
CPSC 340 Machine Learning Take-Home Midterm Exam

(Fall 2020)

Instructions

This is a take home midterm with two components:

1. an individual component

2. a group component for groups of up to 5. Note that your final and midterm groups will not be allowed
to have any overlap in membership besides you.

You may work on the group components as an individual, but it is to your advantage to team up with others.
There will be no leniency in grading for smaller groups or individual work.

Submission instructions

Typed, LATEX-formatted solutions are due on Gradescope by Monday, October 26.

• You must use the latex skeletons provided later in this document to format your reports. You may
include additional, terse, comments in additional sections beyond those specified.

• Each student must submit question 1 individually as a pdf file named question1.pdf. Include your
CS ID and student ID. Upload your answer on Gradescope under Midterm Exam Question 1.

• Each group should designate one group member to submit their solution to question 2 to Gradescope us-
ing its group feature (https://www.gradescope.ca/help#help-center-item-student-group-members).
Please hand in your work separately for question 2 on Gradescope. Submit a pdf file named question2.pdf

containing all of your answers and code for question 2 under Midterm Exam Question 2. Include
each group members’ CS IDs and student IDs.

Question 1 - Individual [70/100 points]

In this question, you are provided with a dataset consisting of tweets from the two U.S. presidential candidates
- Donald Trump, and Joe Biden. The features of each word in each tweet were extracted using the word2vec
algorithm (see https://en.wikipedia.org/wiki/Word2vec; word2vec will be covered later in the term,
understanding how it works is not required to be able to complete this question) then combined via averaging
to form a fixed-length feature vector per tweet. Your task is to design a number of binary classifiers which,
given a tweet vector, predict whether the tweet was authored by Donald Trump or Joe Biden. You are given
the following files.

• wordvec train.csv - dataset of word2vec features. Each data entry has 200 numerical features, and
a label (1 for Donald Trump, and 0 for Joe Biden). This is your training data.

• tweet train.csv - dataset of tweets prior to feature extraction (you don’t need to use this, it is
provided just for own amusement). These correspond to features in your training data.

• wordvec test.csv - dataset of word2vec features. This is your test set.

1



• tweet test.csv - tweets corresponding to test set features.

You will implement the following classifiers.

1. A random forest classifier.

(a) Which uses the Gini index as a splitting score.

(b) Where the K-means algorithm is used to quantize each feature, determining the thresholds to
search over for each feature.

2. Naive Bayes for continuous features.

3. K nearest neighbours with cosine similarity as the distance metric.

4. A stacking ensemble consisting of your classifiers from parts 1-3, where a decision tree is used as a
meta-classifier.

All of these concepts are familiar to you and have been introduced in class. As the details of these specific
models are “new” to you, we elaborate on them in the following sections.

Gini Impurity and Gini index

Gini Impurity measures the probability of misclassifying an observation. Consider a classification problem
with J classes. Let pi be the fraction of items labeled with class i at a given node. Then the Gini impurity
at the node is given by,

Gini Impurity = G(p1, . . . , pJ) =

J∑
i=1

pi(1− pi). (1)

The Gini Index is the weighted sum of Gini Impurity for a split in our data. Let p`i be the fraction of items
labeled with class i in the left side of our split, and pri be the fraction of items labeled with class i in the
right side of our split. Moreover, if we take Nt to be the total number of data, then Nr is the number of
data in the right side of the split, and N` is the number of data in the left side of the split. In the end, the
Gini Index of the split is given by,

Gini Index =
N`

Nt
G(p`1, . . . , p

`
J) +

Nr

Nt
G(pr1, . . . , p

r
J). (2)

Finally, we can use the Gini index as a splitting criteria in a decision tree. To do that, first we need to
find the split with the minimum Gini index between the set of all the possible splits for each feature. If the
minimum Gini index was less than the Gini impurity of the data before the split, then we select the split
with the minimum Gini index as the decision rule, otherwise we stop splitting. For more information please
see the appendix at the end of this file.

Using K-means to determine thresholds

K-means can be used as a binning algorithm for continuous data. For each feature, you must train a separate
instance of k-means. When you are creating your decision tree splits, instead of searching over every possible
unique value in the data, you should only consider splitting at each of the k means-derived thresholds.

2



Continuous Naive Bayes

In our description of Naive Bayes thus far we have only seen it used for problems with discrete features.
However, we can use Naive Bayes for continuous features by assuming that for each class, each feature comes
from some continuous distribution. For now, we will make the assumption that each of the features come
from an univariate normal distribution. Note that the class conditional independence assumption made in
the lectures resulted in computing the product of Bernoulli likelihoods in the decision rule. Here the class
conditionally independent likelihoods will be univariate Gaussian likelihoods.

The univariate Gaussian likelihood, or normal distribution, has two parameters - the mean µ, and the
standard deviation σ, of the distribution,

p(x | µ, σ) =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
. (3)

In Naive Bayes, given a data-label pair (xi, yi), we construct and then make predictions using the quantity,

p(xi | yi = yc), (4)

where yc is an arbitrary class label. In the continuous case, for the class c, for each feature d, we would have
a normal distribution with parameters µd

c , σ
d
c . We also let xdi denote the dth feature of data entry xi. Thus,

we make predictions with the following quantity,

p(xi | yi = yc) =
∏
d

p(xdi | µd
c , σ

d
c ),=

∏
d

(
1

σd
c

√
2π

exp

(
−1

2

(
xdi − µd

c

σd
c

)2
))

. (5)

In order to estimate µc,d, σ
2
c,d from the data, we make a maximum likelihood assumption. For the normal

distribution, this amounts to estimating the mean and the variance of each feature for both classes, and
using these parameters to make predictions.

Recall that the maximum likelihood estimators for the mean and variance of the univariate Gaussian distri-
bution are

µd
c =

1

nc

nc∑
i=1

xdi

(σd
c )2 =

1

nc

nc∑
i=1

(
µd
c − xdi

)2
.

Hint: When multiplying many small probabilities together as in (5), the product can go to zero very quickly.
Instead, you should make your predictions in log space,

log (p(xi | yi = yc)) = −
∑
d

(
1

2

(
xdi − µd

c

σd
c

)2

+ log
(
σd
c

√
2π
))

. (6)

Cosine similarity

Cosine similarity measures the similarity between two vectors. It is measured by the cosine of the angle
between two vectors and determines whether two vectors are pointing in roughly the same direction,

Similarity(xi, xq) =
xTi xq
‖xi‖‖xq‖

. (7)

3



Stacking classifier

Stacking is an ensembling technique that combines multiple classifiers via a meta-classifier. The individual
classifiers are trained on the original training data with their individual losses and learning algorithms. Then,
the meta-classifier uses the predictions of the classifiers in the ensemble as features and is trained with those
as inputs and the ultimate output as its output. For more information see slide 26 in Lecture 7.

Question 2 - Group [30/100 points]

This part of the midterm is a group project that takes place on Kaggle. There are two phases to this
competition which come in the form of two essentially identical (but spaced in time) Kaggle competitions.
The Phase 1 Kaggle competition is at https://www.kaggle.com/t/dd5029ad34d14b1eb9791aaeba0a09fd.
The Phase 2 Kaggle competition is at https://www.kaggle.com/t/b94ffde05677429c848b6517c9e37d2b.
You can sign up for a new account or use an existing one; however, note that the Kaggle servers may be in
the US, so bear this in mind. We recommend that for data protection purposes you use a non-identifiable
(but ideally hilarious) team name. You will link your group members to your team name in your submission
document.

You are only allowed to use linear regression techniques to solve this problem. No neural networks, support
vector machines, etc. You are not allowed to use any software that you did not develop yourself. There is
one exception to this: you may use homework support code and code you wrote yourself for your homeworks.

Your mark for this part of the midterm will be based on the score from Kaggle for your Phase 2 test set
predictions (see below and the Kaggle competitions pages), a written report that explains your findings,
and your code. Your report must LATEXformatted and follow the format given in the answer template for
Question 2 below.

The problem you are tasked with in the Kaggle competitions is predicting “forward in time” five days of
Covid-19 daily death counts for the entire country of Canada. The ultimate evaluation of your model’s
performance will only happen after the test submission deadline.

Here’s how it is going to work. The competition will proceed in two phases. In the first phase competition
we will provide you with an initial training dataset dataset consisting of 4 different Covid-19-related counts
for effectively all countries in the world for all days starting from Dec. 31st, 2019 up to Oct. 5th, 2020 when
the initial prediction window starts. The Phase 1 Kaggle competition will be configured to allow you to
upload initial test predictions consisting of the Canadian daily Covid-19 death totals for the days Oct. 6-16th,
2020. In the second phase competition we will provide you, on the day before the midterm is due, with a
second training dataset that runs up to the 25th of Oct. You will then be tested, after the exam is handed
in (Oct. 26th is the due date) on 5 days of predictions (Oct. 26th, 27th, 28th, 29th, and 30th) of daily
Canadian Covid-19 daily death counts. Your test accuracy will be measured (and compared) in terms of
means squared error against the actual deaths that happen on those days.1

You are free to construct any feature set you wish and train as many linear regression models as you want in
order to solve this task. Here and below we provide some useful guidance about how to use linear regression
models to learn one-step-ahead prediction models that “eat their own predictions.”

Linear Autoregressive Models

To start, consider a one-dimensional time series dataset D consisting of values [d1, d2, d3, . . . , dt, . . . , dT ]. A
linear regression model for one-step-ahead prediction can be learned by constructing

1yes, this means that this question and your performance won’t be known until several days after your midterm is handed
in and your static predictions have already been made

4



y =


dK
dK+1

...
dT

 X =


xTK
xTK+1

...
xTT

 =


1 d1 d2 · · · dK−1

1 d2 d3 · · · dK
... · · · · · · · · ·

...
1 dT−K dT−K+1 · · · dT−1

 .

Here we have implicitly defined feature vectors xi which correspond to the vector of K previous values in D
used to predict yi. If you learn a regression model with parameter vector w with this data you can use it to
predict ŷT+1 given x̃T+1 = [1, dT−K+1, dT−K+2, . . . , dT ]T . This is what is known as an “autoregressive”
model. What is more, such a model can be used to make multi-step predictions into the future by continuing
the following recursion

ŷT+2 ≈ [1, dT−K+2, dT−K+3, . . . , dT , ŷT+1]w

where the latest prediction is fed into the feature vector in the appropriate position.

Prediction Task

In this competition you only need to make predictions about Canadian daily death counts. However, the
performance of your submission will largely be dictated by how you make use of the other features in the
data, particularly the counts in other countries at the same time. The data you receive we call D. It consists
of a number of {country id,date, cases,deaths, cases 14 100k, cases 100k} tuples. An exact explanation of
these features is available online.2

The simplest thing you could try is the regression model just described, trained and operating only on
the Canadian daily death counts. Of course it is also clear that you could build independent country-
and “feature”-specific regressors (by feature here we mean colloquially the cases, deaths, cases 14 100k,
cases 100k values). This, unfortunately, would not leverage count values from other countries in making the
country and feature specific predictions.

This challenge problem gets much more interesting when you think about ways to leverage all the additional
data available from countries around the world, particularly by designing feature matrices for each regressor
that leverages data from other countries, either in aggregate or in specific.

Here is one kind of thing that you can do. Call the output that we wish to predict for a particular feature
(take cases for example), day (take 8/21/20 for example), and country (take AD for example) combination
yi. The feature vector you construct for this particular instance can carry information from all countries on
any days prior to 8/21/20. These can be aggregated features, can be restricted to neighboring countries, or
countries with high flight connectivity, etc.

Moreover, depending on how you construct your feature space, you can build models that are not specific
to a particular country. So long as the first, say, L entries of your feature vector are extracted from the
data from the country of the required prediction on any days prior and the remaining d − L entries are
features extracted from the data from all countries on any days prior the resulting regression model will be
country-agnostic.

See Fig 1 for helpful hints about how one might construct such complex and informative feature spaces.

Submitting Your Results

You need to be prepared to do several things. First, as usual, you must bundle your code along with a .pdf

generated from the filled in LATEXreport skeleton into a .zip file and submit it to Gradescope. Again, marks

2https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide

5



Country AD AE zu
mm mdeaths

a Iii Prediction
e

specific

til l l l l l l l

il
ii i Yi

i
1191 predict a

1 single column
date 1111 it complexfl t

worldwide features
in previous days

To build a regressor that generalizes over co try Iup A

exa pies with feature structure like

2 Eq 9C Zz 0170C 73

where this pact of the feature
vector always

comes fro the same country as the corresponding Yi

Figure 1: Feature Matrix Hints Diagram

6



may be taken off for very messy or hard to read code, so make sure to use descriptive variable names and
include comments where appropriate.

Also, Phase 2 of the Kaggle competition will be released the day before the midterm is due. You may retrain
your model on the additional data or you may simply use it as input to predict five days into the future past
the midterm due date. You will upload these predictions to the Kaggle server and your model’s relative test
performance will be made available in 5 days time.

7



Template for Question 1

1 Individual Classifiers

1.1 Result

Report the train and test result for each classifier in the given table. You should use the following hyperpa-
rameters,

1. Random Forest: no max cap on depth, and a forest size of 15 trees.

2. KNN: k = 3.

3. Continuous Naive Bayes: has no hyperparameters.

Model Your Train Error (%) Your Test Error (%)

Random Forest
KNN

Naive Bayes

Explain in one paragraph why you think a particular classifier works better on this dataset.

1.2 Code

Include the code you have written for each particular classifier.

1. Random Forest

2. KNN

3. Naive Bayes

2 Stacking

2.1 Result

Report the test error and training error of the stacking classifier.

2.2 Code

Include all the code you have written for stacking classifier

8



Template for Question 2

1 Team

Team Members all team member names and csids here
Kaggle Team Name your Kaggle team name here

2 Solution Summary

In no more than several paragraphs summarize the approach you took to address the problem.

3 Experiments

In this section report, in less than two pages, describe in technical terms the training procedures you used,
including how you went about feature selection, hyperparameter value selection, training, and so forth. Plots
related to hyperparameter sweeps and other reportable aspects of your training procedure would be appreciated.

4 Results

Team Name Kaggle Phase 1 Score Kaggle Phase 2 Score

the name of your team your Phase 1 Kaggle score your Phase 2 Kaggle score

5 Conclusion

Describe what you learned and what you would have done were you to have been given more time in a few
paragraphs.

9



Appendix

Gini Index

In this example, we have a dataset with two features x and y. Each data entry belongs to either the blue
class or green class.

Figure 2: A given dataset with two features

lets define
pb = probability of blue class,
pg = probability of green class.

To compute the Gini impurity before splitting,

G(pNoSplit
g , pNoSplit

b ) = pNoSplit
g (1− pNoSplit

g ) + pNoSplit
b (1− pNoSplit

b ) = 5
10 (1− 5

10 ),

G(pNoSplit
g , pNoSplit

b ) = 1
2 .

In order to find the best split in the x-axis, we should search over the set of possible splits. One arbitrary
choice is shown in figure 2.

Figure 3: split feature x, where x = 1.5.

let’s compute the Gini impurity for the right side.

G(prg, p
r
b) = prg(1− prg) + prb(1− prb), where prg = 5

6 , prb = 1
6 ,

10



G(prg, p
r
b) = 10

36

And for the left side,

G(plg, p
l
b) = plg(1− plg) + plb(1− plb), where plg = 0

4 , plb = 4
4 .

G(plg, p
l
b) = 0.

In the next step, we compute the Gini index for the current split, as follosw

Gini Index = Nl

Nt
∗G(plg, p

l
b) + Nr

Nt
∗G(prg, p

r
b) = 4

10 ∗ 0 + 6
10 ∗

10
36 = 1

6 .

Another possible split is demonstrated in the figure 3.

Figure 4: split feature x, where x = 2.

To compute the Gini impurity for the right side, we have

G(prg, p
r
b) = prg(1− prg) + prb(1− prb), where prg = 5

5 , prb = 0
5

G(prg, p
r
b) = 0.

And the Gini impurity for the left side is

G(plg, p
l
b) = plg(1− plg) + plb(1− plb), where plg = 0

5 , plb = 5
5

G(plg, p
l
b) = 0.

In the next step, we compute the Gini index for the current split:

Gini Index = Nl

Nt
∗G(plg, p

l
b) + Nr

Nt
∗G(prg, p

r
b) = 5

10 ∗ 0 + 5
10 ∗ 0 = 0.

In the end, we find the minimum Gini index between the splits. The minimum Gini index for this example
is when x = 2. Also, the minimum Gini index is less than Gini impurity of no split. Therefore, we select x
= 2 as the splitting rule.

11


