CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks
Fall 2020



Admin — Final Lectures

 Exam to appear at 5pm Monday on course website.
— Roughly the same format as the midterm
— Due at midnight

* | will finish the “testable content” of the course today.

 Monday/Wednesday

— Automatic differentiation
— Presentations from project teams



Last Lectures: Deep Learning

* We've been discussing neural network / deep learning models:
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* We discussed unprecedented vision/speech performance.
Image classification

* We discussed methods to make SGD work better: HDDDEL

— Parameter initialization and data transformations.

ILSVRC year
— Setting the step size(s) in stochastic gradient and using momentum.
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— Alternative non-linear functions like RelLU.
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“Residual” Networks (ResNets)

e Impactful recent idea is residual networks (ResNets):
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Figure 2. Residual learning: a building block.

— You can take previous (non-transformed) layer as input to current layer.
 Also called “skip connections” or “highway networks”.
— Non-linear part of the network only needs to model residuals.
* Non-linear parts are just “pushing up or down” a linear model in various places.
— This was a key idea behind first methods that used 100+ layers.
* Evidence that biological networks have skip connections like this.



DenseNet

* More recent variation is “DenseNets”:
— Each layer can see all the values from many previous layers.
— Gets rid of vanishing gradients.

— May get same performance
with fewer parameters/layers.
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Figure 1: A 5-layer dense block with a growth rate of £k = 4.
https://arxiv.org/pdf/1512.03385v1.pdf Each layer takes all preceding feature-maps as input.



Deep Learning and the Fundamental Trade-Off

* Neural networks are subject to the fundamental trade-off:
— With increasing depth, training error of global optima decreases.
— With increasing depth, training error may poorly approximate test error.

* We want deep networks to model highly non-linear data.

— But increasing the depth can lead to overfitting.

* How could GoogleNet use 22 layers?
— Many forms of regularization and keeping model complexity under control.
— Unlike linear models, typically use multiple types of regularization.



Standard Regularization

* Traditionally, we’ve added our usual L2-regularizers:
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e L2-regularization often called “weight decay” in this context.

— Could also use L1-regularization: gives sparse network.
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Standard Regularization

* Traditionally, we’ve added our usual L2-regularizers:
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e L2-regularization often called “weight decay” in this context.

— Could also use L1-regularization: gives sparse network.
* Hyper-parameter optimization gets expensive:
— Try to optimize validation error in terms of A, A,, A5, A,.

— In addition to step-size, number of layers, size of layers, initialization.

e Recent result:

— Adding a regularizer in this way creates bad local optima.



Early Stopping

* Another common type of regularization is “early stopping”:
— Monitor the validation error as we run stochastic gradient.
— Stop the algorithm if validation error starts increasing.
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Dropout

* Dropout is a more recent form of explicit regularization:
— On each iteration, randomly set some x; and z; to zero (often use 50%).

(a) Standard Neural Net (b) After applying dropout.

— Adds invariance to missing inputs or latent factors
* Encourages distributed representation rather than relying on specific z..

— Can be interpreted as an ensemble over networks with different parts missing.
— After a lot of success, dropout may already be going out of fashion.



“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:
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Training goes to 0 with enough units: we’re finding a global min.

What should happen to training and test error for larger #hidden?



“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:
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Test error continues to go down!?! Where is fundamental trade-off??
There exist global mins with large #hidden units have test error = 1.

— But among the global minima, SGD is somehow converging to “good” ones.



Implicit Regularization of SGD

* There is growing evidence that using SGD regularizes parameters.
— We call this the “implicit regularization” of the optimization algorithm.

* Beyond empirical evidence, we know this happens in simpler cases.

* Example of implicit regularization:
— Consider a least squares problem where there exists a ‘w’ where Xw=y.
* Residuals are all zero, we fit the data exactly.
— You run [stochastic] gradient descent starting from w=0.

— Converges to solution Xw=y that has the minimum L2-norm.
* So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.



Implicit Regularization of SGD

* Example of implicit regularization:
— Consider a logistic regression problem where data is linearly separable.
* We can fit the data exactly.
— You run gradient descent from any starting point.
— Converges to max-margin solution of the problem.

* So using gradient descent is equivalent to encouraging large margin.
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e Similar result known for boosting.



(pause)



Deep Learning “Tricks of the Trade”

* We've discussed heuristics to make deep learning work:
— Parameter initialization and data transformations.
— Setting the step size(s) in stochastic gradient and using momentum.
— RestNets and alternative non-linear functions like ReLU.

— Different forms of regularization:
e L2-regularization, early stopping, dropout, implicit regularization from SGD.

* These are often still not enough to get deep models working.

* Deep computer vision models are all convolutional neural networks:

— The W™ are very sparse and have repeated parameters (“tied weights”).
— Drastically reduces number of parameters (speeds training, reduces overfitting).



1D Convolution as Matrix Multiplication

e 1D convolution:

— Takes signal x” and filter ‘w’ to produces vector ‘z’:
X * w =
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1D Convolution as Matrix Multiplication

* Each element of a convolution is an inner product:
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2D Convolution as Matrix Multiplication

e 2D convolution:

— Signal X/, filter ‘w’, and output ‘z’ are now all images/matrices:

—

— Vectorized ‘Z’ can be written as a matrix multiplication with vectorized x’:
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Motivation for Convolutional Neural Networks

* Consider training neural networks on 256 by 256 images.
— This is 256 by 256 by 3 = 200,000 inputs.

 If first layer has k=10,000, then it has about 2 billion parameters.
— We want to avoid this huge number (due to storage and overfitting).

* Key idea: make Wx; act like several convolutions (to make it sparse):
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* Forces most weights to be zero, reduces number of parameters.

2. Use the same parameters between rows.




Motivation for Convolutional Neural Networks

e Classic vision methods uses fixed convolutions as features:
— Usually have different types/variances/orientations.
— Can do subsampling or take maxes across locations/orientations/scales.




Motivation for Convolutional Neural Networks

* Convolutional neural networks learn the convolutions:
— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Don’t pick from fixed convolutions, but learn the elements of the filters.
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Motivation for Convolutional Neural Networks

* Convolutional neural networks learn the convolutions:
— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Can do multiple layers of convolution to get deep hierarchical features.
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Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.
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Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.
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Convolutional Neural Networks

* Convolutional Neural Networks classically have 3 layer “types”:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.
— Pooling layer: combine results of convolutions.

e Can add some invariance or just make the number of parameters smaller.
* Usual choice is ‘max pooling’:
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LeNet for Optical Character Recognition
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Deep Hierarchies in the Visual System

DEEP HIERARCHIES IN THE VISUAL SYSTEM
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Deep Hierarchies in Optics
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Convolutional Neural Networks

Classic convolutional neural network (LeNet):
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e Visualizing the “activations” of the layers:

— http://scs.ryerson.ca/~aharley/vis/conv
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Summary

ResNets include untransformed previous layers.

— Network focuses non-linearity on residual, allows huge number of layers.
Regularization is crucial to neural net performance:
— L2-regularization, early stopping, dropout, implicit regularization of SGD.

Convolutional neural networks:
— Restrict WM matrices to represent sets of convolutions.
— Often combined with max (pooling).

Next time: automatic differentiation



(End of testable content for final exam)



1.

2.

3.

4.

5.

CPSC 340: Overview

Intro to supervised learning (using counting and distances).

— Training vs. testing, parametric vs. non-parametric, ensemble methods.
— Fundamental trade-off, no free lunch, universal consistency.

Intro to unsupervised learning (using counting and distances).
— Clustering, outlier detection, finding similar items.

Linear models and gradient descent (for supervised learning)
— Loss functions, change of basis, regularization, feature selection.

— Gradient descent and stochastic gradient.

Latent-factor models (for unsupervised learning)

— Typically using linear models and gradient descent.

Neural networks (for supervised and multi-layer latent-factor models).



Topics from Previous Years

 Slides for other topics that were covered in previous years:
— Ranking: finding “highest ranked” training examples (Google PageRank).
— Semi-supervised: using unlabeled data to help supervised learning.

— Sequence mining: approximate matching of patterns in large sequences.

* In previous years we did a course review on the last day:
— Overview of topics covered in 340, and topics coming in 540.
— Slides here: this could help with studying for the final.




CPSC 330 vs. 340

e CPSC 330 : “Applied Machine Learning”.

— Not intended as a sequel to 340 (or even a prequel).

* There is some overlap in content, but focus is different:

— More emphasis on the other steps of the data processing pipeline:
* Data cleaning, feature extraction, reproducible workflows, communicating results.

— More emphasis of “how to use packages”, less on “how stuff works”.

* If you found 340 too hard to keep up with, 330 might make sense.
— In this situation, tell your friends about 330.



CPSC 330 vs. 440

CPSC 440.

— Intended as a direct sequel to 340.
— We’re basically starting with CNNs and going from there.

Main focuses:
— What if y; is a sentence or an image or a protein?
— Giving you the background to understand the latest advances.

Prerequisites:
— Expect you to know everything in this course and CPSC 320.

This course is now listed as CPSC 440.
— | removed topics related to optimization research from the course.



CPSC 540 Topics

Review of machine learning fundamentals.
Differentiable programming and end-to-end learning.
Density estimation and the exponential family.
Conditional independence and Bayesian statistics.
Markov and hidden-Markov models.

Graphical models and deep structured models.
Monte Carlo approximation and Markov chain Monte Carlo.
Non-conjugate and hierarchical Bayesian models.
Mixture models and expectation maximization.
Variational inference.

Empirical Bayes and advanced Monte Carlo methods.
Non-parametric Bayes and deep generative models.



Other ML-Related Courses

CPSC 406:

— Numerical optimization algorithms (like gradient descent).
CPSC 422:

— Includes topics like time series and reinforcement learning.
CPSC 440:

— Probabilistic machine learning (a follow-on to this course).
CPSC 532R/533R:

— Deep learning for vision, sound, and language.
CPSC 532W:

— Probabilistic programming.
CPSC 533V:

— Deep learning for computer graphics.
CPSC 540:

— Graduate-level machine learning (usually with a focus on optimization theory)

EECE 592:

— Deep learning and reinforcement learning.

STAT 406:
— Similar/complementary topics.

STAT 460/461:

— Advanced statistical issues (what happens when ‘n’ goes to oo?)



Final Slide

* Good luck with finals/projects and the next steps!



