 2, views
d-dimensional robot sensor data as lying on a mani-
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fold in Rd. We model each sensor datum x� as having
been generated by a mixture model on this manifold,
where each mixture density corresponds to a natural
kind. Here, we closely follow the methods and nota-
tion of Bengio et al. �2004�.

3.1. Training

For training, let D= �x�1 , . . . ,x�N� be the collection of
readings from S sensors at N time instances. We dis-
cover a nonlinear manifold supporting this data us-
ing Isomap �Tenenbaum et al., 2000�. We briefly re-
view the procedure: First, we compute an affinity
matrix M by approximating the geodesic distance
between points on the sensor data manifold.
Geodesic distance between points a and b is approxi-
mated by

D̃�a,b� = min
p

�
i

d�pi,pi+1� ,

where p is a sequence of points of length l�2 with
p1=a, pl=b, and pi�D∀ i� �2, . . . , l−1� and �pi ,pi+1�
are neighbors as determined by a k-nearest neigh-
bors algorithm. We compute D̃ by applying Dijk-
stra’s algorithm �Cormen, Leiserson & Rivest, 1990�
to the graph V=D ,E= �pi ,pi+1� where edge length is
the Euclidean distance between neighbors. It is pos-
sible to use a different distance metric, perhaps cho-
sen based on prior knowledge about the sensor
types that have generated the data. For generality
and applicability, we use Euclidean distance here.

M is formed with elements Mij=D̃2�xi ,xj� and

then centered and converted to equivalent dot
products using the “double-centering” formula to
obtain M̃,

M̃ij = −
1
2�Mij −

1
2

Si −
1
N

Sj +
1

N2�
k

Sk� ,

where Si=�jMij. Double-centering ensures that the
embedding will be centered around the origin. In
practice, M̃ grows as N2 and is thus currently infea-
sible to calculate for more than a few thousand
points. For larger datasets, only a subset of the data
�landmarks� can be fully processed.

The k dimensional embedding e�i of each
sensor output x� i on the sensor data manifold is ob-
tained via multidimensional scaling �MDS�. The em-
bedding is approximated by the vector e�i

= �	�1v1i ,	�2v2i , . . . ,	�kvki
 where �k is the kth largest
eigenvalue of M̃ and vki is the ith element of the
corresponding eigenvector. We reduce the dimen-
sionality of the sensor data by setting k�d, thus re-
moving many of the low eigenvalue coordinates of
the embedding. k is selected by comparing the error
between distances in the input and reduced spaces
for different dimensionalities. In particular, we look
for an “elbow,” a point after which increasing di-
mensionality does not lead to a significant decrease
in residual variance. Practically, we take k to be a
few dimensions higher than the elbow to avoid loss
of signal. We then define E=e�1 , . . . ,e�N to be the re-
duced dimensionality embedding of the training
sensor data D in k dimensions, henceforth referred
to as the “sensor embedding.”

Figure 2. Our method in flowchart form. Data from robot sensors are analyzed with Isomap to obtain a low-dimensional
embedding. The embedded data is then clustered with a Gaussian mixture model �GMM� to develop sensor classes.
Out-of-sample data can be quickly projected and classified using models learned during the in-sample training.
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This concludes our review of Isomap. It is rel-
evant to note that M̃ does not need to be formed
from the Geodesic distances. In particular, if all pairs
Euclidean distance is used instead, the MDS step
would return a result equivalent to standard PCA
�Williams, 2002�.

Initially, we assume that the sensor embeddings
were generated by exactly J statistically distinct in-
trinsic classes of sensor readings. We assume that the
distribution of each of these classes is Gaussian and
fit E with a mixture model with J components.

The probability that e�i was output by the robot’s
sensors while it was in a physical space correspond-
ing to sensor class j ,1� j� J given these assumptions
is

P�e�i�j� =
1

�2��k/2	det��j�

�exp�−
1
2

�e�i − �j�T�j
−1�e�i − �j� , �1�

where �j and �j are the mean and covariance of the
sensor output while in class j.

Assuming that each sensor datum is indepen-
dent, then the probability of E according to the mix-
ture model is

P�E� = �
i=1

N

�
j=1

J

	jP�e�i�j� ,

where the 	j
0 are mixing coefficients and
�J=1	j=1.

The Expectation Maximization �EM� algorithm
�McLachlan & Basford, 1988� is used to maximize
P�E� by solving for optimal distribution parameters
and membership weights. This maximization is ac-
complished by the iterative optimization of a log
likelihood function

log�L���E,Y�� = �
i=1

N

log��
j=1

J

	yiP�e�i��j,�j� ,

where �= ��1 , . . . ,�J ,�1 , . . . ,�J� is a set of unknown
parameters corresponding to the mean sensor data
embeddings and covariance matrices for the J classes
and

Y = �yi�i=1
N , 1 � yi � J, yi � Z

is an array of unknown variables such that yi= j if e�i
came from mixture component j. The training step is
show algorithmically in Algorithm 1.

Algorithm 1 Training

Input: data �D�, neighborhood size �ns�, dimension-
ality �k� number of clusters �J�

Output: embedding and mixture parameters

1: Create N, a neighborhood matrix where
Nij=dist�i , j�, the Euclidean distance
between points i and j in D, if j is one
of i’s ns nearest neighbors, � otherwise

2: D̃=dijkstra�N� �Geodesic distance�
3: M̃=double center�D̃2�
4: �� ,v
=eigendecomposition�M̃�
5: Keep only the first k elements of � and v

6: Create E, the embedded coordinates where
Ei= �	�1v1i ,	�2v2i , . . . ,	�kvki


7: Get �, �, the means and covariances of a
Gaussian mixture model with J components
fit to E

8: return � ,v ,� ,�

Model selection is a central issue in clustering
and corresponds to determining the number of clus-
ters �intrinsic classes� in the data. We employ two
existing empirical criteria for model selection,
Bayesian information criteria �BIC� and cross valida-
tion. The BIC penalizes likelihood as a function of
the complexity of the model. If  is the number of
free parameters in the model, then we calculate the
BIC as

− 2 log�L���E,Y�
 − �log�N� + 1
 .

Since in practice the BIC often does not sufficiently
penalize complex models, we additionally use cross
validation on held-out data to check for overfitting:
We train our model on half the training data and
then compute the unpenalized likelihood of the re-
mainder. When too many classes are posited, i.e., the
model may be overfit, the likelihood of the held-out
data may decrease relative to simpler models. These
two techniques guide us in manually selecting J.
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3.2. Online Classification

Online classification of a new point p� is simple and
rapid. We refer the reader to Bengio et al. �2004� for
full details. The embedding of p� is given by

ek�p�� =
1

2	�k
�

i
vki�Ex��D̃2�x� ,x� i�
 + Ex���D̃

2�p� ,x���


− Ex� ,x���D̃
2�x� ,x���
 − D̃2�x� i,p��� , �2�

where E is an average over the training data set.
Assuming that the data are from one of the classes
previously discovered, we use the GMM from the
training stage and determine the probability of this
newly embedded point belonging to each cluster.
This classification process is shown algorithmically
in Algorithm 2.

Algorithm 2 Out-of-sample classification

Input: data �D�, neighborhood size �ns�, Geodesic

distance �D̃�, embedding �� ,v� and mixture
�� ,�� parameters, new datapoint �p��

Output: soft cluster assignments

1: Create N, where Ni=the Euclidean distance
between p� and the ith point in D if it is one
of p�s ns nearest neighbors, else �

2: for all x� �D, indexed by i do

3: D̄i=min�Ni ,minj�Nj+D̃ji�

4: end for

5: Get e� by embedding the new point into the

manifold according to Eq. �2� where D̃�· ,p��
and D̃�p� , · � are given by D̄

6: for each of the J classes do

7: Get Sj, the probability of p� coming from
class j using Eq. �1�

8: end for

9: return S

4. EXPERIMENTS

To test our algorithms, we collected robotic sensory
data as a robot was teleoperated through an environ-
ment several times. Data from one trip were analyzed

using Algorithm 1 to learn embedding and clustering
parameters. Then, data from other trips were run
through Algorithm 2. Categorizations from multiple
trips in the same environment were then examined
for consistency. We compared the results of our Iso-
map based algorithm to one based on PCA.

4.1. Data Collection

Data were collected from two robots in two different
environments, demonstrating our approach’s appli-
cability to multiple platforms, environments, and
sensor modalities. Indoors, in an office environment,
we used Crunch, the small, cylindrical, inverted
pendulum robot pictured in Figure 3�a�. It has eight
sonar and eight infrared �IR� sensors arranged in
dual rings around its body as well as wheel encoders
that record wheel rotation. During operation, these
sensors are sampled and transmitted back to a base
laptop where they are logged at around 10 Hz.

For outdoor experiments, we used Chew, the
large, six-wheeled all-terrain robot built by Nextek
Mobility, pictured in Figure 3�b�. Chew has been
equipped with a SwissRanger time-of-flight distance
camera that uses structured light to determine a
160�124 distance array. Running at �5 Hz, these
19 840 dimensional data are time stamped and
logged onboard. Chew was driven around various
locations on the campus of Brown University, which
included open grassy areas, streets with car and pe-
destrian traffic, and collections of buildings for retail
shopping.

4.2. Learning Sensory Kinds

For the training phase, one set of data from each
robot was used to discover embedding and cluster-
ing parameters. For Crunch, after computing the
geodesic distance and MDS embedding of the 16D
training data, we examined the residual variances
and retained eight of the resulting dimensions for
future processing. Based on the BIC and holdout cal-
culations, we judged that there were five classes in
the data. The resulting mixture model was used to
assign each datapoint to a class. For display pur-
poses, we manually registered the odometry with
the underlying floor plan and overlaid these classes
on the path that the robot followed. This assignment
is illustrated in Figure 4�a�. Figures 4�c�–4�g� show
expected readings from each of the five classes dis-
covered by our method. These images were gener-
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ated using a “ray model” of Crunch’s IR and sonar
sensors and the values were computed from a
weighted average of the mean-centered datapoints.
Under this model, many of these shapes are hard to
interpret as corresponding to a hallway, doorway,
corner, etc., but these are the sensor readings that are
most distinguishable to the robot.

Similarly, we processed the first trip that Chew
took. After reducing from 19 840 to 15 dimensions,
we estimated eight clusters in the data. The odom-
etry was registered, coded, and overlaid on a map of
the environment in Figure 5�a�. Figures 5�c�–5�j�
show the mean-centered canonical distance mea-
surements for each of the classes.

We compare the results from the Isomap-based
technique described above with those of the PCA-
based one, where Geodesic distance has been re-
placed with all pairs Euclidean distances. We also
attempted to perform clustering in the native dimen-
sionality of the robots. Unfortunately, the Chew data
are so high dimensional that clustering is computa-
tionally intractable on our equipment. Further, while
the Crunch data are processable, the results are de-
generate in that almost all of the points are assigned
to one cluster. Table I shows the dimensionalities
and number of discovered clusters for the different
techniques used herein.

4.3. Consistent Sensory Classification

Our first experiment was designed to test the consis-
tency of our classification when a location is revis-
ited. We used the parameters learned from the train-
ing stage to classify data from a second trip in the
same environment. As the robot followed the same
general path as it did in the first trip, we expected
the sensory readings along the path to be classified
similarly across trips. The results from the out-of-
sample classification of Crunch’s second trip are
shown in Figure 4�b�, and Chew’s in Figure 5�b�.

We used the registered odometry to compare
classifications of the same physical space across
trips. Given a position �x ,y� in the first trip that has
been classified as generating sensor readings of kind
k, we compare it to all points from the second trip
within a certain radius, r. If more than a given per-
centage z of these points have also been classified as
kind k, we declare a match. We compare the consis-
tency of classification performed by our manifold
based approach and the PCA variant in Figure 6. As
you can see, manifold learning greatly improves the
consistency of classification for both Crunch and
Chew. For example, if Crunch requires 50% of points
within a 1 ft radius to be classified the same, our
approach achieves 40% consistency, while PCA per-
forms at less than 10%. Faulty, cheap, and idiosyn-
cratic sensors and noisy environments combine to

Figure 3. The robots used in our experiments. �a� Crunch
is a small inverted pendulum robot equipped with sonar
and infrared sensors and �b� Chew is a large all-terrain
vehicle with a time-of-flight distance camera.
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bring these numbers down. For reference, the consis-
tency between random assignments over these paths
is �0.5%.

In general, Chew has a lower consistency rating.
This difference is to be expected as its environment
is noisier and far more complicated. In addition to
more kinds of objects, Chew has to deal with many
more animate entities than Crunch does, such as cars
and pedestrians. We hope to address these issues in
future work by improving our manifold discovery
techniques and incorporating temporal information.

4.4. Consistency in New Spaces

To evaluate the applicability of our approach to new,
but similar, spaces, we ran Crunch on a different
floor of our CIT building. Data from two trials in this
new space were collected and separately classified
using our out-of-sample technique. Results are
shown in Figure 7.

If the learned classes were nonapplicable to the
space, that is, if areas that looked similar to the robot

were not assigned to the same cluster, we would ex-
pect to see successive data points assigned to differ-
ent classes. Instead, there are several large contigu-
ous sections of points that are all assigned to the
same class. Furthermore, by repeating the consis-
tency test from above, and classifying data from a
second trip on the fifth floor using the same classes,
we see that these classifications are usable in this
area, even though they were not learned here.

5. DISCUSSION AND CONCLUSION

We attempt to remove human bias from the analysis
of robotic sensor data by identifying latent structure
in the sensor readings themselves. Currently, we em-
pirically determine the neighborhood function and
size, the number of embedding coordinates to retain,
and the number of intrinsic sensor classes. In theory,
each of these can be determined automatically, and
perhaps even adaptively, from the data. In particular,
model selection is very difficult. There are techniques

Figure 4. Results from Crunch on the fourth floor of the Brown University CIT Building. �a� Sensor data from trip 1 has
been clustered into five classes. A unique width and color value for each class is overlaid on registered odometry to show
the classification of regions of space. �b� Data from a second trip was classified into the learned classes. �c�–�g� The
mean-centered expected sensor readings for each class under the standard ray model.
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to alleviate this issue, such as infinite mixture models
�Blei, Ng & Jordan, 2003� which allow for new classes
to be developed during operation that can be incor-
porated in future work. The main contribution of the
work presented here is in demonstrating that intrinsic
sensor classes may form a better foundation for ap-
plications that require classifying sensor data. In ad-
dition, we currently treat each sensor reading as in-
dependent. Better performance may result from
modeling spatial and temporal correlations as in ST-
Isomap �Jenkins & Matarić, 2004�. Parametric embed-
ding �Iwata et al., 2005� is an approach that preserves

associations between data objects and mixture com-
ponents during embedding, which could be useful in
this context.

Because our technique operates in a space de-
fined by robot sensors, the results are sometimes dif-
ficult to reconcile with human intuition. In particular,
when the “canonical” sensor reading for a Crunch
class is examined, it does not correspond to any class
that we, as humans, would have developed for the
robot. In fact, even the number of classes in the space
differs. However, as Crunch is a small wheeled robot
equipped with sonar and IR and we are tall humans
with eyes, it makes sense that our world views, and

Figure 5. Sensory data from the first of two trips with Chew were analyzed to discover sensor classes. �a� and �b� Both
trips were then categorized, colorcoded, and overlaid on a map �courtesy of Google Maps�. �c�–�j� Mean-centered canoni-
cal depth views of each class discovered by Chew.

Grollman et al.: Discovering Natural Kinds of Robot Sensory Experiences • 1085

Journal of Field Robotics DOI 10.1002/rob



Table I. Results of clustering in each of the spaces. Shown are the number of dimensions and the number of discovered
clusters for the first data set from Crunch and Chew. Clustering in the raw input space of Chew was computationally
infeasible, and is thus not shown here. Clustering in Crunch’s raw input space produced a degenerate GMM, and thus the
results are also not shown.

Isomap PCA

Input dimensions Dimensions Clusters Dimensions Clusters

Crunch 16 8 5 10 10
Chew 19840 15 8 15 11

Figure 6. The consistency metric is highly sensitive to constant selection and registration errors. Here we show the
measured consistency of our Isomap based technique as the constants �r ,z� are varied ��a� and �c�
, and compare it to a
PCA-based version ��b� and �d�
.
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our divisions of that world into categories, would be
different. Our intuition is further bolstered by noting
that armed with the kinds discovered by our system,
a human crawling on his hands and knees through
the area explored by Crunch can see how they match
up. In addition, while it is tempting to interpret the
canonical views from Chew as images, it must be re-
membered that they are actually distance measure-
ments. Even this interpretation is incorrect, as reflec-
tions, refractions, and other sources of photons can
influence the sensor and cause it to return something
other than distance.

Alas, there is no “ground truth” we may use to
evaluate our model. By design we cannot determine
the “correct” classification of each point in robot sen-
sor space. At most, we can use an ad-hoc metric to test
classifications for consistency. The metric described
herein is highly sensitive to registration errors and
constant selection. It served only to help us intuit that
our classification scheme is consistent and
reapplicable.

5.1. Mapping and Control

One use of our system would be the creation of to-
pological maps of the robot’s environment. Such
“robot-centric” maps �Grudic & Mulligan, 2005� re-
quire that the robot accurately recognize when it is
in certain types of space. By combining our classifi-
cation with odometric data, rough topological maps
can be derived. Figure 7�d� shows a topological map
derived from Figure 7�a� by dividing the space into
regions based on classification. Further processing
with loop-closure algorithms and landmark identifi-
cation techniques �Howard, 2004� can refine these
maps into useful tools for autonomous robot
navigation.

In addition, control algorithms can be derived
from the motor data associated with each class. First,
we can use the average movement of the robot in
each space class as a first-pass control policy for
what the robot should do if it finds itself in that
class. Furthermore, we can include the teleoperation

Figure 7. Using the sensor classes discovered on the fourth floor, Crunch took two trips around the fifth floor of our
building and classified each datapoint. As before, the consistency metric, �c� shows that the two trips are classified
similarly. Thus the learned classes are applicable in other �although similar� locations. �d� A topological map derived from
our method.
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data in the training process, so areas that are clus-
tered together not only look similar, but are areas
where the robot should behave similarly as well �at
least according to the teleoperator�. We plan to use
this ability to perform robotic learning by demon-
stration �Nicolescu & Matarić, 2003�. After being led
through a task by a human teleoperator, a robot can
segment the task and associate actions with each
segment in an unsupervised manner. By comparing
human and robot segmentations of a space, dis-
agreements and ambiguities in the environment and
control policy can be discovered and dealt with. As
an example, consider a control policy that requires a
robot to turn left when faced with a dog, and right
when encountering a wolf. Manifold-based analysis
may show that the robot cannot distinguish between
dogs and wolves, and thus the control policy or the
environment should be changed. Once tasks are
learned in this manner, they can be updated as the
robot continues operation. As the task is repeated,
more data become available and the clusters and ac-
tions may be fine tuned. Standard reinforcement
learning techniques can also be applied to allow a
human trainer better control.

6. CONCLUSION

This paper presents an extensible method for data-
driven discovery of intrinsic classes in robot sensor
data. We demonstrate that classes discovered with
manifold-learning techniques are more consistently
recognizable than those found using PCA. We also
show that these classes are reapplicable to new data
using out-of-sample techniques. We believe that this
technique can provide a basis for future work in au-
tonomous robot operation.
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Howard, A., Matarić, M.J., & Sukhatme, G.S. �2001�. Relax-
ation on a mesh: A formalism for generalized localiza-
tion. Paper presented at the IEEE/RSJ International
Conference on Intelligent Robots and Systems,
Wailea, HI �pp. 1055–1060�.

Iwata, T., Saito, K., Ueda, N., Stromsten, S., Griffiths, T.L.,
& Tenenbaum, J.B. �2005�. Parametric embedding for
class visualization. Paper presented at the Conference
on Advances in Neural Information Processing Sys-
tems 17, Vancouver, BC �pp. 617–624�.

Jenkins, O.C., & Matarić, M.J. �2004�. A spatio-temporal
extension to isomap nonlinear dimension reduction.
Paper presented at the International Conference on
Machine Learning 21, Banff, AB, Canada �pp. 441–
448�.

Klingspor, V., Morik, K.J., & Rigger, A.D. �1996�. Learning
concepts from sensor data of a mobile robot. Machine
Learning, 23�2–3�, 305–332.

Kosecká, J., & Li, F. �2004�. Vision based topological Mar-
kov localization. Paper presented at the International
Conference on Robotics and Automation, New Or-
leans, LA �pp. 1481–1486�.

Mahadevan, S. �2005�. Proto-value functions: Develop-
mental reinforcement learning. Paper presented at the
International Conference on Machine Learning, Bonn,
Germany �pp. 553–560�.

McLachlan, G.J., & Basford, K.E. �1988�. Mixture models:
Inference and applications to clustering. New York:
Marcel Dekker.
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