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Introduction 
This paper presents our perspective on the 
utility of data-flow programming in the field of 
scientific visualization. The Cornell Theory 
Center (C'I'C) is an established center of visu- 
alizetion production. Scientists from across 
the country use the center's resources co 
explore the data collected from their 
research. The CTC uses IBM's Visualization 
Data Explorer TM to do most of its visualiza- 
tion, and maintains a repository of DX exten- 
sions that are available free to the public. 

The discussion in this paper primarily 
focuses on the flexibility and speed of devel- 
opment afforded by the use of modular pro- 
gramming. In particular, DX is shown to 
provide sufficient flexibility to be useful in set- 
tings ranging from animation production to 
Cornell computer science education. 
Examples from actual work in progress are 
used in this paper to underpin our advocacy 
OF modular data-flow programming. We be~n 
by examining how data from a specialized 
application such as chemistry can easily fit 
within the mathematical model of scientific 
data representation provided by DX. Included 
as examples of the modular extensibil i ty of 
DX are a description OF The link between DX 
and The Electronic Visualization Laboratory's 
CAVE virtual reality environment and an 
explanation OF the CTC-developed DX inter- 
face to RenderHan. TM Finally, as an example 
of the quick learning curve associated with 
DX, sections of the curriculum developed for 
Cornell computer science classes on graphics 
(C5417 and CS418) are presented. 

Researchers not only need to combine 
existing tools in novel and innovative ways, 
but need the flexibility to add new reals and 
new interfaces. Virtual reality, for example, is 
only beginning to be used in actual research, 
so existing codes may not yet address the 
needs of a specific community like chemists. 
Researchers also need to present their data in 
a clear and polished Form which not only 
involves higher-quality, more photorealistic 
rendering but animation as well. With the 
exception of initial design, these applications 
are less interactive and more batch-oriented. 
Education on the other hand, has its own spe- 
cial requirements. In the sections that follow, 

we address each of these needs, discussing 
how the data-flow paradigm fits into rhe appli- 
cation area and how it can be interfaced with 
existing programs in r.he discipline. 

Data Structures in 
Chemistry 
Interactive graphics hu been used extensively 
in chemistry for many years. With The size of 
molecules under study becoming ever larger 
and more complex, stereo graphics displays 
and hardware rendering engines have become 
the norm in many laboratories. This early 
appetite for graphics was, to a great extent 
driven by the birth of x-ray crystallography, a 
field in which many thousands of atomic posi- 
tions must be determined from one or more 
3.dimensional elecrron density distributions. 
Beyond determining structure, chemists now 
look to molecular graphics for insight into the 
mechanisms of interaction, reaction and catal- 
ysis of large molecular assemblies. 

A number of geometrical constructs have 
evolved which have become valuable to 

chemists over The years. True to the ideals of 
scientific visualization, they are simplified rep- 
resentations That leave out unnecessary com- 
plexity while hi,lighting essential and relevant 
physics. These constructs, the CPK model, 
peptide ribbons, molecular surfaces etc. have 
served well over the years and will continue to 
be primary visualization tools into the future. 

The first step in a scientific visualization is 
to read in the data and to choose how to 
organize it into data structures. This section 
describes how molecular structure data, a spe- 
cialized application, can be represented with 
DX's model of scientific data representation. 

IBM Visualization Data Explorer is a modu- 
lar data-flow scientific visualization package 
based on a client-server execution model [2]. 
Visual programs, which resemble flow charts, 
are created using a paine-and-click graphical 
user inter~ace. The boxes in the flow chart 
represenr modules, functions that operate on 
data. Data is passed from module to module 
in the form of general user-definable data 
structures. The wires in the flow chart which 

Field:molecule 

p o s i t i o n s :  a r r a y  o f  3D f l o a t s  

atom t y p e s :  array  o f  s t r i n g s  

• .~ ~ " e n d a ~ a t o  m numbers : a r r a y  of integers 

: " de~,ends residue types: array of strings 

c o n n e c t i o n s :  a r r a y  o f  2D i n t e g m r s  | 

, ''"de~S:ends~atomic radii: array of floats 

" - -  dep..ds  colors: array of 3D floats J 

Figure I :  Diagram of a molecular dam structure expressed within IBM Visualization Data Explorer's model of  scienfif- 
ic data represenl~Jon. The field is a ~ u p  of arrays related by user-spectj~ depender~es. When the atomic radii 
o~mponent of  the field, for example, depends on posi~ns, tL is unders~nd that each pmftJon 3-vector in the field has 
a corre@onding atomic radius. A component like connecrJons refers to posi~ons since each element of the integer con- 
necdons array is an index into the posi~ons army. 
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connect modules can be thought of as data 
pipelines. Tabs on modules represent possible 
connection points. All information necessary 
for geometry, interaction, rendering and even 
final images are passed as DX data structures 
into these tabs. A detailed description can be 
found elsewhere [3]. 

For molecular structure data, coordinates 
are stored as a DX field, a group of arrays that 
map onto each other in user-defined ways. In 
our case, a minimal molecule field consists of 
positions (the atomic coordinates), atom 
types, indices and other information regarding 
larger scale or so-called secondary structure. 
Members of fields can be added or trans- 
formed by modules as the data structure 
flows down the network. Figure I gives a dia- 
grammatic representation listing the data type 
for each member commonly encountered in a 
molecular structure field along with how it 
relates to other members of the field. 

Modules and Extensibility 
There are a number of graphics constructs 
unique to chemistry. The simpler models of 
molecules, the CPK and ball-and-stick repre- 
sentations for example, can trivially be created 
using the existing tools provided with DX. 
They can then encapsulated as single boxes 
called macros; more specialized models with 
nontrivial algorithms, however, call for the 
creation of modules. From the point of view 
of the end user, there is no dist inct ion 
between macros and modules, although mod- 
ules enable developers to encapsulate their 
own code. 

We present a simple example recently 
encountered while working with a team of 
chemists studying how molecules bind to a 
newly discovered protein. The researchers 
had found two very similar proteins, call them 
A and B, with over a 100-fold difference in 
ability to bind a particular molecule. They 
wanted a graphical way to compare the bind- 
ing sites for the two proteins to find the rea- 
son for the difference. It was natural to 
compute and superimpose the so-called sol- 
vent-accessible or molecular surfaces first. 
The highly efficient code developed by Amitab 
Varshney [4,5] creates a triangle-mesh realiza- 
tion of the surface. Creation of a molecular 
surface module from this code required only 
some additional hashing to remove redundant 
vertices. The input data structure must con- 
tain fields at its lowest level, each having atom- 
ic positions and radii components. The output 
retains the same data structure with each 
original field replaced by a field containing the 
positions and connections of the triangle 
mesh. The resulting visualization clearly shows 
which parts of one surface protrude beyond 
the other but gives no indication of relative 

distance. We decided that the best solution 
was to color code the first surface A accord- 
ing the the signed distance of closest approach 
to the other B. 

An algorithm was developed based on for- 
mulae presented in Ref [6]. A simple hashing 
scheme was used to reduce the computation- 
al effort. We called the resulting module 
CompareSurfaces. Figure 2 shows the DX visual 
program which computes the two surfaces 
and feeds them into CompareSurfaces. The 
output data structure is the same as the input 
data structure for the first tab (surface) but 
with two additional components. The "data" 
component, which depends on the vertex 
positions, is the signed distance from the ver- 
tices to the surface B. The "segs" component 
is the actual vector to the surface. The Image 
window in Figure 2 shows the surface A, color- 
coded by signed distance to surface B. The 
darker the color, the large the separation 
between the two. We also superimpose sur- 
face B as a grey wire mesh. 

Virtual Reality 
Data Flow in the CAVE 
The CAVE, or  Cave Automat ic  Vir tual  
Environment, was developed at the Electronic 
Visualization Laboratory of the University of 
Illinois at Chicago (EVL). It is a room in which 

the floor and two adjoining walls are stereo 
projections systems [7,8]. Viewers with head 
tracking experience computer-generated 3D 
objects as if they were actually present in the 
room. The CAVE library, developed at the 
EVL, provides all the initialization routines 
required for the graphics hardware and auto- 
matically does all stereo perspective calcula- 
tion. Graphical function calls are made in 
native GL (Silicon Graphics Graphics Library TM 

and are passed to the Reality Engine hardware 
rendering engine. 

We have created an inboard module, Cave, 
that allows users of DX to create and pass 
geometries through shared memory to the 
CAVE. The module extracts polygons, nor- 
reals, colors, lines, points, and lights from the 
data structure and parses them into GL and 
CAVE library function calls. With this configu- 
ration, the full power of DX is available to 
control calculations on large geometries. The 
benefits of parallel computation can be har- 
nessed by DX's inherent support for paral- 
lelism. DX also provides the f lex ib i l i ty  
necessary to link different hardware and soft- 
ware systems, capturing the best of both. 

The match is by no means optimal. DX 
(version 2.1) does not currently support data 
feedback loops, and thus the data path from 
DX to the CAVE is one way. For example, a 

Figure 2: IBM Visualization Data Explorer user interface. The block diagram is a visual program that generates 
two molecular surfaces and compares them using our custom module CompareSurfaces. The first surface is shown 
in the Image window color-coded by signed distance to the second surface. The second surface is also shown as a 
grey wire mesh. Darker regions have higher separations. The close similarity of the two surfaces is easily seen in the 
central pocket. 
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Figure 3: The DX-m.CAVE medule transfers geometr/es generated in the modular visualization environment irrte the 
virtual reality environment The CAVE is an immers/ve virtual real~ system developed at the University of Illinois 
F./ectr0nic V'~ualization Laboratory. The image on the right is created using the simulator vers/on of the code and 
enables developers to see the CAVE graphics an a single works'mr/an screen. 

Sequencer module can be used to update 
CAVE geometries, bur information from the 
CAVE's 3D wand is isolated to the CAVE 
module's internal code. It is possible, however, 
for the CAVE's 3D wand to be used to  access 
DX's control panels. To accomplish this, we 
have encorporated code which warps the X 
Windows cursor and issues button-press X 
events from the wand. Users can push buttons 
on control panels and even edit their visual 
program from inside the CAVE. F/gum 3 shows 
the a visual program in the DX user interface 
with a CAVE module. In simulator mode, the 
CAVE module produces an ordinary graphics 
window with lines delimiting the CAVE walls. 
The window in F/gure 3 shows a ribbon repre- 
sentation of a protein widl a sphere represent- 
ing the user's location in the CAVE. 

Parallel Animation and the 
RenderMan TM Interface 
Although DX was never designed as an anima- 
tion choreography program, it has proven to 
be a highly productive tool  for producing 
short scientific animations. The Sequencer 
module module provides visual programs with 
a stream of integers controlled by a VCR-like 
control pane/. Each time an integer is generat- 
ed, the program is reexecuted. Although DX 
does provide basic rendering capabilities, pal- 

ished animations often require high-quality 
images. The commercial RenderMan package 
(Rman) from PIXAR fills this need. We have 
writ ten a DX-to-RenderMan module which 
al lows DX users to  access nearly all of  
RenderHan's sophisticated functionality. In this 
example, researchers wanted a symbolic rep- 
resentation of the acetylcholine receptor. Our 
crude model is represented by a surface of 

revolution primitive with atoms on -,.he posc- 
synaptic membrane represented by sphere 
primitives. The surface of revolution was cre- 
ated by scanning in a black and white illustra- 
tion and then using DX's ProbeList module to 
trace a cross section. DX is not capable of 
rendering either type of primitive, but we 
have written an outboard module which pro- 
duces RenderHan rib files. The DX data 
structure is sufficiently flexible to support 
almost all RenderMan functionality. When  the 
RMan module encounters a field with posi- 
tions and data, it looks for what is called an 
attribute, a named tag that can be attached to 
any DX data structure. In RenderMan the 
states of the graphics environment are also 
called attributes. DX attributes can be conve- 
niently used to set RenderMan attributes such 
as the lighting model being used, etc. W h e n  a 
DX attribute called "geomet ry"  has a string 
value of "sphere/" RMan looks for a array of 
positions and corresponding radii and places 
spheres at each position. Similarly, a string 
value of "surface of revolution" will assume 
that an array of positions in a field defines the 
cross section of a surface of  revolution about 
the origin. If RMan encounters a field with a 
g e o m e t r y  attr ibute that has another data 
structure as a value, that data structure is 
assumed to define a "glyph" that should be 
treated as a RenderMan object and replicated 
at each position of the field. This is a much 
more memory-efficient scheme than using the 
conventional DX Glyph module that repli- 
cates the entire geometry in memory. F/gure 4 
shows the final image. 

Animation at the CorneU Theory  Center  
is currently done in parallel on 10 128HB thin 
nodes of an IBM SP2. Both rib files (2-3MB on 
average) and final rendered images (0.7 MB) 

Rgum 4- The commercial code RenderMan available fmrn PIXAR easi/), interfaces to IB/H~ Data Explorer. The 
advanced data structures of~e modular ~uaiiza~on environment enable users to access featom~ such as geometric 
s~here and surt'ace-of-revo/m}on pr/mis/ves. Opt/arts modules shown here not/~ our RMan module that the incoming 
data struc~Jres should be interpreted as the appropriate geometric primitives. 
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are written to our mass storage system so 
that any frame of a previous animation can be 
retrieved in digital form or re-rendered from 
the rib file at higher resolution if needed. 

Education 
Although DX is primarily a scientific data visu- 
alization tool, it is successfully used in the 
instruction of Cornell computer science class- 
es 417 and 418 on computer graphics and 
visualization. The course exercises range from 
explicit polygon listing to Z-buffering and anti- 
aliasing. DX is used in these classes because of 
the quick learning curve associated with mod- 
ular programming. Students are able to exper- 
iment wi th aspects of computer graphics 
which individually would take months of pro- 
gramming to explore. For young students, a 
lack of practical programming experience can 
often cause problems in a traditional comput- 
er graphics course. Instead of wasting time 
learning huge libraries of functions, students 
can pick modules and customized macros 
from a list and then assemble them into short 
visual programs to test principles. Macros can 
be opened to see the various visual subrou- 
tines employed within. Those subroutines can 
then be enhanced or "turned off" by replacing 
them with student developed algorithms. 
Comments on DX's modularity and ease of 
use have appeared in the positive student 
feedback. In them, DX is shown to be an easy 
medium for investigating computer graphics 
principles because of its quick learning curve. 
Detailed information including student gener- 
ated images is available through the Cornell 
Theory Center's World Wide Web server, 
the URL of which is given below. 

Summary 
We have shown applications of DX to illus- 
trate the ease of use and flexibility afforded by 
modular data-flow programming. The flexibili- 
ty of the DX data structure allows optimal 
integration of unique applications, either fore- 
front technology or specialized algorithms. 
We have demonstrated that modular pro- 
gramming, especially when conjoined with a 
graphical user interface such as that in DX, 
can bring sophisticated and powerful comput- 
er tools within reach of the non-programmer. 
Currently, many research groups are accus- 
tomed to doing their computation and visual- 
ization in a piecemeal fashion from disparate 
programs, some public domain, others written 
by former group members or companies. In 
all, we think that modular visualization envi- 
ronments will play a major role in the future 
of research and teaching by providing a unified 
interface that brings together disparate appli- 
cations, promotes exchange, and simplifies 
computing. For more information regarding 

visualization at the Cornell Theory Center, 
open the URL http:/ /www.tc.cornel l .edu/ 
Visualization/. Cornell's DX repository is 
located at ftp.tc.cornell.edu in d i rectory 
pub/Data.Explorer. 
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