CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks
Fall 2020

Admin — Final Lectures

 Exam to appear at 5pm Monday on course website.
— Roughly the same format as the midterm
— Due at midnight

* | will finish the “testable content” of the course today.

 Monday/Wednesday

— Automatic differentiation
— Presentations from project teams

Last Lectures: Deep Learning

* We've been discussing neural network / deep learning models:

‘/Ai: v hW RW S R~ W bW %)) -+))

* We discussed unprecedented vision/speech performance.
Image classification

* We discussed methods to make SGD work better: HDDDEL

— Parameter initialization and data transformations.

ILSVRC year
— Setting the step size(s) in stochastic gradient and using momentum.
max?(),z,d

Classifica

— Alternative non-linear functions like RelLU.
1
l“"f(‘.‘()

“Residual” Networks (ResNets)

e Impactful recent idea is residual networks (ResNets):

X

Y

weight layer
F(x) i) relu x
weight layer identity

Figure 2. Residual learning: a building block.

— You can take previous (non-transformed) layer as input to current layer.
 Also called “skip connections” or “highway networks”.
— Non-linear part of the network only needs to model residuals.
* Non-linear parts are just “pushing up or down” a linear model in various places.
— This was a key idea behind first methods that used 100+ layers.
* Evidence that biological networks have skip connections like this.

DenseNet

* More recent variation is “DenseNets”:
— Each layer can see all the values from many previous layers.
— Gets rid of vanishing gradients.

— May get same performance
with fewer parameters/layers.

2
Laye-

=" {i0R

Figure 1: A 5-layer dense block with a growth rate of £k = 4.
https://arxiv.org/pdf/1512.03385v1.pdf Each layer takes all preceding feature-maps as input.

Deep Learning and the Fundamental Trade-Off

* Neural networks are subject to the fundamental trade-off:
— With increasing depth, training error of global optima decreases.
— With increasing depth, training error may poorly approximate test error.

* We want deep networks to model highly non-linear data.

— But increasing the depth can lead to overfitting.

* How could GoogleNet use 22 layers?
— Many forms of regularization and keeping model complexity under control.
— Unlike linear models, typically use multiple types of regularization.

Standard Regularization

* Traditionally, we’ve added our usual L2-regularizers:

2 Y= 2/ S 2) 2)
£ W W)= £ 5 (bW ki hw RN [T R
1= 2 2

e L2-regularization often called “weight decay” in this context.

— Could also use L1-regularization: gives sparse network.

eeeeeeeeeeeee

uuuuuuuuuuuu
————————————————

Standard Regularization

* Traditionally, we’ve added our usual L2-regularizers:

2 Y= 2/ S 2) 2)
£ W W)= £ 5 (bW ki hw RN [T R
1= 2 2

e L2-regularization often called “weight decay” in this context.

— Could also use L1-regularization: gives sparse network.
* Hyper-parameter optimization gets expensive:
— Try to optimize validation error in terms of A, A,, A5, A,.

— In addition to step-size, number of layers, size of layers, initialization.

e Recent result:

— Adding a regularizer in this way creates bad local optima.

Early Stopping

* Another common type of regularization is “early stopping”:
— Monitor the validation error as we run stochastic gradient.
— Stop the algorithm if validation error starts increasing.

A .
accuracy training accurac

validation accuracy: . '
little overfitting \/'\‘rof 1\Am}€‘y it V"\n)ln*

look more [ike
validation accuracy: strong overfitting
——

/Ll\ Oﬁl\’, oW lo“"}
30({\GZP

Dropout

* Dropout is a more recent form of explicit regularization:
— On each iteration, randomly set some x; and z; to zero (often use 50%).

(a) Standard Neural Net (b) After applying dropout.

— Adds invariance to missing inputs or latent factors
* Encourages distributed representation rather than relying on specific z..

— Can be interpreted as an ensemble over networks with different parts missing.
— After a lot of success, dropout may already be going out of fashion.

“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
——————————— 0.7 ‘ e : :
0.06f —Training H —Training
—Test (at convergence) 0.6} —Test (at convergence)
0.05}
0.5f 1
0.04f
‘e- § 0.4
[0.03} 5 o
0.02} 0.2}
0.01} 0.1
021 8 16 32 64 128 256 512 1K 2K 4K o4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

Training goes to 0 with enough units: we’re finding a global min.

What should happen to training and test error for larger #hidden?

“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
0.06 — Training H —Training
—Test (at convergence) 0.6} —Test (at convergence)
0.05
0.5¢ 1
0.04
§ § 0.4 ,
1 0.03 0 gg
0.02} 0.2}
0.01 0.1
04 8 16 32 64 128 256 512 1K 2K 4K 04 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

Test error continues to go down!?! Where is fundamental trade-off??
There exist global mins with large #hidden units have test error = 1.

— But among the global minima, SGD is somehow converging to “good” ones.

Implicit Regularization of SGD

* There is growing evidence that using SGD regularizes parameters.
— We call this the “implicit regularization” of the optimization algorithm.

* Beyond empirical evidence, we know this happens in simpler cases.

* Example of implicit regularization:
— Consider a least squares problem where there exists a ‘w’ where Xw=y.
* Residuals are all zero, we fit the data exactly.
— You run [stochastic] gradient descent starting from w=0.

— Converges to solution Xw=y that has the minimum L2-norm.
* So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.

Implicit Regularization of SGD

* Example of implicit regularization:
— Consider a logistic regression problem where data is linearly separable.
* We can fit the data exactly.
— You run gradient descent from any starting point.
— Converges to max-margin solution of the problem.

* So using gradient descent is equivalent to encouraging large margin.

— Perfect classifier wilh m”mm“
\ ('y:’nt-‘ﬂjﬂ-‘—'b closes? example)
X B

Ooooo
(4
’Vx 2 o
N A °o°o°o
;x“ Ooo
3 “xx (4
¥ X

e Similar result known for boosting.

(pause)

Deep Learning “Tricks of the Trade”

* We've discussed heuristics to make deep learning work:
— Parameter initialization and data transformations.
— Setting the step size(s) in stochastic gradient and using momentum.
— RestNets and alternative non-linear functions like ReLU.

— Different forms of regularization:
e L2-regularization, early stopping, dropout, implicit regularization from SGD.

* These are often still not enough to get deep models working.

* Deep computer vision models are all convolutional neural networks:

— The W™ are very sparse and have repeated parameters (“tied weights”).
— Drastically reduces number of parameters (speeds training, reduces overfitting).

1D Convolution as Matrix Multiplication

e 1D convolution:

— Takes signal x” and filter ‘w’ to produces vector ‘z’:
X * w =

izl

s 4 5 2 T] 1 2 3] s

— Can be wfitten avs a ﬁ\atrix multiplication:
-2 0 0oQ-"-00° 00
o V2)V o0 "0 0 O

V\/x’ - O O o

o o \ L 1 0 -7

0 © O O o @ -~

1D Convolution as Matrix Multiplication

* Each element of a convolution is an inner product:

> ™M
- posifons im Thoagy i tan
= W X(emlitm) /S~
m . 0 0]
- —_— W
= where ~=L0 0 0O

* So convolution is a matrix multiplication (I’'m ignoring boundaries):

~/ N -0 00
— - - W
A W)(where W=1| o WW og matriy con be
00 Very spase and

o O O
(0 e . ls + riabe
* The shorter ‘w’ is, the more sparse the matrix is. only hes Am*| varibes

w

2D Convolution as Matrix Multiplication

e 2D convolution:

— Signal X/, filter ‘w’, and output ‘z’ are now all images/matrices:

—

— Vectorized ‘Z’ can be written as a matrix multiplication with vectorized x’:

(-9 =1 0 Q000 = 0O | 00000 | 2 000 Q00

o -+ - 0 00 0 0 S 0T 00 g8 g e

\I\/:- 5 (,7 ,VA,.-Z'|0, O O_' e B /':’_’0"2’//_
G 5000 701 T 00660701 [0 00-0 oz

| 0 © o 000 0,0 2 -l 0000 0 -1 O I ;OO"O,'DO"

Motivation for Convolutional Neural Networks

* Consider training neural networks on 256 by 256 images.
— This is 256 by 256 by 3 = 200,000 inputs.

 If first layer has k=10,000, then it has about 2 billion parameters.
— We want to avoid this huge number (due to storage and overfitting).

* Key idea: make Wx; act like several convolutions (to make it sparse):

. f W onl lies t t of x.. J—)|
1. Eachrowo only applies to part of x WIJCO o b w OOOJ

00000
- w/
\A/l’LO

* Forces most weights to be zero, reduces number of parameters.

2. Use the same parameters between rows.

Motivation for Convolutional Neural Networks

e Classic vision methods uses fixed convolutions as features:
— Usually have different types/variances/orientations.
— Can do subsampling or take maxes across locations/orientations/scales.

Motivation for Convolutional Neural Networks

* Convolutional neural networks learn the convolutions:
— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Don’t pick from fixed convolutions, but learn the elements of the filters.

14

i ¥ \/\7//7‘@2?—\
—[2

E] /é >/,

@/’@%;

Y
D:Qf/
70
J

"N

I~

L,

Motivation for Convolutional Neural Networks

* Convolutional neural networks learn the convolutions:
— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Can do multiple layers of convolution to get deep hierarchical features.

X j/ W Z/ \/ HOW NEURALNETWORKS RECOGNIZEA DOG IN A PHOTO
[7) —7 ,

: @ plriesid

u oo s

Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.

—_— W‘

[—

\/V(vf\) - — W,

-

Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.

’D e xamplt ﬂdlsfan(e bolwean codors of convelution s C“//zj
') l_ Q S'fr:,Je"
(- w," O o0 0000 .
(»)_ | w (M) o0 gﬂﬂ_e W’w IAS-PC'I acress
"o o O {7/\”(,.1____ kuH/!a/f rows.
/ o o 0 00 l
W —— 0 0 00 060
_ ()
O Y © Y ()OO gﬁj?_c OV\J Smml/
= O O O O O O /W; i n\l\mbef O‘P Pﬂﬂ'\me'/fli

Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.
— Pooling layer: combine results of convolutions.

e Can add some invariance or just make the number of parameters smaller.
* Usual choice is ‘max pooling’:

poone
AR \
2’ : ﬁ/ _LIJ & Ma)()muh\j

\ over Ax1

Z
/.tf\ [3/ 2 V\fic)h\mrl\oul)
)

)\

—

D

LeNet for Optical Character Recognition

W00 =yl M e O

Deep Hierarchies in the Visual System

DEEP HIERARCHIES IN THE VISUAL SYSTEM

LOCATION FEATURE RECEPTIVE FIELD SIZE
RETINA PHOTORECEPTOR oo
— GANGLION CELL (01O}
L inifield : / e .
R THALAMUS LGN oe A

LATERAL GENICULATE NUCLELS @ .

Vi SIMPLE CELL S~ l

Temporal © N

COMPLEX CELL OO O™

V2 ? G.O ﬂ

TEXTURE-DEFINED ILLUSORY BORDER

Pulvinar nucleus. "

Lateral geniculate —
nucleus

Superior colliculus — CONTOURS CONTOURS OWNERSHIP i
: : & (v3)
Optic radiation =" ; s
CURVATURE LUMINANCE-INVARIANT SEF(
SELECTIVITY HUE
VENTRAL DORSAL
PATHWAY PATHWAY
T VX & %
SIMPLE SHAPE : KA
FLEMENTS ANALYSIS OF SPACE
*
e -+ ACTION PLANING
Tt ¥O &
COMPLEX FEATURE

CONFIGURATIONS

Deep Hierarchies in Optics

E2 G2

60
E1 E3 63
N /
LC
5 E11 7 E13
€4 ES 5 £9 fp 3 ES
g \E10 £7/E16 Lo £20
is— E7 E18 Image
Object Iris) 9
Space \ ! pace

\
ﬁ/v—‘ [I H
5 ’
"o T
Object 75 7576 PA 224‘{52527 28 29 \ f \s 3
Plane P 74 77 2'2 32 K7 Image
0 7772 /92/ 27 5 5, Plane
\\ 7
5 2
4

.
|
4

N

G

Abernated —1\& Tnage
Wavefront Reference Plane
Spherical
Wavefront

Convolutional Neural Networks

Classic convolutional neural network (LeNet):

Input ||. II__.II_I_— l' |- \\ Output
I

/ g | Full connections
Convolutions Subsamplmg C onvolutlons Subsamplmg

e Visualizing the “activations” of the layers:

— http://scs.ryerson.ca/~aharley/vis/conv

> So‘ﬁ/‘mvr)(

o . T " 2 "I{:lily "(onnedfe:/
— http://cs231n.stanford.edu R — - - - . s o NP I"”/"‘/
g - = 2 o e e el S gp convolufions

maX roo/mc}

3 ZD (amA dlins

Summary

ResNets include untransformed previous layers.

— Network focuses non-linearity on residual, allows huge number of layers.
Regularization is crucial to neural net performance:
— L2-regularization, early stopping, dropout, implicit regularization of SGD.

Convolutional neural networks:
— Restrict WM matrices to represent sets of convolutions.
— Often combined with max (pooling).

Next time: automatic differentiation

(End of testable content for final exam)

1.

2.

3.

4.

5.

CPSC 340: Overview

Intro to supervised learning (using counting and distances).

— Training vs. testing, parametric vs. non-parametric, ensemble methods.
— Fundamental trade-off, no free lunch, universal consistency.

Intro to unsupervised learning (using counting and distances).
— Clustering, outlier detection, finding similar items.

Linear models and gradient descent (for supervised learning)
— Loss functions, change of basis, regularization, feature selection.

— Gradient descent and stochastic gradient.

Latent-factor models (for unsupervised learning)

— Typically using linear models and gradient descent.

Neural networks (for supervised and multi-layer latent-factor models).

Topics from Previous Years

 Slides for other topics that were covered in previous years:
— Ranking: finding “highest ranked” training examples (Google PageRank).
— Semi-supervised: using unlabeled data to help supervised learning.

— Sequence mining: approximate matching of patterns in large sequences.

* In previous years we did a course review on the last day:
— Overview of topics covered in 340, and topics coming in 540.
— Slides here: this could help with studying for the final.

CPSC 330 vs. 340

e CPSC 330 : “Applied Machine Learning”.

— Not intended as a sequel to 340 (or even a prequel).

* There is some overlap in content, but focus is different:

— More emphasis on the other steps of the data processing pipeline:
* Data cleaning, feature extraction, reproducible workflows, communicating results.

— More emphasis of “how to use packages”, less on “how stuff works”.

* If you found 340 too hard to keep up with, 330 might make sense.
— In this situation, tell your friends about 330.

CPSC 330 vs. 440

CPSC 440.

— Intended as a direct sequel to 340.
— We’re basically starting with CNNs and going from there.

Main focuses:
— What if y; is a sentence or an image or a protein?
— Giving you the background to understand the latest advances.

Prerequisites:
— Expect you to know everything in this course and CPSC 320.

This course is now listed as CPSC 440.
— | removed topics related to optimization research from the course.

CPSC 540 Topics

Review of machine learning fundamentals.
Differentiable programming and end-to-end learning.
Density estimation and the exponential family.
Conditional independence and Bayesian statistics.
Markov and hidden-Markov models.

Graphical models and deep structured models.
Monte Carlo approximation and Markov chain Monte Carlo.
Non-conjugate and hierarchical Bayesian models.
Mixture models and expectation maximization.
Variational inference.

Empirical Bayes and advanced Monte Carlo methods.
Non-parametric Bayes and deep generative models.

Other ML-Related Courses

CPSC 406:

— Numerical optimization algorithms (like gradient descent).
CPSC 422:

— Includes topics like time series and reinforcement learning.
CPSC 440:

— Probabilistic machine learning (a follow-on to this course).
CPSC 532R/533R:

— Deep learning for vision, sound, and language.
CPSC 532W:

— Probabilistic programming.
CPSC 533V:

— Deep learning for computer graphics.
CPSC 540:

— Graduate-level machine learning (usually with a focus on optimization theory)

EECE 592:

— Deep learning and reinforcement learning.

STAT 406:
— Similar/complementary topics.

STAT 460/461:

— Advanced statistical issues (what happens when ‘n’ goes to oo?)

Final Slide

* Good luck with finals/projects and the next steps!

