CPSC 340:
Machine Learning and Data Mining

More Clustering
Fall 2020



Last Time: K-Means Clustering

We want to cluster data:

— Assign examples to groups.

K-means clustering:
— Define groups by “means”

— Assigns examples to nearest mean.
(And updates means during training.)

Also used for vector quantization:
— Use means as “prototypes” of groups.
— “Pick clothing sizes or spaghetti sauces”.

Issues with k-means:

— Fast but sensitive to initialization.

— Choosing ‘k’ is annoying.
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Shape of K-Means Clusters

* K-means partitions the space based on the “closest mean”:
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* Observe that the clusters are convex regions (proof in bonus).



Convex Sets

* Asetis convexif line between two points in the set stays in the set.

Not Convex




Shape of K-Means Clusters
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K-Means with Non-Convex Clusters

Non-convex banana-shaped data points
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K-Means with Non-Convex Clusters

kmeans with k=2
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K-means cannot separate
some non-convex clusters
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K-Means with Non-Convex Clusters

kmeans with k=2

| | ] | | | 1] |

1

-2 I -4

-1.51.60.50051015202530

K-means cannot separate
some non-convex clusters

Though over-clustering can help
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John Snow and Cholera Epidemic

* John Snow’s 1854 spatial histogram of deaths from cholera:

* Found cluster of cholera deaths around a particular water pump.
— Went against airborne theory, but pump later found to be contaminated.
— “Father” of epidemiology.



Motivation for Density-Based Clustering

e Density-based clustering:
— Clusters are defined by “dense” regions.

— Examples in non-dense regions don’t get clustered.
* Not trying to “partition” the space.

* Clusters can be non-convex: s

— Elephant clusters affected by vegetation, .
mountains, rivers, water access, etc.

* It’s a non-parametric clustering method:
— No fixed number of clusters ‘k’.
— Clusters can become more complicated with more data.



Other Potential Applications

Where are high crime regions of a city?
Where should taxis patrol?
Where does Iguodala make/miss shots?

Which products are similar to this one?

Which pictures are in the same place? ANDRE TGUODALA

GOOD PLAYER. NOT AVERY GOOD SHOOTER

Where can proteins ‘dock’?

Where are people tweeting?

18Y: @KIRKGOLDPSBERRY]

GRANTLAND



Density-Based Clustering

e Density-based clustering algorithm (DBSCAN) has two hyperparameters:

— Epsilon (€): distance we use to decide if another point is a “neighbour”.



Density-Based Clustering

e Density-based clustering algorithm (DBSCAN) has two hyperparameters:

— Epsilon (€): distance we use to decide if another point is a “neighbour”.
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Density-Based Clustering

e Density-based clustering algorithm (DBSCAN) has two hyperparameters:
— Epsilon (€): distance we use to decide if another point is a “neighbour”.
— MinNeighbours: number of neighbours needed to say a region is “dense”.

* If you have at least minNeighbours “neighbours”, you are called a “core” point.

* Main idea: merge all neighbouring core points to form clusters.
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Density-Based Clustering
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Density-Based Clustering
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Density-Based Clustering
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Density-Based Clustering
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Density-Based Clustering Pseudo-Code

* For each example x::
— If x; is already assigned to a cluster, do nothing.

— Test whether x; is a ‘core’ point (> minNeighbours examples within ‘€’).
* If x; is not core point, do nothing (this could be an outlier).
* If x; is a core point, make a new cluster and call the “expand cluster” function.



Density-Based Clustering Pseudo-Code

e “Expand cluster” function:
— Assign to this cluster all x; within distance ‘€’ of core point x; to this cluster.
— For each new “core” point found, call “expand cluster” (recursively).



Density-Based Clustering Pseudo-Code

e “Expand cluster” function:
— Assign to this cluster all x; within distance ‘€’ of core point x; to this cluster.
— For each new “core” point found, call “expand cluster” (recursively).



Density-Based Clustering Pseudo-Code

e “Expand cluster” function:
— Assign to this cluster all x; within distance ‘€’ of core point x; to this cluster.
— For each new “core” point found, call “expand cluster” (recursively).
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Density-Based Clustering Pseudo-Code

“Expand cluster” function:

— Assign to this cluster all x; within distance ‘€’ of core point x; to this cluster.
— For each new “core” point found, call “expand cluster” (recursively).
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Density-Based Clustering Pseudo-Code

e “Expand cluster” function:
— Assign to this cluster all x; within distance ‘€’ of core point x; to this cluster.
— For each new “core” point found, call “expand cluster” (recursively).
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Density-Based Clustering Pseudo-Code

e “Expand cluster” function:
— Assign to this cluster all x; within distance ‘€’ of core point x; to this cluster.
— For each new “core” point found, call “expand cluster” (recursively).
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Density-Based Clustering Pseudo-Code

e “Expand cluster” function:
— Assign to this cluster all x; within distance ‘€’ of core point x; to this cluster.
— For each new “core” point found, call “expand cluster” (recursively).
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Density-Based Clustering Pseudo-Code

e “Expand cluster” function:
— Assign to this cluster all x; within distance ‘€’ of core point x; to this cluster.
— For each new “core” point found, call “expand cluster” (recursively).
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Density-Based Clustering Pseudo-Code

e “Expand cluster” function:
— Assign to this cluster all x; within distance ‘€’ of core point x; to this cluster.
— For each new “core” point found, call “expand cluster” (recursively).
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Density-Based Clustering Pseudo-Code

e “Expand cluster” function:
— Assign to this cluster all x; within distance ‘€’ of core point x; to this cluster.
— For each new “core” point found, call “expand cluster” (recursively).
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Density-Based Clustering Pseudo-Code

e “Expand cluster” function:
— Assign to this cluster all x; within distance ‘€’ of core point x; to this cluster.
— For each new “core” point found, call “expand cluster” (recursively).
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Density-Based Clustering Pseudo-Code

e “Expand cluster” function:
— Assign to this cluster all x; within distance ‘€’ of core point x; to this cluster.
— For each new “core” point found, call “expand cluster” (recursively).



Density-Based Clustering in Action

Interactive demo




Density-Based Clustering Issues

Some points are not assigned to a cluster. N brint o "o,

— Good or bad, depending on the application. ’{, befwetn ¢lusters
igui “ ” inte. SOtALmT

Ambiguity of “non-core” (boundary) points: 57/

4 v v
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Sensitive to the choice of € and minNeighbours.
— Original paper proposed an “elbow” method (see bonus slide).
— Otherwise, not sensitive to initialization (except for boundary points).

If you get a new example, finding cluster is expensive.
— Need to compute distances to core points (or maybe all training points).

In high-dimensions, need a lot of points to fill’ the space.



Density-Based Clustering in Nature

* Quorum sensing:

— Bacteria continuously release a particular molecule.

— They have sensors for this molecule. G
AW =W
* If sensors become very active: Q ) Mt .'."' \’}0&)\;2*\?_ 0
— It means cell density is high. LOWD: L.'\z*?z ~Q§ =
— Causes cascade of changes in cells. i closer look nside the cals e s

(Some cells “stick together” to \)

iffuses
cell y
mbranes

- Activator protein




(pause)



Ensemble Clustering

g question stop following ARV

Multiple random runs of K means

| was wondering how running K Means (original version, not K means ++ ) several times with random initializations can help us make an accurate model. K Means
outputs the class labels of all the samples. We definitely can't use mode of all the labels it got in different runs because class labels from different runs don't make
any sense when compared. We somehow have to see what points are coming in the same cluster in a lot of runs..| am not sure, how do we do it?

* We can consider ensemble methods for clustering.
— “Consensus clustering”

* |t’s a good/important idea:
— Bootstrapping is widely-used.

— “Do clusters change if the data was slightly different?”

e But we need to be careful about how we combine models.



Ensemble Clustering

E.g., run k-means 20 times and then cluster using the mode of each y..
Normally, averaging across models doing different things is good.
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But this is a bad ensemble method: worse than k-means on its own.



Label Switching Problem

* This doesn’t work because of “label switching” problem:
— The cluster labels y. are meaningless.
— We could get same clustering with permuted labels (“exchangeable”):
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— All . become equally likely as number of initializations increases.



Addressing Label Switching Problem

* Ensembles can’t depend on label “meaning”:
— Don’t ask “is point x; in red square cluster?”, which is meaningless.
— Ask “is point x; in the same cluster as x;?”, which is meaningful.
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— Bonus slides give an example method (“UBClustering”).



(pause)



Differing Densities

e Consider density-based clustering on this data:
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Differing Densities

* Increase epsilon and run it again:

X
s | S

Mejc 2 dwhr}
%x X x [_/ are pow “close’

* There may be no density-level that gives you 3 clusters.



Differing Densities

* Here is a worse situation:

* Now you need to choose between coarse/fine clusters.
* Instead of fixed clustering, we often want hierarchical clustering.



Hierarchical Clustering

e Hierarchical clustering produces a tree of clusterings.

— Each node in the tree splits the data into 2 or more clusters.

— Much more information than using a fixed clustering.
— Often have




Application: Phylogenetics

We sequence genomes of a set of organisms.
Can we construct the “tree of life”?

Comments on this application:
— On the right are individuals.

— As you go left, clusters merge.

— Merges are ‘common ancestors’.

More useful information in the plot:

— Line lengths: chosen here to approximate time.
— Numbers: #clusterings across bootstrap samples.
— ‘Outgroups’ (walrus, panda) are a sanity check.
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Application: Phylogenetics

Comparative method in linguistics studies evolution of languages:
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Application: Phylogenetics

* January 2016: evolution of fairy tales.

— Evidence that “Devil and the Smith”
goes back to bronze age.

— “Beauty and the Beast” published
in 1740, but might be 2500-6000 years old.
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Application: Phylogenetics

* January 2016: evolution of fairy tales.

— Evidence that “Devil and the Smith”
goes back to bronze age.

— “Beauty and the Beast” published
in 1740, but might be 2500-6000 years old.

e September 2016: evolution of myths.

— “Cosmic hunt” story:

* Person hunts animal that becomes constellation.
— Previously known to be at least 15,000 years old.

* May go back to paleololithic period.



Application: Fashion?

* Hierarchical clustering of clothing material words in Vogue:
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Agglomerative (Bottom-Up) Clustering

* Most common hierarchical method: agglomerative clustering.

1. Starts with each point in its own cluster.
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Agglomerative (Bottom-Up) Clustering

* Most common hierarchical method: agglomerative clustering.
1. Starts with each point in its own cluster.
2. Each step merges the two “closest” clusters.
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Agglomerative (Bottom-Up) Clustering

* Most common hierarchical method: agglomerative clustering.
1. Starts with each point in its own cluster.
2. Each step merges the two “closest” clusters.
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Agglomerative (Bottom-Up) Clustering

* Most common hierarchical method: agglomerative clustering.
1. Starts with each point in its own cluster.
2. Each step merges the two “closest” clusters.




Agglomerative (Bottom-Up) Clustering

* Most common hierarchical method: agglomerative clustering.
1. Starts with each point in its own cluster.
2. Each step merges the two “closest” clusters.




Agglomerative (Bottom-Up) Clustering

* Most common hierarchical method: agglomerative clustering.
1. Starts with each point in its own cluster.
2. Each step merges the two “closest” clusters.
3. Stop with one big cluster that has all points.
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Agglomerative (Bottom-Up) Clustering

Reinvented by different fields under different names (“UPGMA”).
Needs a “distance” between two clusters.

A standard choice: distance between means of the clusters.

— Not necessarily the best, many choices exist (bonus slide).

Cost is O(n3d) for basic implementation.

— Each step costs O(n?d), and each step might only cluster 1 new point.



Summary

Shape of K-means clusters:
— Partitions space into convex sets.
Density-based clustering:
— “Expand” and “merge” dense regions of points to find clusters.
— Not sensitive to initialization or outliers.
— Useful for finding non-convex connected clusters.

Ensemble clustering: combines multiple clusterings.
— Can work well but need to account for label switching.

Hierarchical clustering: more informative than fixed clustering.

Agglomerative clustering: standard hierarchical clustering method.
— Each point starts as a cluster, sequentially merge clusters.

Next time:
* Discovering (and then ignoring) a hole in the ozone layer.



Why are k-means clusters convex?

e K-means clusters are formed by the intersection of half-spaces
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Why are k-means clusters convex?

e K-means clusters are formed by the intersection of half-spaces
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Why are k-means clusters convex?
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Why are k-means clusters convex?
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Why are k-means clusters convex?
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Why are k-means clusters convex?
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Why are k-means clusters convex?

WAich regiond art pvrl n glees (Jvm‘e?
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Why are k-means clusters convex?

C\'reer\'lc\\AﬂLf; 1o fhe nfecsection ol :
)”\eee Thwree \r\a\?s?«ug, :

~
3
>—
>
—
=z
=3

&

Lowr (,\\Aﬁjf(?’S \ook Iife-

-15

-20



Why are k-means clusters convex?

e Half-spaces are convex sets.
* |ntersection of convex sets is a convex set.

— Line segment between points in each set are still in each set.

* So intersection of half-spaces is convex.




Why are k-means clusters convex?

* Formal proof that “cluster 1” is convex (works for other clusters).
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Voronoi Diagrams

* The k-means partition can be visualized as a Voronoi diagram:

* Can be a useful visualization of “nearest available” problems.
— E.g., nearest tube station in London.




Density-Based Clustering Runtime

g question stop following  [ZRVITSWYS

Actions ¥

DBSCAN Training time & Testing time

This is a follow-up inquiry post with Mike about the DBScan, would like to know:

1. Training runtime of DBScan, under k iterations (training set X has n examples and d features)
2. Testing runtime for a single example in DBScan; Testing runtime for test set of size t in DBScan,

the instructors’ answer, where instructors collectively construct a single answer

For training, you'll check that each point is a core point exactly once. This check costs O(nd) since you measure the
distance to each other point, leading to a total training cost of O(n2d).

(There are ways to speed this up, like grid-based pruning.)

We didn't define how to apply the DBSCAN model to test data. But a plausible way is to test if the new point is a
neighbor of any existing core points. If you have m core points, you would be able to do this in O(md)



“Elbow” Method for Density-Based Clustering

* From the original DBSCAN paper:

— Choose some ‘k’ (they suggest 4) and set minNeighbours=k.

— Compute distance of each points to its ‘k’ nearest neighbours.

— Sort the points based on these distances and plot the distances:
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OPTICS

 Related to the DBSCAN “elbow” is “OPTICS”.

— Sort the points so that neighbours are close to each other in the ordering.
— Plot the distance from each point to the next point.
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UBClustering Algorithm

* Let’s define a new ensemble clustering method: UBClustering.
1. Run k-means with ‘m’ different random initializations.
2. For each exampleiand j:

— Count the number of times x; and x; are in the same cluster.
— Define p(i,j) = count(x; in same cluster as x;)/m.

3. Put x;and x; in the same cluster if p(i,j) > 0.5.

* Like DBSCAN merge clusters in step 3 if i or j are already assigned.
— You can implement this with a DBSCAN code (just changes “distance”).
— Each x; has an x; in its cluster with p(i,j) > 0.5.
— Some points are not assigned to any cluster.



UBClustering Algorithm
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Distances between Clusters

e Other choices of the distance between two clusters:

“Single-link”: minimum distance between points in clusters.
“Average-link”: average distance between points in clusters.
“Complete-link”: maximum distance between points in clusters.

— Ward’s method: minimize within-cluster variance.

“Centroid-link”: distance between a representative point in the cluster.
» Useful for distance measures on non-Euclidean spaces (like Jaccard similarity).

* “Centroid” often defined as point in cluster minimizing average distance to other
points.



Cost of Agglomerative Clustering

One step of agglomerative clustering costs O(n?d):
— We need to do the O(d) distance calculation between up to O(n?) points.
— This is assuming the standard distance functions.

We do at most O(n) steps:

— Starting with ‘n’ clusters and merging 2 clusters on each step, after O(n) steps
we’ll only have 1 cluster left (though typically it will be much smaller).

This gives a total cost of O(n3d).

This can be reduced to O(n?d log n) with a priority queue:

— Store distances in a sorted order, only update the distances that change.
For single- and complete-linkage, you can get it down to O(n?d).
— “SLINK” and “CLINK” algorithms.



Bonus Slide: Divisive (Top-Down) Clustering

e Start with all examples in one cluster, then start dividing.

* E.g., run k-means on a cluster, then run again on resulting clusters.
— A clustering analogue of decision tree learning.
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