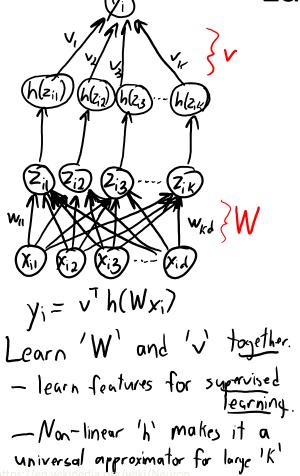
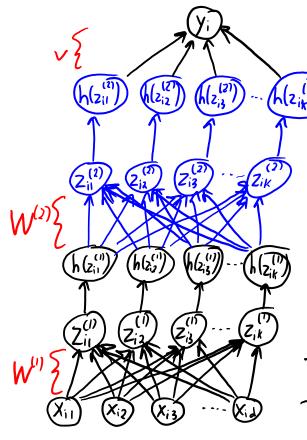
CPSC 340: Machine Learning and Data Mining

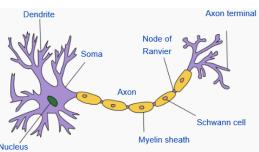
More Deep Learning Fall 2020

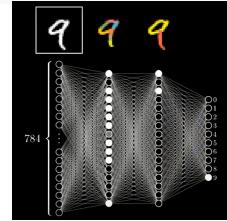
Neural network:

Last Time: Deep Learning









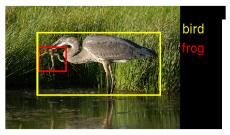
Deep neural networks: $y_i = \sqrt{h(W^{(2)}h(W^{(1)}x_i)}$

- Unprecedented performance on difficult problems.

- Each layer combines "parts" from previous layer.

https://www.youtube.com/watch?v=aircAruvnKk

• Millions of labeled images, 1000 object classes.





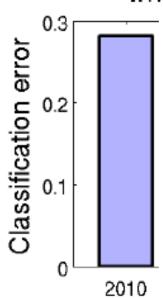
Easy for humans but hard for computers.

- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

Syberian Husky

Canadian Husky

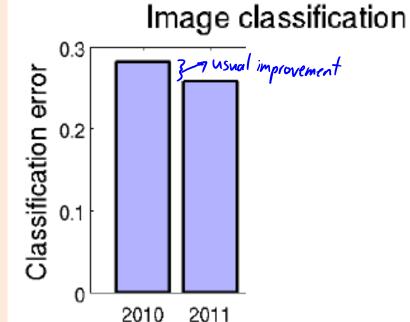
Image classification



- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

Syberian Husky

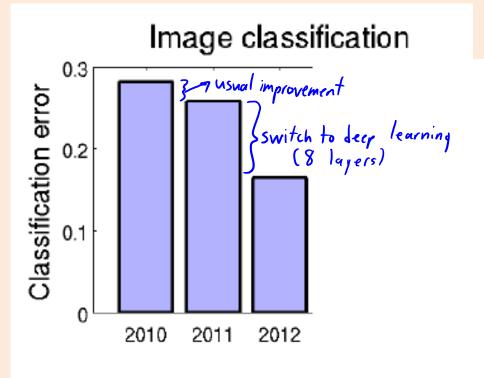
Canadian Husky



- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

Syberian Husky

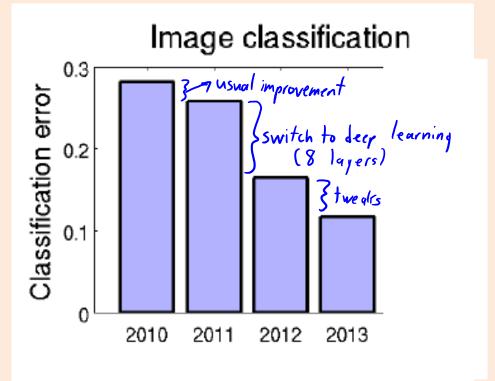
Canadian Husky



- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

Syberian Husky

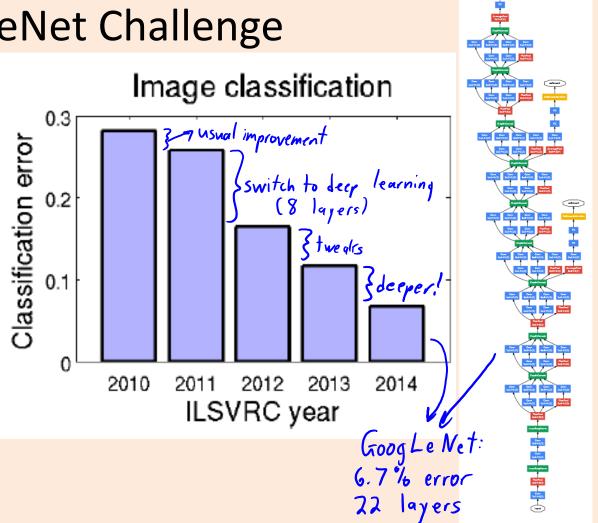
Canadian Husky



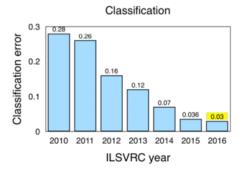
- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

Syberian Husky

Canadian Husky



- Object detection task:
 - Single label per image.
 - Humans: ~5% error.
- 2015: Won by Microsoft Asia
 - 3.6% error.
 - 152 layers, introduced "ResNets".
 - Also won "localization" (finding location of objects in images).
- 2016: Chinese University of Hong Kong:
 - Ensembles of previous winners and other existing methods.
- 2017: fewer entries, organizers decided this would be last year.



(pause)

Deep Learning Practicalities

- This lecture focus on deep learning practical issues:
 - Backpropagation to compute gradients.
 - Stochastic gradient training.
 - Regularization to avoid overfitting.
- Next lecture:
 - Special 'W' restrictions to further avoid overfitting.

But first: Adding Bias Variables

Recall fitting line regression with a bias:

$$\hat{y}_i = \sum_{j=1}^d w_j x_{ij} + \beta$$

- We avoided this by adding a column of ones to X.
- In neural networks we often want a bias on the output:

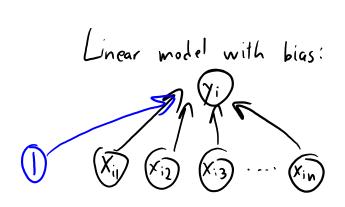
$$y_i = \sum_{j=1}^{K} v_c h(w_c^T x_i) + \beta$$

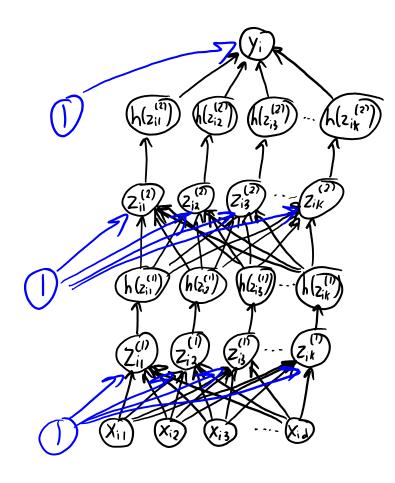
• But we also often also include biases on each z_{ic}:

$$\hat{y}_i = \sum_{c=1}^{k} v_c h(w_c x_i + \beta_c) + \beta$$

- A bias towards this h(z_{ic}) being either 0 or 1.
- Equivalent to adding to vector h(z_i) an extra value that is always 1.
 - For sigmoids, you could equivalently make one row of w_c be equal to 0.

But first: Adding Bias Variables





Artificial Neural Networks

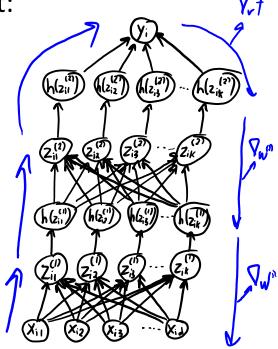
• With squared loss and 1 hidden layer, our objective function is:

$$f(y_j W) = \frac{1}{2} \sum_{i=1}^{n} (v^T h(W_{x_i}) - y_i)^2$$

- Usual training procedure: stochastic gradient.
 - Compute gradient of random example 'i', update both 'v' and 'W'.
 - Highly non-convex and can be difficult to tune.
- Computing the gradient is known as "backpropagation".
 - Video giving motivation <u>here</u>.

Overview of how we compute neural network gradient:

- Forward propagation:
 - Compute $z_i^{(1)}$ from x_i .
 - Compute $z_i^{(2)}$ from $z_i^{(1)}$.
 - ...
 - Compute \hat{y}_i from $z_i^{(m)}$, and use this to compute error.
- Backpropagation:
 - Compute gradient with respect to regression weights 'v'.
 - Compute gradient with respect to $z_i^{(m)}$ weights $W^{(m)}$.
 - Compute gradient with respect to $z_i^{(m-1)}$ weights $W^{(m-1)}$.
 - ...
 - Compute gradient with respect to $z_i^{(1)}$ weights $W^{(1)}$.
- "Backpropagation" is the chain rule plus some bookkeeping for speed.

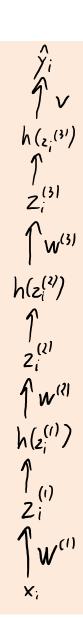


- Let's illustrate backpropagation in a simple setting:
 - 1 training example, 3 hidden layers, 1 hidden "unit" in layer.

$$f(W'', W''^{2}, W''^{3}, v) = \frac{1}{2} \left(y_{i} - y_{i} \right)^{2} \quad \text{where} \quad y_{i} = vh(w'^{3})h(w'^{2})h(w''^{3}))$$

$$\frac{2f}{2v} = \Gamma h(W'^{3})h(w'^{2})h(w'^{3})h(w'^{3})) = \Gamma h(z_{i}^{(3)})$$

$$\frac{2f}{2w^{(2)}} = \Gamma vh'(W'^{3})h(w'^{2})h(w'^{3})h(w'^{3})h(w'^{3})h(w'^{3})h(w'^{3})h(z_{i}^{(2)})$$



- Let's illustrate backpropagation in a simple setting:
 - 1 training example, 3 hidden layers, 1 hidden "unit" in layer.

$$f(W_{i}^{(j)},W_{i}^{(j)},V) = \frac{1}{2} \left(y_{i} - y_{j} \right)^{2} \quad \text{where} \quad y_{i}^{j} = vh(w_{i}^{(j)}h(w_{i}^{(j)}h(w_{i}^{(j)}x_{i})))$$

$$\frac{2f}{2v} = \Gamma h(W_{i}^{(j)}h(w_{i}^{(j)}h(w_{i}^{(j)}x_{i}))) = \Gamma h(z_{i}^{(j)})$$

$$\frac{2f}{2w_{i}^{(j)}} = \Gamma v h'(W_{i}^{(j)}h(w_{i}^{(j)}h(w_{i}^{(j)}x_{i}))) h(w_{i}^{(j)}h(w_{i}^{(j)}x_{i})) = \Gamma v h'(z_{i}^{(j)}) h(z_{i}^{(j)})$$

$$\frac{2f}{2w_{i}^{(j)}} = \Gamma v h'(w_{i}^{(j)}h(w_{i}^{(j)}h(w_{i}^{(j)}h(w_{i}^{(j)}x_{i}))) h(w_{i}^{(j)}h(w_{i}^{(j)}x_{i})) h(w_{i}^{(j)}h(w_{i}^{(j)}x_{i}) h(w_{i}^{(j)}x_{i}) h(w_{i}^{(j)}x_{i}) h(w_{i}^{(j)}x_{i}) h(w_{i}^{(j)}x_{i}) h(w_{i}^{(j)}x_{i}) h(w_{i}^{(j)}x_{i}) h(w_{i}^{(j)}x_{i}) h(w_{i}^{(j)}x_{i})$$

- Let's illustrate backpropagation in a simple setting:
 - 1 training example, 3 hidden layers, 1 hidden "unit" in layer.

$$\frac{2f}{2v} = \Gamma h(z_{i}^{(3)})$$

$$\frac{2f}{2w^{(3)}} = \Gamma vh'(z_{i}^{(3)})h(z_{i}^{(2)})$$

$$\frac{2f}{2w^{(2)}} = \Gamma^{(3)} W^{(3)}h'(z_{i}^{(2)})h(z_{i}^{(0)})$$

$$\frac{2f}{2w^{(2)}} = \Gamma^{(2)} W^{(2)}h'(z_{i}^{(0)})\chi_{i}$$

$$\frac{2f}{2v_{c}} = \Gamma h(z_{ic}^{(3)})$$

$$\frac{2f}{2w_{c'c}^{(3)}} = \Gamma v_{c} h'(z_{ic'}^{(3)}) h(z_{ic'}^{(2)})$$

$$\frac{2f}{2w_{c'c}^{(3)}} = \left[\sum_{c'=1}^{K} \Gamma_{c''}^{(3)} W_{c''c}^{(3)}\right] h'(z_{ic'}^{(2)}) h(z_{ic'}^{(1)})$$

$$\frac{2f}{2w_{c'j}^{(1)}} = \left[\sum_{c''=1}^{K} \Gamma_{c''}^{(4)} W_{c''c}^{(4)}\right] h'(z_{ic}^{(1)}) \chi_{j}^{(1)}$$

- Only the first 'r' changes if you use a different loss.
- With multiple hidden units, you get extra sums.
 - Efficient if you store the sums rather than computing from scratch.

- I've marked those backprop math slides as bonus.
- Do you need to know how to do this?
 - Exact details are probably not vital (there are many implementations).
 - "Automatic differentiation" is becoming standard and has same cost.
 - But understanding basic idea helps you know what can go wrong.
 - Or give hints about what to do when you run out of memory.
 - See discussion <u>here</u> by a neural network expert.
- You should know cost of backpropagation:
 - Forward pass dominated by matrix multiplications by W⁽¹⁾, W⁽²⁾, W⁽³⁾, and 'v'.
 - If have 'm' layers and all z_i have 'k' elements, cost would be $O(dk + mk^2)$.
 - Backward pass has same cost as forward pass.
- For multi-class or multi-label classification, you replace 'v' by a matrix:
 - Softmax loss is often called "cross entropy" in neural network papers.

Deep Learning Vocabulary

- "Deep learning": Models with many hidden layers.
 - Usually neural networks.
- "Neuron": node in the neural network graph.
 - "Visible unit": feature.
 - "Hidden unit": latent factor z_{ic} or $h(z_{ic})$.
- "Activation function": non-linear transform.
- "Activation": h(z_i).
- "Backpropagation": compute gradient of neural network.
 - Sometimes "backpropagation" means "training with SGD".
- "Weight decay": L2-regularization.
- "Cross entropy": softmax loss.
- "Learning rate": SGD step-size.
- "Learning rate decay": using decreasing step-sizes.
- "Vanishing gradient": underflow/overflow during gradient calculation.

(pause)

ImageNet Challenge and Optimization

- ImageNet challenge:
 - Use millions of images to recognize 1000 objects.
- ImageNet organizer visited UBC summer 2015.
- "Besides huge dataset/model/cluster, what is the most important?"
 - 1. Image transformations (translation, rotation, scaling, lighting, etc.).
 - 2. Optimization.
- Why would optimization be so important?
 - Neural network objectives are highly non-convex (and worse with depth).
 - Optimization has huge influence on quality of model.

Stochastic Gradient Training

- Standard training method is stochastic gradient (SG):
 - Choose a random example 'i'.
 - Use backpropagation to get gradient with respect to all parameters.
 - Take a small step in the negative gradient direction.
- Challenging to make SG work:
 - Often doesn't work as a "black box" learning algorithm.
 - But people have developed a lot of tricks/modifications to make it work.
- Highly non-convex, so are the problem local mimina?
 - Some empirical/theoretical evidence that local minima are not the problem.
 - If the network is "deep" and "wide" enough, we think all local minima are good.
 - But it can be hard to get SG to close to a local minimum in reasonable time.

Parameter Initialization

- Parameter initialization is crucial:
 - Can't initialize weights in same layer to same value, or they will stay same.
 - Can't initialize weights too large, it will take too long to learn.
- A traditional random initialization:
 - Initialize bias variables to 0.
 - Sample from standard normal, divided by 10⁵ (0.00001*randn).
 - w = .00001*randn(k,1)
 - Performing multiple initializations does not seem to be important.

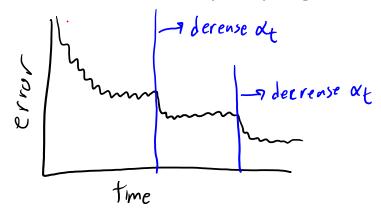
Parameter Initialization

- Parameter initialization is crucial:
 - Can't initialize weights in same layer to same value, or they will stay same.
 - Can't initialize weights too large, it will take too long to learn.
- Also common to transform data in various ways:
 - Subtract mean, divide by standard deviation, "whiten", standardize y_i.
- More recent initializations try to standardize initial z_i:
 - Use different initialization in each layer.
 - Try to make variance of z_i the same across layers.
 - Popular approach is to sample from standard normal, divide by sqrt(2*nInputs).
 - Use samples from uniform distribution on [-b,b], where

$$b = \frac{\sqrt{6}}{\sqrt{k^{(m)} + k^{(m-1)}}}$$

Setting the Step-Size

- Stochastic gradient is very sensitive to the step size in deep models.
- Common approach: manual "babysitting" of the step-size.
 - Run SG for a while with a fixed step-size.
 - Occasionally measure error and plot progress:



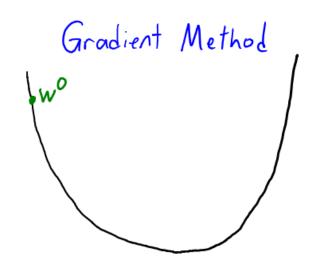
If error is not decreasing, decrease step-size.

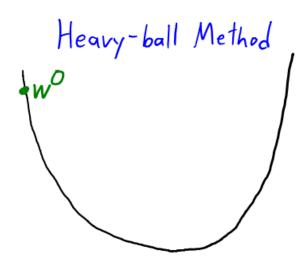
Setting the Step-Size

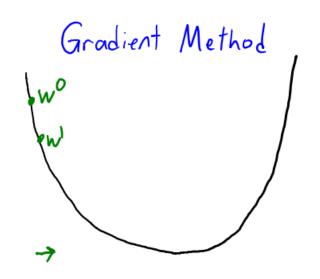
- Stochastic gradient is very sensitive to the step size in deep models.
- Bias step-size multiplier: use bigger step-size for the bias variables.
- Momentum (stochastic version of "heavy-ball" algorithm):
 - Add term that moves in previous direction:

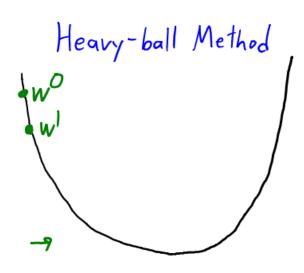
$$W^{t+1} = w^t - \alpha^t \nabla f_i(w^t) + \beta^t(w^t - w^{t-1})$$
where i is the old direction old direction

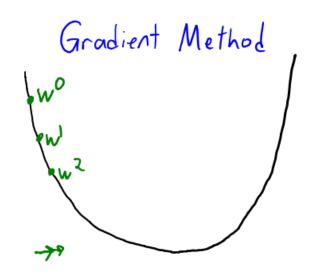
– Usually $\beta^t = 0.9$.

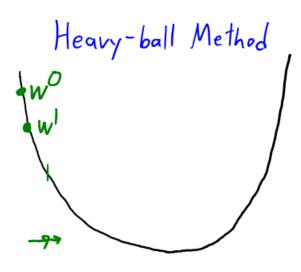


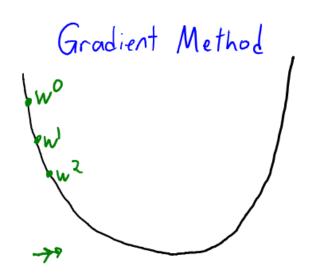


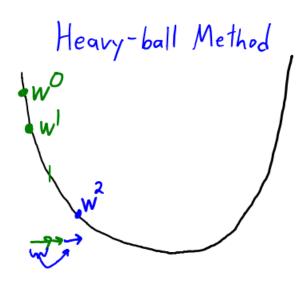


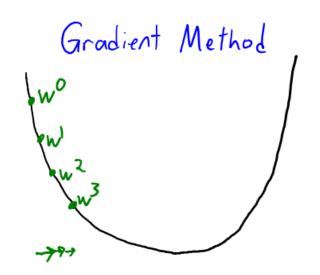


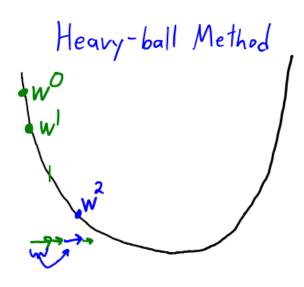


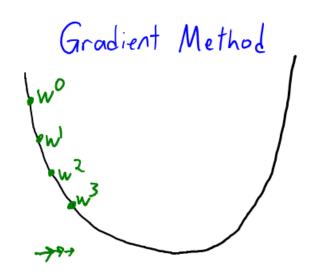


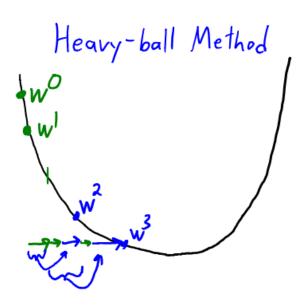


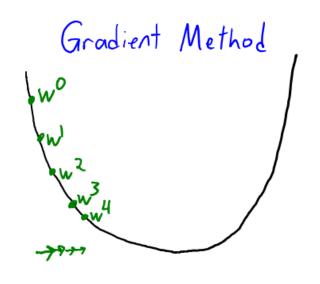


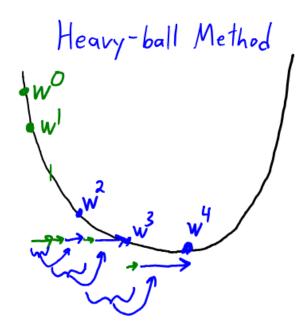


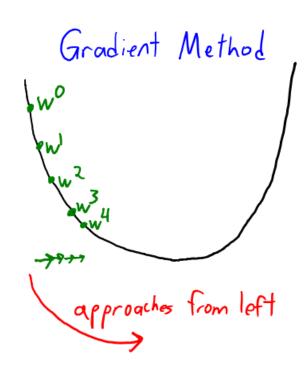


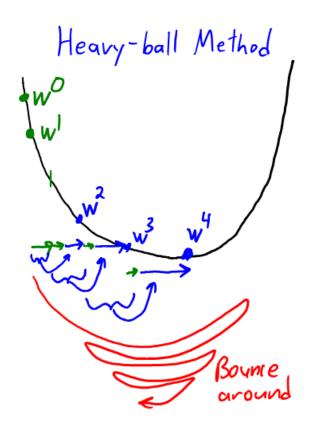












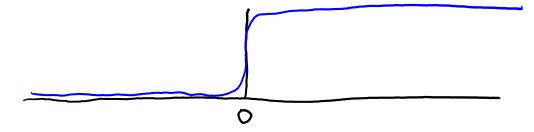
Setting the Step-Size

- Automatic method to set step size is Bottou trick:
 - 1. Grab a small set of training examples (maybe 5% of total).
 - 2. Do a binary search for a step size that works well on them.
 - 3. Use this step size for a long time (or slowly decrease it from there).
- Several recent methods using a step size for each variable:
 - AdaGrad, RMSprop, Adam (often work better "out of the box").
 - Seem to be losing popularity to stochastic gradient (often with momentum).
 - SGD often yields lower test error even though it takes longer and requires more tuning of step-size.
- Batch size (number of random examples) also influences results.
 - Bigger batch sizes often give faster convergence but maybe to worse solutions?
- Another recent trick is batch normalization:
 - Try to "standardize" the hidden units within the random samples as we go.
 - Held as example of deep learning "<u>alchemy</u>" (blog post <u>here</u> about deep learning claims).
 - Sounds science-ey and often works but little theoretical justification/understanding.

Vanishing Gradient Problem

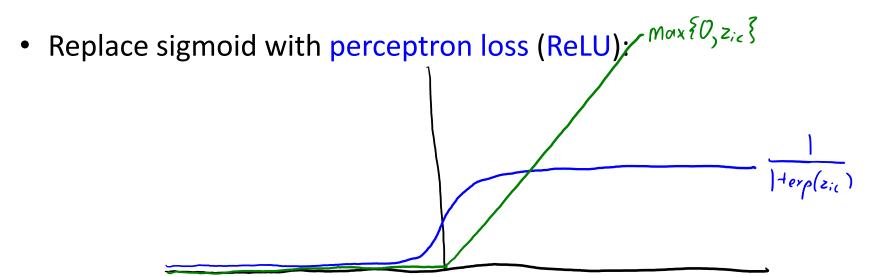
Consider the sigmoid function:

- Away from the origin, the gradient is nearly zero.
- The problem gets worse when you take the sigmoid of a sigmoid:



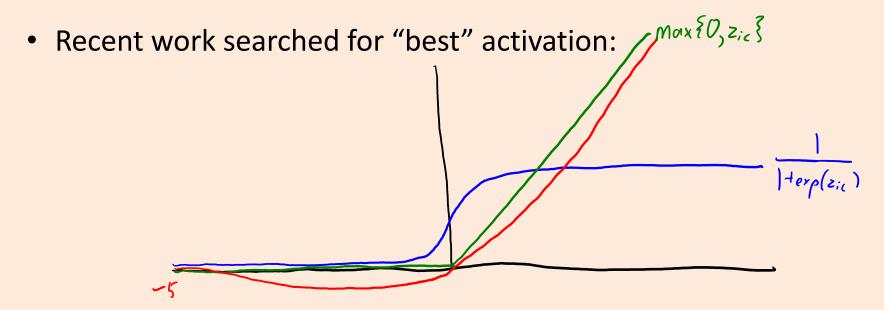
In deep networks, many gradients can be nearly zero everywhere.

Rectified Linear Units (ReLU)



- Just sets negative values z_{ic} to zero.
 - Fixes vanishing gradient problem.
 - Gives sparser activations.
 - Not really simulating binary signal, but could be simulating "rate coding".

"Swish" Activiation



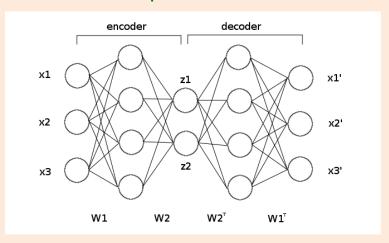
- Found that $z_{ic}/(1+exp(-z_{ic}))$ worked best ("swish" function).
 - A bit weird because it allows negative values and is non-monotonic.
 - But basically the same as ReLU when not close to 0.

Summary

- Unprecedented performance on difficult pattern recognition tasks.
- Backpropagation computes neural network gradient via chain rule.
- Parameter initialization is crucial to neural net performance.
- Optimization and step size are crucial to neural net performance.
 - "Babysitting", momentum.
- ReLU avoid "vanishing gradients".
- Next time: The most important idea in computer vision?

Autoencoders

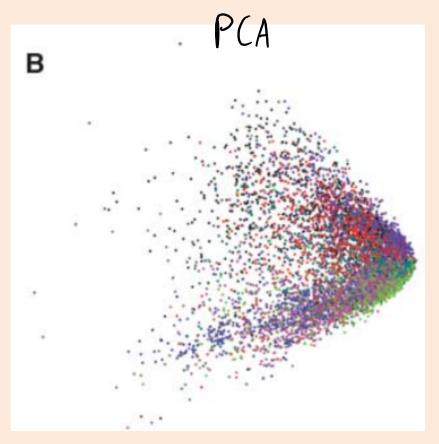
- Autoencoders are an unsupervised deep learning model:
 - Use the inputs as the output of the neural network.



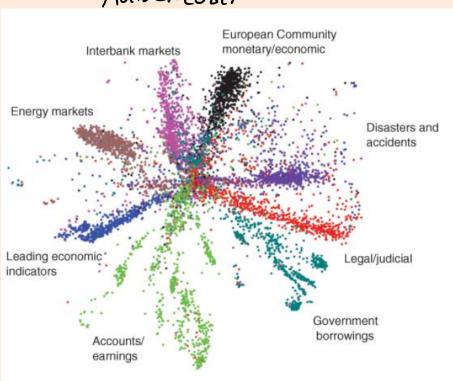
- Middle layer could be latent features in non-linear latent-factor model.
 - Can do outlier detection, data compression, visualization, etc.
- A non-linear generalization of PCA.
 - Equivalent to PCA if you don't have non-linearities.

http://inspirehep.net/record/1252540/plots

Autoencoders



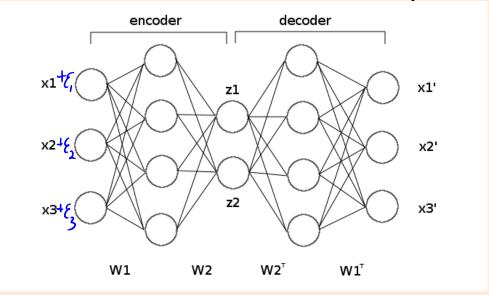
Autoencoder



https://www.cs.toronto.edu/~hinton/science.pdf

Denoising Autoencoder

Denoising autoencoders add noise to the input:



- Learns a model that can remove the noise.