
Visualization, Virtual Reality, and Animation
within the Data Flow Model of Computing

Richard E. Gillilan and Frank Wood
Cornell University

Introduction
This paper presents our perspective on the
utility of data-flow programming in the field of
scientific visualization. The Cornell Theory
Center (C'I'C) is an established center of visu-
alizetion production. Scientists from across
the country use the center's resources co
explore the data collected from their
research. The CTC uses IBM's Visualization
Data Explorer TM to do most of its visualiza-
tion, and maintains a repository of DX exten-
sions that are available free to the public.

The discussion in this paper primarily
focuses on the flexibility and speed of devel-
opment afforded by the use of modular pro-
gramming. In particular, DX is shown to
provide sufficient flexibility to be useful in set-
tings ranging from animation production to
Cornell computer science education.
Examples from actual work in progress are
used in this paper to underpin our advocacy
OF modular data-flow programming. We be~n
by examining how data from a specialized
application such as chemistry can easily fit
within the mathematical model of scientific
data representation provided by DX. Included
as examples of the modular extensibil i ty of
DX are a description OF The link between DX
and The Electronic Visualization Laboratory's
CAVE virtual reality environment and an
explanation OF the CTC-developed DX inter-
face to RenderHan. TM Finally, as an example
of the quick learning curve associated with
DX, sections of the curriculum developed for
Cornell computer science classes on graphics
(C5417 and CS418) are presented.

Researchers not only need to combine
existing tools in novel and innovative ways,
but need the flexibility to add new reals and
new interfaces. Virtual reality, for example, is
only beginning to be used in actual research,
so existing codes may not yet address the
needs of a specific community like chemists.
Researchers also need to present their data in
a clear and polished Form which not only
involves higher-quality, more photorealistic
rendering but animation as well. With the
exception of initial design, these applications
are less interactive and more batch-oriented.
Education on the other hand, has its own spe-
cial requirements. In the sections that follow,

we address each of these needs, discussing
how the data-flow paradigm fits into rhe appli-
cation area and how it can be interfaced with
existing programs in r.he discipline.

Data Structures in
Chemistry
Interactive graphics hu been used extensively
in chemistry for many years. With The size of
molecules under study becoming ever larger
and more complex, stereo graphics displays
and hardware rendering engines have become
the norm in many laboratories. This early
appetite for graphics was, to a great extent
driven by the birth of x-ray crystallography, a
field in which many thousands of atomic posi-
tions must be determined from one or more
3.dimensional elecrron density distributions.
Beyond determining structure, chemists now
look to molecular graphics for insight into the
mechanisms of interaction, reaction and catal-
ysis of large molecular assemblies.

A number of geometrical constructs have
evolved which have become valuable to

chemists over The years. True to the ideals of
scientific visualization, they are simplified rep-
resentations That leave out unnecessary com-
plexity while hi,lighting essential and relevant
physics. These constructs, the CPK model,
peptide ribbons, molecular surfaces etc. have
served well over the years and will continue to
be primary visualization tools into the future.

The first step in a scientific visualization is
to read in the data and to choose how to
organize it into data structures. This section
describes how molecular structure data, a spe-
cialized application, can be represented with
DX's model of scientific data representation.

IBM Visualization Data Explorer is a modu-
lar data-flow scientific visualization package
based on a client-server execution model [2].
Visual programs, which resemble flow charts,
are created using a paine-and-click graphical
user inter~ace. The boxes in the flow chart
represenr modules, functions that operate on
data. Data is passed from module to module
in the form of general user-definable data
structures. The wires in the flow chart which

Field:molecule

p o s i t i o n s : a r r a y o f 3D f l o a t s

atom t y p e s : array o f s t r i n g s

• .~ ~ " e n d a ~ a t o m numbers : a r r a y of integers

: " de~,ends residue types: array of strings

c o n n e c t i o n s : a r r a y o f 2D i n t e g m r s |

, ''"de~S:ends~atomic radii: array of floats

" - - dep..ds colors: array of 3D floats J

Figure I : Diagram of a molecular dam structure expressed within IBM Visualization Data Explorer's model of scienfif-
ic data represenl~Jon. The field is a ~ u p of arrays related by user-spectj~ depender~es. When the atomic radii
o~mponent of the field, for example, depends on posi~ns, tL is unders~nd that each pmftJon 3-vector in the field has
a corre@onding atomic radius. A component like connecrJons refers to posi~ons since each element of the integer con-
necdons array is an index into the posi~ons army.

Computer Graphla M~/1995 55

connect modules can be thought of as data
pipelines. Tabs on modules represent possible
connection points. All information necessary
for geometry, interaction, rendering and even
final images are passed as DX data structures
into these tabs. A detailed description can be
found elsewhere [3].

For molecular structure data, coordinates
are stored as a DX field, a group of arrays that
map onto each other in user-defined ways. In
our case, a minimal molecule field consists of
positions (the atomic coordinates), atom
types, indices and other information regarding
larger scale or so-called secondary structure.
Members of fields can be added or trans-
formed by modules as the data structure
flows down the network. Figure I gives a dia-
grammatic representation listing the data type
for each member commonly encountered in a
molecular structure field along with how it
relates to other members of the field.

Modules and Extensibility
There are a number of graphics constructs
unique to chemistry. The simpler models of
molecules, the CPK and ball-and-stick repre-
sentations for example, can trivially be created
using the existing tools provided with DX.
They can then encapsulated as single boxes
called macros; more specialized models with
nontrivial algorithms, however, call for the
creation of modules. From the point of view
of the end user, there is no dist inct ion
between macros and modules, although mod-
ules enable developers to encapsulate their
own code.

We present a simple example recently
encountered while working with a team of
chemists studying how molecules bind to a
newly discovered protein. The researchers
had found two very similar proteins, call them
A and B, with over a 100-fold difference in
ability to bind a particular molecule. They
wanted a graphical way to compare the bind-
ing sites for the two proteins to find the rea-
son for the difference. It was natural to
compute and superimpose the so-called sol-
vent-accessible or molecular surfaces first.
The highly efficient code developed by Amitab
Varshney [4,5] creates a triangle-mesh realiza-
tion of the surface. Creation of a molecular
surface module from this code required only
some additional hashing to remove redundant
vertices. The input data structure must con-
tain fields at its lowest level, each having atom-
ic positions and radii components. The output
retains the same data structure with each
original field replaced by a field containing the
positions and connections of the triangle
mesh. The resulting visualization clearly shows
which parts of one surface protrude beyond
the other but gives no indication of relative

distance. We decided that the best solution
was to color code the first surface A accord-
ing the the signed distance of closest approach
to the other B.

An algorithm was developed based on for-
mulae presented in Ref [6]. A simple hashing
scheme was used to reduce the computation-
al effort. We called the resulting module
CompareSurfaces. Figure 2 shows the DX visual
program which computes the two surfaces
and feeds them into CompareSurfaces. The
output data structure is the same as the input
data structure for the first tab (surface) but
with two additional components. The "data"
component, which depends on the vertex
positions, is the signed distance from the ver-
tices to the surface B. The "segs" component
is the actual vector to the surface. The Image
window in Figure 2 shows the surface A, color-
coded by signed distance to surface B. The
darker the color, the large the separation
between the two. We also superimpose sur-
face B as a grey wire mesh.

Virtual Reality
Data Flow in the CAVE
The CAVE, or Cave Automat ic Vir tual
Environment, was developed at the Electronic
Visualization Laboratory of the University of
Illinois at Chicago (EVL). It is a room in which

the floor and two adjoining walls are stereo
projections systems [7,8]. Viewers with head
tracking experience computer-generated 3D
objects as if they were actually present in the
room. The CAVE library, developed at the
EVL, provides all the initialization routines
required for the graphics hardware and auto-
matically does all stereo perspective calcula-
tion. Graphical function calls are made in
native GL (Silicon Graphics Graphics Library TM

and are passed to the Reality Engine hardware
rendering engine.

We have created an inboard module, Cave,
that allows users of DX to create and pass
geometries through shared memory to the
CAVE. The module extracts polygons, nor-
reals, colors, lines, points, and lights from the
data structure and parses them into GL and
CAVE library function calls. With this configu-
ration, the full power of DX is available to
control calculations on large geometries. The
benefits of parallel computation can be har-
nessed by DX's inherent support for paral-
lelism. DX also provides the f lex ib i l i ty
necessary to link different hardware and soft-
ware systems, capturing the best of both.

The match is by no means optimal. DX
(version 2.1) does not currently support data
feedback loops, and thus the data path from
DX to the CAVE is one way. For example, a

Figure 2: IBM Visualization Data Explorer user interface. The block diagram is a visual program that generates
two molecular surfaces and compares them using our custom module CompareSurfaces. The first surface is shown
in the Image window color-coded by signed distance to the second surface. The second surface is also shown as a
grey wire mesh. Darker regions have higher separations. The close similarity of the two surfaces is easily seen in the
central pocket.

56 May 1995 Computer Graphics

Figure 3: The DX-m.CAVE medule transfers geometr/es generated in the modular visualization environment irrte the
virtual reality environment The CAVE is an immers/ve virtual real~ system developed at the University of Illinois
F./ectr0nic V'~ualization Laboratory. The image on the right is created using the simulator vers/on of the code and
enables developers to see the CAVE graphics an a single works'mr/an screen.

Sequencer module can be used to update
CAVE geometries, bur information from the
CAVE's 3D wand is isolated to the CAVE
module's internal code. It is possible, however,
for the CAVE's 3D wand to be used to access
DX's control panels. To accomplish this, we
have encorporated code which warps the X
Windows cursor and issues button-press X
events from the wand. Users can push buttons
on control panels and even edit their visual
program from inside the CAVE. F/gum 3 shows
the a visual program in the DX user interface
with a CAVE module. In simulator mode, the
CAVE module produces an ordinary graphics
window with lines delimiting the CAVE walls.
The window in F/gure 3 shows a ribbon repre-
sentation of a protein widl a sphere represent-
ing the user's location in the CAVE.

Parallel Animation and the
RenderMan TM Interface
Although DX was never designed as an anima-
tion choreography program, it has proven to
be a highly productive tool for producing
short scientific animations. The Sequencer
module module provides visual programs with
a stream of integers controlled by a VCR-like
control pane/. Each time an integer is generat-
ed, the program is reexecuted. Although DX
does provide basic rendering capabilities, pal-

ished animations often require high-quality
images. The commercial RenderMan package
(Rman) from PIXAR fills this need. We have
writ ten a DX-to-RenderMan module which
al lows DX users to access nearly all of
RenderHan's sophisticated functionality. In this
example, researchers wanted a symbolic rep-
resentation of the acetylcholine receptor. Our
crude model is represented by a surface of

revolution primitive with atoms on -,.he posc-
synaptic membrane represented by sphere
primitives. The surface of revolution was cre-
ated by scanning in a black and white illustra-
tion and then using DX's ProbeList module to
trace a cross section. DX is not capable of
rendering either type of primitive, but we
have written an outboard module which pro-
duces RenderHan rib files. The DX data
structure is sufficiently flexible to support
almost all RenderMan functionality. When the
RMan module encounters a field with posi-
tions and data, it looks for what is called an
attribute, a named tag that can be attached to
any DX data structure. In RenderMan the
states of the graphics environment are also
called attributes. DX attributes can be conve-
niently used to set RenderMan attributes such
as the lighting model being used, etc. W h e n a
DX attribute called "geomet ry" has a string
value of "sphere/" RMan looks for a array of
positions and corresponding radii and places
spheres at each position. Similarly, a string
value of "surface of revolution" will assume
that an array of positions in a field defines the
cross section of a surface of revolution about
the origin. If RMan encounters a field with a
g e o m e t r y attr ibute that has another data
structure as a value, that data structure is
assumed to define a "glyph" that should be
treated as a RenderMan object and replicated
at each position of the field. This is a much
more memory-efficient scheme than using the
conventional DX Glyph module that repli-
cates the entire geometry in memory. F/gure 4
shows the final image.

Animation at the CorneU Theory Center
is currently done in parallel on 10 128HB thin
nodes of an IBM SP2. Both rib files (2-3MB on
average) and final rendered images (0.7 MB)

Rgum 4- The commercial code RenderMan available fmrn PIXAR easi/), interfaces to IB/H~ Data Explorer. The
advanced data structures of~e modular ~uaiiza~on environment enable users to access featom~ such as geometric
s~here and surt'ace-of-revo/m}on pr/mis/ves. Opt/arts modules shown here not/~ our RMan module that the incoming
data struc~Jres should be interpreted as the appropriate geometric primitives.

Computer Graphir.t May 199S 57

are written to our mass storage system so
that any frame of a previous animation can be
retrieved in digital form or re-rendered from
the rib file at higher resolution if needed.

Education
Although DX is primarily a scientific data visu-
alization tool, it is successfully used in the
instruction of Cornell computer science class-
es 417 and 418 on computer graphics and
visualization. The course exercises range from
explicit polygon listing to Z-buffering and anti-
aliasing. DX is used in these classes because of
the quick learning curve associated with mod-
ular programming. Students are able to exper-
iment wi th aspects of computer graphics
which individually would take months of pro-
gramming to explore. For young students, a
lack of practical programming experience can
often cause problems in a traditional comput-
er graphics course. Instead of wasting time
learning huge libraries of functions, students
can pick modules and customized macros
from a list and then assemble them into short
visual programs to test principles. Macros can
be opened to see the various visual subrou-
tines employed within. Those subroutines can
then be enhanced or "turned off" by replacing
them with student developed algorithms.
Comments on DX's modularity and ease of
use have appeared in the positive student
feedback. In them, DX is shown to be an easy
medium for investigating computer graphics
principles because of its quick learning curve.
Detailed information including student gener-
ated images is available through the Cornell
Theory Center's World Wide Web server,
the URL of which is given below.

Summary
We have shown applications of DX to illus-
trate the ease of use and flexibility afforded by
modular data-flow programming. The flexibili-
ty of the DX data structure allows optimal
integration of unique applications, either fore-
front technology or specialized algorithms.
We have demonstrated that modular pro-
gramming, especially when conjoined with a
graphical user interface such as that in DX,
can bring sophisticated and powerful comput-
er tools within reach of the non-programmer.
Currently, many research groups are accus-
tomed to doing their computation and visual-
ization in a piecemeal fashion from disparate
programs, some public domain, others written
by former group members or companies. In
all, we think that modular visualization envi-
ronments will play a major role in the future
of research and teaching by providing a unified
interface that brings together disparate appli-
cations, promotes exchange, and simplifies
computing. For more information regarding

visualization at the Cornell Theory Center,
open the URL http:/ /www.tc.cornel l .edu/
Visualization/. Cornell's DX repository is
located at ftp.tc.cornell.edu in d i rectory
pub/Data.Explorer.

Acknowledgements
Many thanks to Dr. Bruce Land for his contri-
butions, especially in the domain of education.
We are also grateful to Jun Liang and Jon
Clardy for the use of their molecular data.
The Cornell Theory Center receives major
funding from the National Science Foundation
and New York State, with additional support
from the Advanced Research Projects Agency,
the National Center for Research Resources
at the National Institutes of Health, IBM
Corporation and members of the Corporate
Research Institute.

References
I. Gillilan and B. Land. "Scientific Visualization

of Chemical Systems:' Proc. IEEE
Supercomputing '93, pp.296-301, Los
Alamitos, CA, 1993.

2. B. Lucas, G. D. Abram, N. S. Collins, D. A.
Epstein, D. L. Gresh, and K. P. McAuliffe.
"An architecture for a scientific visualiza-
tion system:' Proc. IEEE Visualization "92,
pp. 107- I 13, Los Alamitos, CA, 1992.

3. R. Haber, B. Lucas, and N. Collins. "A Data
Model for Scientific Visualization with
Provisions for Regular and Irregular Grids:'
Proc. IEEE Visualization "9 I, pp.298-305, Los
Alamitos, CA, 199 I.

4. A. Varshney, Jr. E P. Brooks, and W, V.
Wright. "Linearly Scalable Computation of
Smooth Molecular Surfaces:' IEEE Comp.
Graph. Appl., 14:19-25, 1994.

5. A. Varshney and E P. Brooks. "Fast
Analytical Computation for Richard's
Smooth Molecular Surface:' Proc. IEEE
Visualization '9 I, pp.300-307, San Jose,
CA, 1993.

6. D., Badouel. "An Efficient Ray-Polygon
Intersection:' In Andrew S. Glassner, editor,
Graphics Gems, pp.390-393. Academic Press
Inc., San Diego, 1990.

7. C. Cruz-Neira, J. Leigh, C. Barnes, S. M.
Cohen, S. Das, R. Engelmann, R. Hudson,
M. Papka, T. Roy, L Siegel, C. Vasilakis, T.
A. DeFanti, and D. J. Sandin. "Scientists in
wonderland: A Report on Visualization
Applications in the Cave Virtual Reality
Environment." IEEE 1993 Symposium on
Research Frontiers in Virtual Reality, pp.59-66,
San Jose, 1993.

8. C. Cruz-Neira, D.J. Sandin, T. A. DeFanti,
R. V. Kenyon, and J. C. Hart. "The Cave:
Audio Visual Experience Automatic Virtual
Environment:' Communications of the ACM,
35:65-72, 1992.

9. B. Land. "Teaching Computer Graphics

and Scientific Visualization Using the
Dataflow, Block Diagram Language Data
Explorer." University Education Uses of
Visualization in Scientific Computing, pp.33-
36, New York, 1994.

Richard E. GilUlan
Cornell Theory Center Engineering &

Theory Center Building
Ithaca, NY 14853-380 I
Tel: 607-254-8757
Fax: 607-254-8888
Email: richard@tc.cornell.edu

Frank Wood
Cornell Theory Center Engineering &

Theory Center Building
Ithaca, NY 14853-380 I
Tel: 607-254-8345
Fax: 607-254-8888
Email: fwood@tc.cornell.edu

58 May 1995 Computer Graphics

