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Fall 2020



Admin

* Course webpage:
— https://www.cs.ubc.ca/~fwood/CS340/

* Assignment 2 is out.
— Due Wednesday the 30th. It’s long so start early.

e Submission guidelines will be enforced starting with Assignment 2
— Answers in green text
— Match questions to pages in Gradescope
— Mark all pages corresponding to each question in Gradescope



Last Time: E-mail Spam Filtering

- - - ‘ » Jannie Keenan ualberta  You are owed $24,718.11
 Want a build a system that filters spam e-mails:
y p [} » Abby ualberta  USB Drives with your Logo
Rosemarie Page Re: New request created with ID: ##62
Shawna Bulg RE: New request created with ID: ##63
Gay  ualbera Cooperation

* We formulated as supervised learning:
— (y; = 1) if e-mail ‘i’ is spam, (y; = 0) if e-mail is not spam.
— (x; = 1) if word/phrase ‘" is in e-mail V', (x; = 0) if it is not.
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Last Time: Naive Bayes

* We considered spam filtering methods based on naive Bayes:
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* Makes conditional independence assumption to make learning practical:
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* Predict “spam” if p(y; = “spam” | x;) > p(y; = “not spam” | x).
— We don’t need p(x;) to test this.




Naive Bayes

* Naive Bayes formally:
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* Post-lecture slides: how to train/test by hand on a simple example.



Laplace Smoothing

Our estimate of p(‘lactase’ = 1| ‘spam’) is:
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— But there is a problem if you have no spam messages with lactase:

* p(‘lactase’ | ‘spam’) = 0, so spam messages with lactase automatically get through.

— Common fix is Laplace smoothing:

e Add 1 to numerator, T
and 2 to denominator (for binary features). (#'sfm w\essa\jtﬂ

— Acts like a “fake” spam example that has lactase,
and a “fake” spam example that doesn’t.
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Laplace Smoothing

* Laplace smoothing: (ﬂ'sfﬁm messa jes wifh lactae + |

(#’;fm w\esso\jw? + 2

— Typically you do this for all features.

* Helps against overfitting by biasing towards the uniform distribution.
A common variation is to use a real number 3 rather than 1.

— Add Bk’ to denominator if feature has ‘k’ possible values (so it sums to 1).
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This is a “maximum a posteriori” (MAP) estimate of the probability. We'll discuss MAP and how to derive this formula later.



Decision Theory

* Are we equally concerned about “spam” vs. “not spam”?
* True positives, false positives, false negatives, true negatives:

Predict / True
Predict ‘spam’ True Positive False Positive
Predict ‘not spam’ False Negative True Negative

* The costs mistakes might be different:
— Letting a spam message through (false negative) is not a big deal.

— Filtering a not spam (false positive) message will make users mad.



Decision Theory

* We can give a cost to each scenario, such as:

Predict ‘spam’

* Instead of most probable label, take Y. minimizing expected cost:
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* Even if “spam” has a higher probability,
predicting “spam” might have a expected higher cost.



Decision Theory Example

* Consider a test example we have p(y, = “spam” | X.) = 0.6, then:
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* Even though “spam” is more likely, we should predict “not spam”.



Decision Theory Discussion

* In other applications, the costs could be different.

— In cancer screening, maybe false positives are ok,
but don’t want to have false negatives.

e Decision theory and “darts”:
— http://www.datagenetics.com/blog/january12012/index.html

e Decision theory can help with “unbalanced” class labels:
— If 99% of e-mails are spam, you get 99% accuracy by always predicting “spam”.
— Decision theory approach avoids this.
— See also precision/recall curves and ROC curves in the bonus material.



Decision Theory and Basketball

“How Mapping Shots In The NBA Changed It Forever”
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e Decision trees:
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Decision Trees vs. Naive Bayes
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Sequence of rules based on 1 feature.
Training: 1 pass over data per depth.
Greedy splitting as approximation.
Testing: just look at features in rules.
New data: might need to change tree.

Accuracy: good if simple rules based on
individual features work (“symptoms”).

* Naive Bayes:
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Simultaneously combine all features.
Training: 1 pass over data to count.
Conditional independence assumption.
Testing: look at all features.

New data: just update counts.

Accuracy: good if features almost
independent given label (bag of words).



K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X;:
1. Find the ‘k’ training examples x; that are “nearest” to X ..
2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).
* To classify an example X;:

1. Find the ‘k’ training examples x; that are “nearest” to X ..

2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).

* To classify an example X;:

w N

2.5
3.5

1.

Find the ‘k’ training examples x; that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).
* To classify an example X;:

1. Find the ‘k’ training examples x; that are “nearest” to X ..

2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* An old/simple classifier: k-nearest neighbours (KNN).
* To classify an example X;:

1. Find the ‘k’ training examples x; that are “nearest” to X ..

2. Classify using the most common label of “nearest” training examples.
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K-Nearest Neighbours (KNN)

* Assumption:
— Examples with similar features are likely to have similar labels.

* Seems strong, but all good classifiers basically rely on this assumption.
— If not true there may be nothing to learn and you are in “no free lunch” territory.
— Methods just differ in how you define “similarity”.

e Most common distance function is Euclidean distance:

[ =%l = \R—é (xi; ~ %2 )

— X; is features of training example ‘', and X; is features of test example 7"
— Costs O(d) to calculate for a pair of examples.



Effect of ‘k” in KNN.

* With large ‘k’ (hyper-parameter), KNN model will be very simple.
— With k=n, you just predict the mode of the labels.
— Model gets more complicated as ‘k’ decreases.

K= | k=3 k=10

» Effect of ’k’ on fundamental trade-off:
— As ‘k’ grows, training error increase and approximation error decreases.



KNN Implementation

* Thereis no training phase in KNN (“lazy” learning).
— You just store the training data.
— Costs O(1) if you use a pointer.

e But predictions are expensive: O(nd) to classify 1 test example.
— Need to do O(d) distance calculation for all ‘n’ training examples.

— So prediction time grows with number of training examples.
* Tons of work on reducing this cost (we’ll discuss this later).

e But storage is expensive: needs O(nd) memory to store ‘X’ and ‘y’.
— So memory grows with number of training examples.
— When storage depends on ‘n’, we call it a non-parametric model.



Parametric vs. Non-Parametric

e Parametric models:

— Have fixed number of parameters: trained “model” size is O(1) in terms ‘n’.
* E.g., naive Bayes just stores counts.
* E.g., fixed-depth decision tree just stores rules for that depth.

— You can estimate the fixed parameters more accurately with more data.
— But eventually more data doesn’t help: model is too simple.

* Non-parametric models:

IH

— Number of parameters grows with ‘n’: size of “model” depends on n’.
— Model gets more complicated as you get more data.
* E.g., KNN stores all the training data, so size of “model” is O(nd).

* E.g., decision tree whose depth grows with the number of examples.



Parametric vs. Non-Parametric Models

e Parametric models have bounded memory.
* Non-parametric models can have unbounded memory.
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Effect of ‘n” in KNN.

* With a small ‘'n’, KNN model will be very simple.

n=2,k=| n=20, k=|
AN K>< T

X
X \) X)()(X 0
x O
X 0
0 S oX:
ObOa

L7

 Model gets more complicated as ‘n’ increases.
— Requires more memory, but detects subtle differences between examples.



Consistency of KNN (‘n’ going to ‘oo’)

 KNN has appealing consistency properties:

— As ‘n’ goes to oo, KNN test error is less than twice best possible error.
* For fixed ‘k” and binary labels (under mild assumptions).

e Stone’s Theorem: KNN is “universally consistent”.

— If k/n goes to zero and ‘k’ goes to oo, converges to the best possible error.
* For example, k = log(n).
* First algorithm shown to have this property.

* Does Stone’s Theorem violate the no free lunch theorem?
— No: it requires a continuity assumption on the labels.
— Consistency says nothing about finite ‘n’ (see "Dont Trust Asymptotics”).




Parametric vs. Non-Parametric Models

* With parametric models, there is an accuracy limit.
— Even with infinite ‘n’, may not be able to achieve optimal error (E, ).

)(”f)(
Q/‘/U/\




Parametric vs. Non-Parametric Models

* With parametric models, there is an accuracy limit.
— Even with infinite ‘n’, may not be able to achieve optimal error (E, ).

 Many non-parametric models (like KNN) converge to optimal error.
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Curse of Dimensionality

e “Curse of dimensionality”: problems with high-dimensional spaces.

— Volume of space grows exponentially with dimension.
* Circle has area O(r?), sphere has area O(r3), 4d hyper-sphere has area O(r%),...

— Need exponentially more points to ‘fill" a high-dimensional volume.

e “Nearest” neighbours might be really far even with large ‘n’.

* KNN is also problematic if features have very different scales.

* Nevertheless, KNN is really easy to use and often hard to beat!



Summary

Decision theory allows us to consider costs of predictions.

K-Nearest Neighbours: use most common label of nearest examples.
e Often works surprisingly well.

e Suffers from high prediction and memory cost.

e Canonical example of a “non-parametric” model.

* Can suffer from the “curse of dimensionality”.

Non-parametric models grow with number of training examples.

— Can have appealing “consistency” properties.

Next Time:
* Fighting the fundamental trade-off and Microsoft Kinect.



Naive Bayes Training Phase

* Training a naive Bayes model:
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Naive Bayes Training Phase

* Training a naive Bayes model:
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Naive Bayes Training Phase plye=b e 1 =6

* Training a naive Bayes model:
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Naive Bayes Training Phase plye=b e 1 =6
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* Training a naive Bayes model:
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Naive Bayes Training Phase plye=b e 1 =6

* Training a naive Bayes model: ]
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Naive Bayes Training Phase ply=b e 1 =6

* Training a naive Bayes model: - ‘/;W
[ Set n, fo the mumber of fimes (y=c), ) E T
. Estinate f(y,:c7 as N, (1) |
N
g, Sef Nejk as the pumbtt oF fimes (yi-‘ C) x,)--‘k) _ (1)
Lf, ES’{iqu& /O(Xi:{: 7),{ fc) as _Q-C;L |
1
5 Use That F(XO' I)/, -C)-—— 'D()(,J~./{ C) .
pPlyi=c) )
= Nejk/n — Nesue ( - )=
n,/n 7(: fx‘u:lf/" -




Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase
* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
Consider )/(V:C/ /:] in ths date sef —
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model: - .
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“Proportional to” for Probabilities

* When we say “p(y) « exp(-y?)” for a function ‘p’, we mean:

ply? = Bexp(=y2) Hfor some constet B

* However, if ‘p’ is a probability then it must sum to 1.

— If y € {1,2,3,4} then P())*F {2>+F(%)+PW) = I

e Using this fact, we can find [:
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Probability of Paying Back a Loan and Ethics

Article discussing predicting “whether someone will pay back a loan”:

— https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-
application-reveal.html

Words that increase probability of paying back the most:
— debt-free, lower interest rate, after-tax, minimum payment, graduate.

Words that decrease probability of paying back the most:
— God, promise, will pay, thank you, hospital.

Article also discusses an important issue: are all these features ethical?
— Should you deny a loan because of religion or a family member in the hospital?
— ICBC is limited in the features it is allowed to use for prediction.



Avoiding Underflow

e During the prediction, the probability can underflow:
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e Standard fix is to (equivalently) maximize the logarithm of the probability:
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Less-Nailve Bayes

* Given features {x1 x2,x3,...,xd}, naive Bayes approximates p(y|x) as:
(J(/, )12y ,x.;> 4 F ‘o(x,)yz, ))Ql\/> lmef rule M”/-,,J ”M/‘/
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* The assumption is very strong, and there are “less naive” versions:

— Assume independence of all variables except up to ‘k’ largest ‘j" where j <.
* E.g., naive Bayes has k=0 and with k=2 we would have:

* Fewer independence assumptions so more flexible, but hard to estimate for large ‘K.

— Another practical variation is “tree-augmented” naive Bayes.



Computing p(x;) under naive Bayes

* Generative models don’t need p(x;) to make decisions.
 However, it’s easy to calculate under the naive Bayes assumption:
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Gaussian Discriminant Analysis

* Classifiers based on Bayes rule are called generative classifier:
— They often work well when you have tons of features.

— But they need to know p(x. | y.), probability of features given the class.
* How to “generate” features, based on the class label.

* To fit generative models, usually make BIG assumptions:

— Naive Bayes (NB) for discrete x::
* Assume that each variables in x; is independent of the others in x; given y..

— Gaussian discriminant analysis (GDA) for continuous x..
* Assume that p(x; | y;) follows a multivariate normal distribution.
* If all classes have same covariance, it’s called “linear discriminant analysis”.



Other Performance Measures

* Classification error might be wrong measure:
— Use weighted classification error if have different costs.
— Might want to use things like Jaccard measure: TP/(TP + FP + FN).

* Often, we report precision and recall (want both to be high):
— Precision: “if | classify as spam, what is the probability it actually is spam?”
* Precision = TP/(TP + FP).
* High precision means the filtered messages are likely to really be spam.
— Recall: “if a message is spam, what is probability it is classified as spam?”

* Recall = TP/(TP + FN)
* High recall means that most spam messages are filtered.



Precision-Recall Curve

* Consider the rule p(y, = ‘spam’ | x,) > t, for threshold ‘t".
* Precision-recall (PR) curve plots precision vs. recall as ‘t’ varies.
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ROC Curve

Receiver operating characteristic (ROC) curve:

— Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).
(negative examples classified as positive)

1

True Positive Rate

Algorithm 1
A}goritpm 2 S
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False Positive Rate

— Diagonal is random, perfect classifier would be in upper left.

— Sometimes papers report area under curve (AUC).
» Reflects performance for different possible thresholds on the probability.



More on Unbalanced Classes

* With unbalanced classes, there are many alternatives to accuracy
as a measure of performance:

— Two common ones are the Jaccard coefficient and the F-score.

 Some machine learning models don’t work well with unbalanced
data. Some common heuristics to improve performance are:

— Under-sample the majority class (only take 5% of the spam messages).
* https://www.jair.org/media/953/live-953-2037-jair.pdf

— Re-weight the examples in the accuracy measure (multiply training error of
getting non-spam messages wrong by 10).

— Some notes on this issue are here.



More on Weirdness of High Dimensions

* In high dimensions:

— Distances become less meaningful:
 All vectors may have similar distances.

— Emergence of “hubs” (even with random data):
* Some datapoints are neighbours to many more points than average.

— Visualizing high dimensions and sphere-packing




Vectorized Distance Calculation

* To classify ‘t’ test examples based on KNN, cost is O(ndt).

— Need to compare ‘n’ training examples to ‘t’ test examples,
and computing a distance between two examples costs O(d).

* You can do this slightly faster using fast matrix multiplication:
— Let D be a matrix such that D; contains:

“Xf‘%lp::”h’ﬂ'*imTﬁ'f”5”2

where ‘i’ is a training example and /j’ is a test example.

— We can compute D in Julia using:
X1.”2*ones(d,t) .+ ones(n,d)*(X2"'").72 .- 2X1*X2'

— And you get an extra boost because Julia uses multiple cores.



Condensed Nearest Neighbours

* Disadvantage of KNN is slow prediction time (depending on ‘n’).
* Condensed nearest neighbours:

4 )

— ldentify a set of ‘m’” “prototype” training examples.
— Make predictions by using these “prototypes” as the training data.

e Reduces runtime from O(nd) down to O(md).
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Condensed Nearest Neighbours

* Classic condensed nearest neighbours:
— Start with no examples among prototypes.

— Loop through the non-prototype examples ‘i’ in some order:
* Classify x; based on the current prototypes.
* If prediction is not the true y,, add it to the prototypes.

— Repeat the above loop until all examples are classified correctly.

* Some variants first remove points from the original data,
if a full-data KNN classifier classifies them incorrectly (“outliers’).



Condensed Nearest Neighbours

* Classic condensed nearest neighbours:
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e Recent work shows that finding optimal compression is NP-hard.

— An approximation algorithm algorithm was published in 2018:
* “Near optimal sample compression for nearest neighbors”




