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Inference in Hidden Markov Models with Explicit
State Duration Distributions

Michael Dewar, Chris Wiggins, Frank Wood

Abstract—Explicit-state-duration hidden Markov models
(EDHMM) are HMMs that have latent states consisting of
both discrete state-indicator and discrete state-duration random
variables. In contrast to the implicit geometric state duration
distribution possessed by the standard HMM, EDHMMs allow
the direct parameterisation and estimation of per-state duration
distributions. As most duration distributions are defined over
the positive integers, truncation or other approximations are
usually required to perform EDHMM inference. In this letter we
borrow from the inference techniques developed for unbounded
state-cardinality (nonparametric) variants of the HMM and use
them to develop a tuning-parameter free, black-box inference
procedure for EDHMMs.

I. INTRODUCTION

Hidden Markov models (HMMs) are a fundamental tool
for data analysis and exploration. Many variants of the basic
HMM have been developed in response to shortcomings in
the original HMM formulation [9]. In this paper we address
inference in the explicit state duration HMM (EDHMM). By
state duration we mean the amount of time an HMM dwells in
a state. In the standard HMM specification, a state’s duration
is implicit and, a priori, distributed geometrically.

The EDHMM (or, equivalently, the hidden semi-Markov
model [12]) was developed to allow explicit parameterization
and direct inference of state duration distributions. EDHMM
estimation and inference can be performed using the forward-
backward algorithm; though only if the sequence is short or
a tight “allowable” duration interval for each state is hard-
coded a priori [13]. If the sequence is short then forward-
backward can be run on a state representation that allows
for all possible durations up to the observed sequence length.
If the sequence is long then forward-backward only remains
computationally tractable if only transitions between durations
that lie within pre-specified allowable intervals are considered.
If the true state durations lie outside those intervals then
the resulting model estimates will be incorrect: the learned
duration distributions can only reflect what is allowed given
the pre-specified duration intervals.

Our contribution is the development of a procedure for
EDHMM inference that does not require any hard pre-
specification of duration intervals, is efficient in practice, and,
as it is an asymptotically exact procedure, does not risk
incorrect inference. The technique we use to do this is bor-
rowed from sampling procedures developed for nonparametric
Bayesian HMM variants [11]. Our key insight is simple: the
machinery developed for inference in HMMs with a countable
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Fig. 1: a) The Explicit Duration Hidden Markov Model. The
time left in the current state xt is denoted dt. The observation
at each point in time is denoted yt. b) The EDHMM with the
additional auxiliary variable ut used in the beam sampler.

number of states is precisely the same as that which is needed
for doing inference in an EDHMM with duration distributions
over countable support. So, while the EDHMM is a distinctly
parametric model, the tools from nonparametric Bayesian in-
ference can be applied such that black-box inference becomes
possible and, in practice, efficient.

In this work we show specifically that a “beam-sampling”
approach [11] works for estimating EDHMMs, learning both
the transition structure and duration distributions simultane-
ously. In demonstrating our EDHMM inference technique we
consider a synthetic system in which the state-cardinality is
known and finite, but where each state’s duration distribution is
unknown. We show that the EDHMM beam sampler performs
accurate tracking whilst capturing the duration distributions as
well as the probability of transitioning between states.

The remainder of the letter is organised as follows. In
Section II we introduce the EDHMM; in Section III we review
beam-sampling for the infinite Hidden Markov Model (iHMM)
[1] and show how it relates to the EDHMM inference problem;
and in Section IV we show results from using the EDHMM
to model synthetic data.

II. EXPLICIT DURATION HIDDEN MARKOV MODEL

The EDHMM captures the relationships among state xt,
duration dt, and observation yt over time t. It consists of
four components: the initial state distribution, the transition
distributions, the observation distributions, and the duration
distributions.

We define the observation sequence Y = {y1, y2, . . . , yT };
the latent state sequence X = {x0, x1, x2, . . . , xT }; and
the remaining time in each segment D = {d1, d2, . . . , dT },
where xt ∈ {1, 2, . . . ,K} with K the maximum number of
states, dt ∈ {1, 2, . . .}, and yt ∈ Rn. We assume that the
Markov chain on the latent states is homogenous, i.e., that
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p(xt = j|xt−1 = i, A) = ai,j∀t where A is a K × K
matrix with element ai,j at row i and column j. The prior
on A is row-wise Dirichlet with zero prior mass on self-
transitions, i.e. p(ai,:) = Dir(1/(K − 1), . . . , 0, . . . 1/K − 1)
where ai,: is a row vector and the ith Dirichlet parameter
is 0. Each state is imbued with its own duration distribution
p(dt|xt = k) = p(dt|λk) with parameter λk. Each duration
distribution parameter is drawn from a prior p(λk) which can
be chosen in an application specific way. The collection of
all duration distribution parameters is λ = {λ1, . . . , λK}.
Each state is also imbued with an observation generating
distribution p(yt|xt = k) = p(yt|θk) with parameter θk. Each
observation distribution parameter is drawn from a prior p(θk)
also to be chosen according to the application. The set of
all observation distribution parameters is θ. In the following
exposition, explicit conditional dependencies on component
distribution parameters are omitted to focus on the particulars
unique to the EDHMM.

In an EDHMM the transitions between states are only
allowed at the end of a segment:

p(xt|xt−1, dt−1) =

{
δ(xt, xt−1) if dt−1 > 1
p(xt|xt−1) otherwise

(1)

where the Kronecker delta δ(a, b) = 1 if a = b and zero
otherwise. The duration distribution generates segment lengths
at every state switch:

p(dt|xt, dt−1) =

{
δ(dt, dt−1 − 1) if dt−1 > 1
p(dt|xt) otherwise.

(2)

The joint distribution of the EDHMM is

p(X ,D,Y) = p(x0)p(d0)×
T∏

t=1

p(yt|xt, θ)p(xt|xt−1, dt−1, A)p(dt|xt, dt−1, λ) (3)

corresponding to the graphical model in Figure 1a. Alternative
choices to define the duration variable dt exist; see [3] for
details. Algorithm 1 illustrates the EDHMM as a generative
model.

III. EDHMM INFERENCE

Our aim is to estimate the conditional posterior distribution
of the latent states (X and D) and parameters (θ, λ and A)
given observations Y by samples drawn via Markov chain
Monte Carlo. Sampling θ and A given X proceeds per usual
textbook approaches [2]. Sampling λ given D is straightfor-
ward in most situations. Indirect Gibbs sampling of X is
possible using auxiliary state-change indicator variables, but
for reasons similar to those in [6], such a sampler will not
mix well. The main contribution of this paper is to show how
to generate posterior samples of X and D.

A. Forward Filtering, Backward Sampling

We can, in theory, use the forward messages from the
forward backward algorithm [9] to sample the conditional
posterior distribution of X and D. To do this we treat each

state-duration tuple as a single random variable (introducing
the notation zt = {xt, dt}). Doing so recovers the standard
hidden Markov model structure and hence standard forward
messages can be used directly. A forward filtering, backward
sampler for Z = {z1, . . . , zT } conditioned on all other random
variables requires the classical forward messages:

αt(zt) =
∑
zt−1

p(zt|zt−1)p(yt|zt)αt−1(zt−1) (4)

where the transition probability can be factorised according to
our modelling assumptions:

p(zt|zt−1) = p(xt|xt−1, dt−1)p(dt|dt−1, xt). (5)

Unfortunately the sum in (4) has at worst an infinite number
of terms in the case of duration distributions with countably
infinite support and at best a very large number of terms
in the case of long sequences. The standard approach to
EDHMM inference involves truncating considered durations
to only those that lie between dmin and dmax or computation
involving all possible durations up to the observed length
of the sequence (dmin = 0, dmax = T ). This leads to
per-sample, forward-backward computational complexity of
O(T (K(dmax − dmin))2). Truncation yields inference that
will simply fail if an actual duration lies outside hard-coded
allowable duration intervals. Considering all possible durations
up to length T is often computationally impossible. The beam-
sampler we propose behaves like a dynamic version of the
truncation approach, automatically defining and scaling per-
state duration truncation intervals. Better though, the way
it does this results in an asymptotically exact sample with
no risk of incorrect inference resulting from incorrectly pre-
specified duration truncations. We do not characterize the
computational complexity of the proposed beam sampler in
this work but note that it is upper bounded by O(T (KT )2)
(i.e., the beam sampler admits durations of length equal to
the entire sequence) but in practice is found to be as or more
efficient than the risky hard-truncation approach.

B. EDHMM Beam Sampling

A recent contribution to inference in the infinite Hidden
Markov Model (iHMM) [1] suggests a way around truncation
[11]. The iHMM is an HMM with a countable number of
states. Computing the forward message for a forward filtering,
backward sampler for the latent states in an iHMM also
requires a sum over a countable number of elements. The
“beam sampling” approach [11], which we can apply largely
without modification, is to truncate this sum by introducing
a “slice” [7] auxiliary variable U = {u1, u2, . . . , uT } at each
time step. The auxiliary variables are chosen in such a way as
to automatically limit each sum in the forward pass to a finite
number of terms while still allowing all possible durations.

The particular choice of auxiliary variable ut is important.
We follow [11] in choosing ut to be conditionally distributed
given the current and previous state and duration in the
following way (see the graphical model in Figure 1b):

p(ut|zt, zt−1) =
I(0 < ut < p(zt|zt−1))

p(zt|zt−1)
. (6)
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Algorithm 1 Generate Data

sample x0 ∼ p(x0), d0 ∼ p(d0)
for t = 1, 2, . . . , T do

if dt−1 = 1 then
a new segment starts:
sample xt ∼ p(xt|xt−1)
sample dt ∼ p(dt|xt)

else
the segment continues:
xt = xt−1

dt = dt−1 − 1
end if
sample yt ∼ p(yt|xt)

end for

Algorithm 2 Sample the EDHMM

Initialise parameters A, λ, θ. Initialize ut small ∀T
for sweep ∈ {1, 2, 3, . . .} do

Forward: run (7) to get α̂t(zt) given U and Y ∀T
Backward: sample zT ∼ α̂T (zT )
for t ∈ {T, T − 1, . . . , 1} do

sample zt−1 ∼ I(ut < p(zt|zt−1))α̂t−1(zt−1)
end for
Slice:
for t ∈ {1, 2, . . . , T} do

evaluate l = p(dt|xt, dt−1)p(xt|xt−1, dt−1)
sample ut ∼ Uniform(0, l)

end for
sample parameters A, λ, θ

end for

where I(·) returns one if its operand is true and zero oth-
erwise. Given U it is possible to sample the state X and
duration D conditional posterior. Using notation Yt2

t1 =
{yt1 , yt1+1, . . . , yt2} to indicate sub-ranges of a sequence, the
new forward messages we compute are:

α̂t(zt) = p(zt,Yt
1,U t

1) =
∑
zt−1

p(zt, zt−1,Yt
1,U t

1) (7)

∝
∑
zt−1

p(ut|zt, zt−1)p(zt, zt−1,Yt
1,U t−1

1 )

=
∑
zt−1

I(0 < ut < p(zt|zt−1))p(yt|zt)α̂t−1(zt−1).

The indicator function I results in non-zero probabilities in
the forward message for only those states zt whose likelihood
given zt−1 is greater than ut. The beam sampler derives its
computational advantage from the fact that the set of zt’s for
which this is true is typically small.

The backwards sampling step recursively samples a state
sequence from the distribution p(zt−1|zt,Y,U) which can
expressed in terms of the forward variable:

p(zt−1|zt,Y,U) ∝ p(zt, zt−1,Y,U) (8)
∝ p(ut|zt, zt−1)p(zt|zt−1)α̂t−1(zt−1)
∝ I(0 < ut < p(zt|zt−1))α̂t−1(zt−1).

The full EDHMM beam sampler is given in Algorithm 2,
which makes use of the forward recursion in (7), the slice
sampler in (6), and the backwards sampler in (8).

C. Related Work

The need to accommodate explicit state duration distribu-
tions in HMMs has long been recognised. Rabiner [9] details
the basic approach which expands the state space to include
dwell time before applying a slightly modified Baum-Welch
algorithm. This approach specifies a maximum state duration,
limiting practical application to cases with short sequences
and dwell times. This approach, generalised under the name
“segmental hidden Markov models”, includes more general
transitions than those Rabiner considered, allowing the next

0 100 200 300 400 500

time

0.0
0.5
1.0
1.5
2.0

x
t

(a)

0 100 200 300 400 500

time
−6
−4
−2

0
2
4
6
8

y t

(b)

Fig. 2: Example a) state and b) observation sequence generated
by the explicit duration HMM. Here K = 3; p(yt|xt = j) =
N(µj , 1) with µ1 = −3, µ2 = 0, and µ3 = 3; and p(dt|xt =
j) = Poisson(λj) with λ1 = 5, λ2 = 15, and λ3 = 20.

state and duration to be conditioned on the previous state and
duration [5]. Efficient approximate inference procedures were
developed in the context of speech recognition [8], speech
synthesis [14], and evolved into symmetric approaches suitable
for practical implementation [13]. Recently, a “sticky” variant
of the hierarchical Dirichlet process HMM (HDP-HMM) has
been developed [4]. The HDP-HMM has countable state-
cardinality [10] allowing estimation of the number of states
in the HMM; the sticky aspect addresses long dwell times by
introducing a parameter in the prior that favours self-transition.

IV. EXPERIMENTS

A. Synthetic Data

The first experiment uses the 500 data points (Figure 2)
generated from a three state EDHMM. The duration distribu-
tions were Poisson with rates λ1 = 5, λ2 = 15, λ3 = 20; each
observation distribution was Gaussian with means of µ1 = −3,
µ2 = 0, and µ3 = 3, each with a variance of 1. The transition
distributions A were set to 0 0.3 0.7

0.6 0 0.4
0.3 0.7 0

 .
Broad, uninformative priors were chosen for the parameters

of the duration and observation distributions. The observation
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Fig. 3: Samples from the posterior distributions of a) the
observation distribution means and b) the duration distribution
rate parameters for the data shown in Figure 2.

Fig. 4: Mean number of transitions considered per time point
by the beam sampler for 1000 post-burn-in sweeps on data
from Figure 3. Consider this in comparison to the (KT )2 =
O(106) per time point transitions that would need to be
considered by standard forward backward without truncation,
a surely-safe, truncation-free, but computationally impractical
alternative.

distribution parameters were given a normal-inverse-Wishart
(N-IW) prior with parameters ν0 = 2, Λ0 = 1, κ = 0.1
and µ0 = 0. The rate parameters for all states were given
Gamma(1, 105) priors.

One thousand samples were collected from the EDHMM
beam sampler after a burn-in of 500 samples. The learned pos-
terior distribution of the state duration parameters and means
of the observation distributions are shown in Figure 3. The
EDHMM achieves high accuracy in the estimated posterior
distribution of the observation means, despite the overlap in
observation distributions. The rate parameter distributions are
reasonably estimated given the small number of observed
segments. Figure 4 shows the mean number of transitions
visited per time point over each iteration of the sampler.

A second experiment was performed to demonstrate the
ability of the EDHMM to distinguish between states having
differing duration distributions but the same observation distri-
bution. The same model and sampling procedure was used as
above except here µ1 = 0, µ2 = 0, and µ3 = 3. Figure 5 shows
that the sampler clearly separates the high state associated with
µ3 from the other states and clearly reveals the presence of
two low states with differing duration distributions. Figure 5b
shows posterior samples that indicate that the model is mixing
over ambiguities about states 0 and 1 as it should.

V. DISCUSSION

We presented a beam sampler for the explicit state duration
HMM. This sampler draws state sequences from the true
posterior distribution without any need to make truncation
approximations. It remains future work to combine the explicit
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Fig. 5: Beam sampler results from a system with identical
observation distributions but differing durations. Observations
are shown in a); true states in b) overlaid with 20 state traces
produced by the sampler. Here we have parameters µ1 = µ2 =
0, µ3 = 3 and λ1 = 5, λ2 = 15, λ3 = 20. Samples from the
posterior observation-mean and duration-rate distributions are
shown in c) and d), respectively.

state duration HMM and the iHMM. Python code associated
with the EDHMM is available online.1
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