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Abstract

The coding of information by neural populations depends critically on the statisti-
cal dependencies between neuronal responses. However, there is no simple model
that can simultaneously account for (1) marginal distributions over single-neuron
spike counts that are discrete and non-negative; and (2) joint distributions over the
responses of multiple neurons that are often strongly dependent. Here, we show
that both marginal and joint properties of neural responsescan be captured using
copula models. Copulas are joint distributions that allow random variables with
arbitrary marginals to be combined while incorporating arbitrary dependencies be-
tween them. Different copulas capture different kinds of dependencies, allowing
for a richer and more detailed description of dependencies than traditional sum-
mary statistics, such as correlation coefficients. We explore a variety of copula
models for joint neural response distributions, and derivean efficient maximum
likelihood procedure for estimating them. We apply these models to neuronal data
collected in macaque pre-motor cortex, and quantify the improvement in cod-
ing accuracy afforded by incorporating the dependency structure between pairs
of neurons. We find that more than one third of neuron pairs shows dependency
concentrated in the lower or upper tails for their firing ratedistribution.

1 Introduction

An important problem in systems neuroscience is to develop flexible, statistically accurate models
of neural responses. The stochastic spiking activity of individual neurons in cortex is often well
described by a Poisson distribution. Responses from multiple neurons also exhibit strong dependen-
cies (i.e., correlations) due to shared input noise and lateral network interactions. However, there is
no natural multivariate generalization of the Poisson distribution. For this reason, much of the litera-
ture on population coding has tended either to ignore correlations entirely, treating neural responses
as independent Poisson random variables [1, 2], or to adopt aGaussian model of joint responses
[3, 4], assuming a parametric form for dependencies but ignoring key features (e.g., discreteness,
non-negativity) of the marginal distribution. Recent workhas focused on the construction of large
parametric models that capture inter-neuronal dependencies using generalized linear point-process
models [5, 6, 7, 8, 9] and binary second-order maximum-entropy models [10, 11, 12]. Although
these approaches are quite powerful, they model spike trains only in very fine time bins, and thus
describe the dependencies in neural spike count distributions only implicitly.

Modeling the joint distribution of neural activities is therefore an important open problem. Here
we show how to construct non-independent joint distributions over firing rates using copulas. In
particular, this approach can be used to combine arbitrary marginal firing rate distributions. The
development of the paper is as follows: in Section 2, we provide a basic introduction to copulas;
in Section 3, we derive a maximum likelihood estimation procedure for neural copula models, in
Sections 4 and 5, we apply these models to physiological datacollected in macaque pre-motor
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Figure 1: Samples drawn from a joint distribution defined using the dependency structure of a bivariate Gaus-
sian distribution and changing the marginal distributions. Top row: The marginal distributions (the leftmost
marginal is uniform, by definition of copula). Bottom row: The log-densityfunction of a Gaussian copula, and
samples from the joint distribution defined as in Eq. 2.

cortex; finally, in Section 6 we review the insights providedby neural copula models and discuss
several extensions and future directions.

2 Copulas

A copula C(u1, . . . , un) : [0, 1]n → [0, 1] is a multivariate distribution function on the unit cube
with uniform marginals [13, 14]. The basic idea behind copulas is quite simple, and is closely related
to that ofhistogram equalization: for a random variableyi with continuous cumulative distribution
function (cdf)Fi, the random variableui := Fi(yi) is uniformly distributed on the interval[0, 1].
One can use this basic property to separate the marginals from the dependency structure in a mul-
tivariate distribution: the full multivariate distribution is standardized by projecting each marginal
onto one axis of the unit hyper-cube, and leaving one with a distribution on the hyper-cube (the cop-
ula, by definition) that represent dependencies in the marginals’ quantiles. This intuition has been
formalized in Sklar’s Theorem [15]:

Theorem 1 (Sklar, 1959) Given u1, . . . , un random variables with continuous distribution func-
tionsF1, . . . , Fn and joint distributionF , there exist a unique copulaC such that for allui:

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F

−1
n (un)) (1)

Conversely, given any distribution functionsF1, . . . , Fn and copulaC,

F (y1, . . . , yn) = C(F1(y1), . . . , Fn(yn)) (2)

is an-variate distribution function with marginal distribution functionsF1, . . . , Fn.

This result gives a way to derive a copula given the joint and marginal distributions (using Eq. 1), and
also, more importantly here, to construct a joint distribution by specifying the marginal distributions
and the dependency structure separately (Eq. 2). For example, one can keep the dependency structure
fixed and vary the marginals (Fig. 1), or vice versa given fixedmarginal distributions define new joint
distributions using parametrized copula families (Fig. 2). For illustration, in this paper we are going
to consider only the bivariate case. All the methods, however, generalize straightforwardly to the
multivariate case.

Since copulas do not depend on the marginals, one can define inthis way dependency measures that
are insensitive to non-linear transformations of the individual variables [14] and generalize correla-
tion coefficients, which are only appropriate for elliptic distributions. The copula representation has
also been used to estimate the conditional entropy of neurallatencies by separating the contribution
of the individual latencies from that coming from their correlations [16].

Dependencies structures are specified by parametric copulafamilies. One notable example is the
Gaussian copula, which generalizes the dependency structure of the multivariate Gaussian distribu-
tion to arbitrary marginal distribution (Fig. 1), and is defined as

C(u1, u2;Σ) = ΦΣ

(

φ−1(u1), φ
−1(u2)

)

, (3)

whereφ(u) is the cdf of the univariate Gaussian with mean 0 and variance1, andΦΣ is the cdf
of a standard multivariate Gaussian with mean0 and covariance matrixΣ. Other families derive
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Figure 2: Samples drawn from a joint distribution with fixed Gaussian marginals and dependency structure
defined by parametric copula families, as indicated by the labels. Top row:log-density function for three
copula families. Bottom row: Samples from the joint distribution (Eq. 2).

Gaussian CN
Σ

(u1, u2) = ΦΣ

(

φ−1(u1), φ
−1(u2)

)

Frank CFr
θ (u1, u2) = − 1

θ log
(

1 + (e−θu1−1)(e−θu2−1)
e−θ

−1

)

Clayton CCl
θ (u1, u2) = (u−θ

1 + u−θ
2 − 1)−1/θ, θ > 0

Clayton negative C
Neg
θ (u1, u2) = max

{

(u−θ
1 + u−θ

2 − 1), 0
}

−1/θ
, −1 ≤ θ < 0

Gumbel CGu
θ (u1, u2) = exp

(

− (ũθ
1 + ũθ

2)
1/θ

)

, ũj = − log uj , θ ≥ 1

Table 1: Definition of families of copula distribution functions.

from the economics literature, and are typically one-parameter families that capture various possible
dependencies, for example dependencies only in one of the tails of the distribution. Table 1 shows
the definition of the copula distributions used in this paper(see [14], for an overview of known
copulas and copula construction methods).

3 Maximum Likelihood estimation for discrete marginal distributions

In the case where the random variables have discrete distribution functions, as in the case of neural
firing rates, only a weaker version of Theorem 1 is valid: there always exists a copula that satisfies
Eq. 2, but it is no longer guaranteed to be unique [17]. With discrete data, the probability of a
particular outcome is determined by an integral over the region of [0, 1]n corresponding to that
outcome; any two copulas that integrate to the same values onall such regions produce the same
joint distribution.

We can derive a Maximum Likelihood (ML) estimation of the parametersθ by considering a gener-
ative model where uniform marginals are generated from the copula density, and in turn use these to
generate the discrete variables deterministically using the inverse (marginal) distribution functions,
as in Fig. 3. These marginals can be given by the empirical cumulative distribution of firing rates (as
in this paper) or by any parametrized family of univariate distributions (such as Poisson).

The ML equation then becomes

argmax
θ

p(y|θ) = argmax
θ

∫

p(y|u)p(u|θ)du (4)

= argmax
θ

∫ F1(y1)

F1(y1−1)

· · ·

∫ Fn(yn)

Fn(yn−1)

cθ(u1, . . . , un) du , (5)

whereFi can depend on additional parametersλi. The last equation is the copula probability mass
inside the volume defined by the verticesFi(yi) andFi(yi − 1), and can be readily computed using
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Figure 3: Graphical representation of the copula model with discrete marginals. Uniform marginalsu are
drawn from the copula density functioncθ(u1, . . . , un), parametrized byθ. The discrete marginals are then
generated deterministically using the inverse cdf of the marginals, which are parametrized byλ.

−1 −0.5 0 0.5 1

−0.3
0

0.3

G
au

ss
ia

n

0 1 2 3 4 5

−0.3
0

0.3

C
la

yt
on

1 2 3 4 5 6 7 8 9 10

−0.3
0

0.3

G
um

be
l

−10 −5 0 5 10

−0.3
0

0.3

F
ra

nk

Figure 4: Distribution of the maximum likelihood estimation of the parameters of four copula families, for
various setting of their parameter (x-axis). On the y-axis, estimates are centered such that 0 corresponds to an
unbiased estimate. Error bars are one standard deviation of the estimate.

the copula distributionCθ(u1, . . . , un). For example, in the bivariate case one obtains

argmax
θ

p(y1, y2|θ) = argmax
θ

[

Cθ(u1, u2) + Cθ(u
−

1 , u−

2 ) − Cθ(u
−

1 , u2) − Cθ(u1, u
−

2 )
]

, (6)

whereui = Fi(yi) andu−

i = Fi(yi − 1).

ML optimization can be performed using standard methods, like gradient descent. In the bivariate
case, we find that optimization using the standard MATLAB optimization routines is relatively ef-
ficient. Given neural data in the form of firing ratesy1, y2 from a pair of neurons, we collect the
empirical cumulative histogram of responses,Fi(k) = P (yi ≤ k). The data is then transformed
through the cdfsui = Fi(yi), and the copula model is fit according to Eq. 6. If a parametricdistribu-
tion family is used for the marginals, the parameters of the copulaθ and those of the marginalsλ can
be estimated simultaneously, or alternativelyλ can be fitted first, followed byθ. In our experience,
the second method is much faster and the quality of the fit is typically unchanged.

We checked for biases in ML estimation due to a limited amountof data and low firing rate by
generating data from the discrete copula model (Fig. 3), fora number of copula families and Poisson
marginals with parametersλ1 = 2, λ2 = 3. The estimate is based on 3500 observations generated
from the models (1000 for the Gaussian copula). The estimation is repeated 200 times (100 for the
Gaussian copula) in order to compute the mean and standard deviation of the ML estimate. Figure 4
shows that the estimate is unbiased and accurate for a wide range of parameters. Inaccuracy in the
estimation becomes larger as the copulas approach functional dependency (i.e.,u2 = f(u1) for a
deterministic functionf ), as it is the case for the Gaussian copula whenρ tends to 1, and for the
Gumbel copula asθ goes to infinity. This is an effect due to low firing rates. Given our formulation of
the estimation problem as a generative model, one could use more sophisticated Bayesian methods
in place of the ML estimation, in order to infer a whole distribution over parameters given the data.
This would allow to put error bars on the estimated parameters, and would avoid overfitting at the
cost of computational time.

4 Results

To demonstrate the ability of copula models to fit joint firingrate distribution, we model neural data
recorded using a multi-electrode array implanted in the pre-motor cortex (PMd) area of a macaque
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Figure 5: Empirical joint distribution and copula fit for two neuron pairs. The top rowshows two neurons
that have dependencies mainly in the upper tails of their marginal distribution. The pair in the bottom row has
negative dependency. a,d) Histogram of the firing rate of the two neurons. Colors correspond to the logarithm
of the normalized frequency. b,e) Empirical copula. The color intensityhas been cut off at 2.0 to improve
visibility. c,f) Density of the copula fit.

monkey [18, 19]. The array consisted in10× 10 electrodes separated by400µm. Firing times were
recorded while the monkey executed a center-out reaching task. See [19] for a description of the
task and general experimental setup. We fit the copula model using the marginal distribution of
neural activity over the entire recording session, including data recorded between trials (i.e., while
the monkey was freely behaving). Although one might also like to consider data collected during
a single task condition (i.e., the stimulus-conditional response distribution), the marginal response
distribution is an important statistical object in its own right, and has been the focus of recent much
literature [10, 11]. For example, the joint activity acrossneurons, averaged over stimuli, is the only
distribution the brain has access to, and must be sufficient for learning to construct representations
of the external world.

We collected spike responses in 100ms bins, and selected at random, without repetition, a training
set of 4000 bins and a test set of 2000 bins. Out of a total of 194neurons we select a subset of 33
neurons that fired a minimum of 2500 spikes over the whole dataset. For every pair of neurons in
this subset (528 pairs), we fit the parameters of several copula families to the joint firing rate.

Figure 5 shows two examples of the kind of the dependencies present in the data set and how they
are fit by different copula families. The neuron pair in the top row shows dependency in the upper
tails of their distribution, as can be seen in the histogram of joint firing rates (colors represent the
logarithm of the frequency): The two neurons have the tendency to fire strongly together, but are rel-
atively independent at low firing rates. This is confirmed by theempirical copula, which shows the
probability mass in the regions defined by the cdfs of the marginal distribution. Since the marginal
cdfs are discrete, the data is projected on a discrete set of points on the unit cube; the colors in
the empirical copula plots represent the probability mass in the region where the marginal cdfs are
constant. The axis in the empirical copula should be interpreted as the quantiles of the marginal
distributions – for example, 0.5 on the x-axis corresponds to the median of the distribution ofy1.
The higher probability mass in the upper right corner of the plot thus means that the two neurons
tend to be in the upper tails of the distributions simultaneously, and thus to have higher firing rates
together. On the right, one can see that this dependency structure is well captured by the Gumbel
copula fit. The second pair of neuron in the bottom row have negative dependency, in the sense that
when one of them has high firing rate the other tends to be silent. Although this is not readily visible
in the joint histogram, the dependency becomes clear in the empirical copula plot. This structure is
captured by the Frank copula fit.

The goodness-of-fit of the copula families is evaluated by cross-validation: We fit different models
on training data, and compute the log-likelihood of test data under the fitted model. The models are
scored according to the difference between the log-likelihood of a model that assumes independent
neurons and the log-likelihood of the copula model. This measure (appropriately renormalized) can
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Figure 6: In the pairs where their fit improves over the independence model, the parameters (left) and the score
(right) of the Gaussian and Frank models are highly correlated.

be interpreted as the number of bits per second that can be saved when coding the firing rate by taking
into account the dependencies encoded by the copula family.This is because this quantity can be
expressed as an estimation of the difference in the Kullback-Leibler divergence of the independent
(pindep) and copula model (pθ) to the real distributionp∗

〈log pθ(y)〉y∼p∗ − 〈log pindep(y)〉y∼p∗ (7)

≈

∫

p∗(y) log pθ(y)dy −

∫

p∗(y) log pindep(y) (8)

= KL(p∗||pindep) − KL(p∗||pθ). (9)

We took particular care in selecting a small set of copula families that would be able to capture the
dependencies occurring in the data. Some of the families that we considered at first capture similar
kind of dependencies, and their scores are highly correlated. For example, the Frank and Gaussian
copulas are able to represent both positive and negative dependencies in the data, and simultaneously
in lower and upper tails, although the dependencies in the tails are less strong for the Frank family
(compare the copula densities in Figs. 1 and 5f). Fig. 6 (left) shows that both the parameter fits and
their performance are highly correlated. An advantage of the Frank copula is that it is much more
efficient to fit, since the Gaussian copula requires multipleevaluations of the bivariate Gaussian cdf,
which requires expensive numerical calculations. In addition, The Gaussian copula was also found
to be more prone to overfitting on this data set (Fig. 6, right). For these reasons, we decided to use
the Frank family only for the rest of the analysis.

With similar procedures we shortlisted a total 3 families that cover the vast majority of dependencies
in our data set: Frank, Clayton, and Gumbel copulas. Examples of the copula density of these
families can be found in Figs. 2, and 5. The Clayton and Gumbelcopulas describe dependencies in
the lower and upper tails of the distributions, respectively. We didn’t find any example of neuron
pairs where the dependency would be in the upper tail of the distribution for one and in the lower
tail for the other distribution, or more complicated dependencies.

Out of all 528 neuron pairs, 393 had a significant improvement(P<0.05 on test data) over a model
with independent neurons1 and for 102 pairs the improvement was larger than 1 bit/sec. Dependen-
cies in the data set seem thus to be widespread, despite the fact that individual neurons are recorded
from electrodes that are up to 4.4 mm apart. Fig. 7 shows the histogram of improvement in bits/sec.
The most common dependencies structures over all neuron pairs are given by the Gaussian-like de-
pendencies of the Frank copula (54% of the pairs). Interestingly, a large proportion of the neurons
showed dependencies concentrated in the upper tails (Gumbel copula,22%) or lower tails (Clayton
copula,16%) of the distributions (Fig. 7).

5 Discussion

The results presented here show that it is possible to represent neuronal spike responses using a
model that preserves discrete, non-negative marginals while incorporating various types of depen-

1We computed the significance level by generating an artificial data set using independent neurons with the
same empirical pdf as the monkey data. We analyzed the generated data and computed the maximal improve-
ment over an independent model (due to the limited number of samples) on artificial test data. The resulting
distribution is very narrowly distributed around zero. We took the 95th percentile of the distribution (0.02
bits/sec) as the threshold for significance.
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Figure 8: Hybrid LNP-copula model. The LNP part of the model removes stimulus-induced correlations from
the neural data, so that the copula model can take into account residualnetwork-related dependencies.

dencies between neurons. Mathematically, it is straightforward to generalize these methods to the
n-variate case (i.e., distributions over the responses ofn neurons). However, many copula families
have only one or two parameters, regardless of the copula dimensionality. If the dependency struc-
ture across a neural population is relatively homogeneous,then these copulas may be useful in that
they can be estimated using far less data than required, e.g., for a full covariance matrix (which has
O(n2) parameters). On the other hand, if the dependencies within apopulation vary markedly for
different pairs of neurons (as in the data set examined here), such copulas will lack the flexibility
to capture the complicated dependencies within a full population. In such cases, we can still apply
the Gaussian copula (and other copulas derived from elliptically symmetric distributions), since it is
parametrized by the same covariance matrix as an-dimensional Gaussian. However, the Gaussian
copula becomes prohibitively expensive to fit in high dimensions, since evaluating the likelihood
requires an exponential number of evaluations of the multivariate Gaussian cdf, which itself must be
computed numerically.

One challenge for future work will therefore be to design newparametric families of copulas whose
parameters grow with the number of neurons, but remain tractable enough for maximum-likelihood
estimation. Recently, Kirshner [20] proposed a copula-based representation for multivariate distri-
butions using a model that averages over tree-structured copula distributions. The basic idea is that
pairwise copulas can be easily combined to produce a tree-structured representation of a multivari-
ate distribution, and that averaging over such trees gives an even more flexible class of multivariate
distributions. We plan to examine this approach using neural population data in future work.

Another future challenge is to combine explicit models of the stimulus-dependence underlying neu-
ral responses with models capable of capturing their joint response dependencies. The data set
analyzed here concerned the distribution over spike responses during all all stimulus conditions
(i.e., the marginal distribution over responses, as opposed to the the conditional response distribu-
tion given a stimulus). Although this marginal response distribution is interesting in its own right,
for many applications one is interested in separating correlations that are induced by external stimuli
from internal correlations due to the network interactions. One obvious approach is to consider a
hybrid model with a Linear-Nonlinear-Poisson model [21] capturing stimulus-induced correlation,
adjoined to a copula distribution that models the residual dependencies between neurons (Fig. 8).
This is an important avenue for future exploration.
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