
CPSC	340:
Machine	Learning	and	Data	Mining

Convolutional	Neural	Networks
Fall	2020



Admin	– Final	Lectures
• Exam	to	appear	at	5pm	Monday	on	course	website.
– Roughly	the	same	format	as	the	midterm
– Due	at	midnight	

• I	will	finish	the	“testable	content”	of	the	course	today.

• Monday/Wednesday
– Automatic	differentiation
– Presentations	from	project	teams



Last	Lectures:	Deep	Learning
• We’ve	been	discussing	neural	network	/	deep	learning	models:

• We	discussed	unprecedented	vision/speech	performance.

• We	discussed	methods	to	make	SGD	work	better:
– Parameter	initialization	and	data	transformations.
– Setting	the	step	size(s) in	stochastic	gradient	and	using	momentum.
– Alternative	non-linear	functions	like	ReLU.

https://arxiv.org/pdf/1409.0575v3.pdf



“Residual”	Networks	(ResNets)
• Impactful	recent	idea	is	residual	networks	(ResNets):

– You	can	take	previous	(non-transformed)	layer	as	input	to	current	layer.
• Also	called	“skip	connections”	or	“highway	networks”.

– Non-linear	part	of	the	network	only	needs	to	model	residuals.
• Non-linear	parts	are	just	“pushing	up	or	down”	a	linear	model	in	various	places.

– This	was	a	key	idea	behind	first	methods	that	used	100+	layers.
• Evidence	that	biological	networks	have	skip	connections	like	this.

https://en.wikipedia.org/wiki/Residual_neural_network



DenseNet
• More	recent	variation	is	“DenseNets”:
– Each	layer	can	see	all	the	values	from	many	previous	layers.
– Gets	rid	of	vanishing	gradients.

– May	get	same	performance
with	fewer	parameters/layers.

https://arxiv.org/pdf/1512.03385v1.pdf



Deep	Learning	and	the	Fundamental	Trade-Off
• Neural	networks	are	subject	to	the	fundamental	trade-off:
– With	increasing	depth,	training	error	of	global	optima	decreases.
– With	increasing	depth,	training	error	may	poorly	approximate	test	error.

• We	want	deep	networks	to	model	highly	non-linear	data.
– But	increasing	the	depth	can	lead	to	overfitting.

• How	could	GoogLeNet use	22	layers?
– Many	forms	of	regularization and	keeping	model	complexity	under	control.
– Unlike	linear	models,	typically	use	multiple	types	of	regularization.	



Standard	Regularization
• Traditionally,	we’ve	added	our	usual	L2-regularizers:

• L2-regularization	often	called	“weight	decay”	in	this	context.
– Could	also	use	L1-regularization:	gives	sparse	network.



Standard	Regularization
• Traditionally,	we’ve	added	our	usual	L2-regularizers:

• L2-regularization	often	called	“weight	decay”	in	this	context.
– Could	also	use	L1-regularization:	gives	sparse	network.

• Hyper-parameter optimization	gets	expensive:
– Try	to	optimize	validation	error	in	terms	of	λ1,	λ2,	λ3,	λ4.
– In	addition	to	step-size,	number	of	layers,	size	of	layers,	initialization.

• Recent	result:
– Adding	a	regularizer in	this	way	creates	bad	local	optima.



Early	Stopping
• Another	common	type	of	regularization	is “early	stopping”:
– Monitor	the	validation	error	as	we	run	stochastic	gradient.
– Stop	the	algorithm	if	validation	error	starts	increasing.

http://cs231n.github.io/neural-networks-3/



Dropout
• Dropout is	a	more	recent	form	of	explicit	regularization:

– On	each	iteration,	randomly	set	some	xi and	zi to	zero	(often	use	50%).

– Adds	invariance	to	missing	inputs	or	latent	factors	
• Encourages	distributed	representation	rather	than	relying	on	specific	zi.

– Can	be	interpreted	as	an	ensemble	over	networks	with	different	parts	missing.
– After	a	lot	of	success,	dropout	may	already	be	going	out	of	fashion.

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf



“Hidden”	Regularization	in	Neural	Networks
• Fitting	single-layer	neural	network	with	SGD	and	no	regularization:

• Training	goes	to	0	with	enough	units:	we’re	finding	a	global	min.

• What	should	happen	to	training	and	test	error	for	larger	#hidden?
https://www.neyshabur.net/papers/inductive_bias_poster.pdf



“Hidden”	Regularization	in	Neural	Networks
• Fitting	single-layer	neural	network	with	SGD	and	no	regularization:

• Test	error	continues	to	go	down!?!	Where	is	fundamental	trade-off??
• There	exist	global	mins	with	large	#hidden	units	have	test	error	=	1.

– But	among	the	global	minima,	SGD	is	somehow	converging	to	“good”	ones.
https://www.neyshabur.net/papers/inductive_bias_poster.pdf



Implicit	Regularization	of	SGD
• There	is	growing	evidence	that	using	SGD	regularizes	parameters.
– We	call	this	the	“implicit	regularization”	of	the	optimization	algorithm.

• Beyond	empirical	evidence,	we	know	this	happens	in	simpler	cases.

• Example	of	implicit	regularization:
– Consider	a	least	squares	problem	where	there	exists	a	‘w’	where	Xw=y.

• Residuals	are	all	zero,	we	fit	the	data	exactly.
– You	run	[stochastic]	gradient	descent	starting	from	w=0.
– Converges	to	solution	Xw=y	that	has	the	minimum	L2-norm.

• So	using	SGD	is	equivalent	to	L2-regularization here,	but	regularization	is	“implicit”.



Implicit	Regularization	of	SGD
• Example	of	implicit	regularization:

– Consider	a	logistic	regression	problem	where	data	is	linearly	separable.
• We	can	fit	the	data	exactly.

– You	run	gradient	descent	from	any	starting	point.
– Converges	to	max-margin solution of	the	problem.

• So	using	gradient	descent	is	equivalent	to	encouraging	large	margin.

• Similar	result	known	for	boosting.



(pause)



Deep	Learning	“Tricks	of	the	Trade”
• We’ve	discussed	heuristics	to	make	deep	learning	work:

– Parameter	initialization	and	data	transformations.
– Setting	the	step	size(s) in	stochastic	gradient	and	using	momentum.
– RestNets and	alternative	non-linear	functions	like	ReLU.
– Different	forms	of	regularization:

• L2-regularization,	early	stopping,	dropout,	implicit	regularization	from	SGD.

• These	are	often	still	not	enough to	get	deep	models	working.

• Deep	computer	vision	models	are	all	convolutional	neural	networks:
– The	W(m) are	very	sparse	and	have	repeated	parameters	(“tied	weights”).
– Drastically	reduces	number	of	parameters	(speeds	training,	reduces	overfitting).



1D	Convolution	as	Matrix	Multiplication
• 1D	convolution:
– Takes	signal ‘x’	and	filter ‘w’	to	produces	vector	‘z’:

– Can	be	written	as	a	matrix	multiplication:



1D	Convolution	as	Matrix	Multiplication
• Each	element	of	a	convolution	is	an	inner	product:

• So	convolution	is	a	matrix	multiplication (I’m	ignoring	boundaries):

• The	shorter	‘w’	is,	the	more	sparse	the	matrix	is.



2D	Convolution	as	Matrix	Multiplication
• 2D	convolution:
– Signal	‘x’,	filter	‘w’,	and	output	‘z’	are	now	all	images/matrices:

– Vectorized ‘z’	can	be	written	as	a	matrix	multiplication with	vectorized ‘x’:



Motivation	for	Convolutional	Neural	Networks
• Consider	training	neural	networks	on	256	by	256	images.
– This	is	256	by	256	by	3	≈	200,000	inputs.

• If	first	layer	has	k=10,000,	then	it	has	about	2	billion	parameters.
– We	want	to	avoid	this	huge	number	(due	to	storage	and	overfitting).

• Key	idea:	make	Wxi act like	several	convolutions	(to	make	it	sparse):
1. Each	row	of	W	only	applies	to	part	of	xi.
2. Use	the	same	parameters	between	rows.

• Forces	most	weights	to	be	zero,	reduces	number	of	parameters.



Motivation	for	Convolutional	Neural	Networks
• Classic	vision	methods	uses	fixed	convolutions as	features:
– Usually	have	different	types/variances/orientations.
– Can	do	subsampling	or	take	maxes	across	locations/orientations/scales.



Motivation	for	Convolutional	Neural	Networks
• Convolutional	neural	networks	learn	the	convolutions:
– Learning	‘W’	and	‘v’	automatically	chooses	types/variances/orientations.
– Don’t	pick	from	fixed	convolutions,	but	learn	the	elements	of	the	filters.



Motivation	for	Convolutional	Neural	Networks
• Convolutional	neural	networks	learn	the	convolutions:
– Learning	‘W’	and	‘v’	automatically	chooses	types/variances/orientations.
– Can	do	multiple	layers	of	convolution	to	get	deep	hierarchical	features.

http://fortune.com/ai-artificial-intelligence-deep-machine-learning/



Convolutional	Neural	Networks
• Convolutional	Neural	Networks classically	have	3	layer	“types”:
– Fully	connected	layer:	usual	neural	network	layer	with	unrestricted	W.



Convolutional	Neural	Networks
• Convolutional	Neural	Networks classically	have	3	layer	“types”:
– Fully	connected	layer:	usual	neural	network	layer	with	unrestricted	W.
– Convolutional	layer:	restrict	W	to	act	like	several	convolutions.



Convolutional	Neural	Networks
• Convolutional	Neural	Networks classically	have	3	layer	“types”:
– Fully	connected	layer:	usual	neural	network	layer	with	unrestricted	W.
– Convolutional	layer:	restrict	W	to	act	like	several	convolutions.
– Pooling	layer:	combine	results	of	convolutions.

• Can	add	some	invariance	or	just	make	the	number	of	parameters	smaller.
• Usual	choice	is	‘max	pooling’:



LeNet for	Optical	Character	Recognition

http://blog.csdn.net/strint/article/details/44163869



Deep	Hierarchies	in	the	Visual	System

http://www.strokenetwork.org/newsletter/articles/vision.htm
https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing



Deep	Hierarchies	in	Optics

http://www.argmin.net/2018/01/25/optics/



Convolutional	Neural	Networks
• Classic	convolutional	neural	network	(LeNet):

• Visualizing	the	“activations”	of	the	layers:
– http://scs.ryerson.ca/~aharley/vis/conv
– http://cs231n.stanford.edu

http://scs.ryerson.ca/~aharley/vis/harley_vis_isvc15.pdf



Summary
• ResNets include	untransformed	previous	layers.
– Network	focuses	non-linearity	on	residual,	allows	huge	number	of	layers.

• Regularization is	crucial	to	neural	net	performance:
– L2-regularization,	early	stopping,	dropout,	implicit	regularization	of	SGD.

• Convolutional	neural	networks:
– Restrict	W(m) matrices	to	represent	sets	of	convolutions.
– Often	combined	with	max	(pooling).

• Next	time:	automatic	differentiation



(End	of	testable	content	for	final	exam)



CPSC	340:	Overview
1. Intro	to	supervised	learning	(using	counting	and	distances).

– Training	vs.	testing,	parametric	vs.	non-parametric,	ensemble	methods.
– Fundamental	trade-off,	no	free	lunch,	universal	consistency.

2. Intro	to	unsupervised	learning	(using	counting	and	distances).
– Clustering,	outlier	detection,	finding	similar	items.

3. Linear	models	and	gradient	descent (for	supervised	learning)
– Loss	functions,	change	of	basis,	regularization,	feature	selection.
– Gradient	descent	and	stochastic	gradient.

4. Latent-factor	models	(for	unsupervised	learning)
– Typically	using	linear	models	and	gradient	descent.

5. Neural	networks (for	supervised	and	multi-layer	latent-factor	models).



Topics	from	Previous	Years
• Slides	for	other	topics	that	were	covered	in	previous	years:
– Ranking:	finding	“highest	ranked”	training	examples	(Google	PageRank).
– Semi-supervised:	using	unlabeled	data	to	help	supervised	learning.
– Sequence	mining:	approximate	matching	of	patterns	in	large	sequences.

• In	previous	years	we	did	a	course	review	on	the	last	day:
– Overview	of	topics	covered	in	340,	and	topics	coming	in	540.
– Slides	here:	this	could	help	with	studying	for	the	final.



CPSC	330	vs.	340
• CPSC	330	:	“Applied	Machine	Learning”.
– Not	intended	as	a	sequel	to	340 (or	even	a	prequel).

• There	is	some	overlap	in	content,	but	focus	is	different:
– More	emphasis	on	the	other	steps	of	the	data	processing	pipeline:

• Data	cleaning,	feature	extraction,	reproducible	workflows,	communicating	results.

– More	emphasis	of	“how	to	use	packages”,	less	on	“how	stuff	works”.

• If	you	found	340	too	hard	to	keep	up	with,	330	might	make	sense.
– In	this	situation,	tell	your	friends	about	330.	



CPSC	330	vs.	440
• CPSC	440.

– Intended	as	a	direct	sequel	to	340.
– We’re	basically	starting	with	CNNs	and	going	from	there.

• Main	focuses:
– What	if	yi is	a	sentence	or	an	image	or	a	protein?
– Giving	you	the	background	to	understand	the	latest	advances.

• Prerequisites:
– Expect	you	to	know	everything	in	this	course	and	CPSC	320.

• This	course	is	now	listed	as	CPSC	440.
– I	removed	topics	related	to	optimization	research	from	the	course.



CPSC	540	Topics
• Review	of	machine	learning	fundamentals.
• Differentiable	programming	and	end-to-end	learning.
• Density	estimation	and	the	exponential	family.
• Conditional	independence	and	Bayesian	statistics.
• Markov	and	hidden-Markov	models.
• Graphical	models	and	deep	structured	models.
• Monte	Carlo	approximation	and	Markov	chain	Monte	Carlo.
• Non-conjugate	and	hierarchical	Bayesian	models.
• Mixture	models	and	expectation	maximization.
• Variational	inference.
• Empirical	Bayes	and	advanced	Monte	Carlo	methods.
• Non-parametric	Bayes	and	deep	generative	models.



Other	ML-Related	Courses
• CPSC	406:

– Numerical	optimization	algorithms	(like	gradient	descent).
• CPSC	422:

– Includes	topics	like	time	series	and	reinforcement	learning.
• CPSC	440:

– Probabilistic	machine	learning	(a	follow-on	to	this	course).
• CPSC	532R/533R:

– Deep	learning	for	vision,	sound,	and	language.
• CPSC	532W:

– Probabilistic	programming.
• CPSC	533V:

– Deep	learning	for	computer	graphics.
• CPSC	540:

– Graduate-level	machine	learning	(usually	with	a	focus	on	optimization	theory)
• EECE	592:

– Deep	learning	and	reinforcement	learning.
• STAT	406:

– Similar/complementary	topics.
• STAT	460/461:

– Advanced	statistical	issues	(what	happens	when	‘n’	goes	to	∞?)



Final	Slide
• Good	luck	with	finals/projects	and	the	next	steps!


