
CPSC	340:
Machine	Learning	and	Data	Mining

More	Deep	Learning
Fall	2020



Last	Time:	Deep	Learning

https://en.wikipedia.org/wiki/Neuron
https://www.youtube.com/watch?v=aircAruvnKk



ImageNet Challenge	
• Millions	of	labeled	images,	1000	object	classes.

http://www.image-net.org/challenges/LSVRC/2014/



ImageNet Challenge	
• Object	detection	task:
– Single	label	per	image.
– Humans:	~5%	error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

Syberian Husky Canadian	Husky



ImageNet Challenge	
• Object	detection	task:
– Single	label	per	image.
– Humans:	~5%	error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

Syberian Husky Canadian	Husky



ImageNet Challenge	
• Object	detection	task:
– Single	label	per	image.
– Humans:	~5%	error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

Syberian Husky Canadian	Husky



ImageNet Challenge	
• Object	detection	task:
– Single	label	per	image.
– Humans:	~5%	error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

Syberian Husky Canadian	Husky



ImageNet Challenge	
• Object	detection	task:
– Single	label	per	image.
– Humans:	~5%	error.

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/
http://arxiv.org/pdf/1409.0575v3.pdf
http://arxiv.org/pdf/1409.4842v1.pdf

Syberian Husky Canadian	Husky



ImageNet Challenge	
• Object	detection	task:
– Single	label	per	image.
– Humans:	~5%	error.

• 2015:	Won	by	Microsoft	Asia
– 3.6%	error.
– 152	layers,	introduced	“ResNets”.
– Also	won	“localization”	(finding	location	of	objects	in	images).

• 2016:	Chinese	University	of	Hong	Kong:
– Ensembles	of	previous	winners	and	other	existing	methods.

• 2017:	fewer	entries,	organizers	decided	this	would	be	last	year.
http://www.themtank.org/a-year-in-computer-vision



(pause)



Deep	Learning	Practicalities
• This	lecture	focus	on	deep	learning	practical	issues:	
– Backpropagation	to	compute	gradients.
– Stochastic	gradient	training.
– Regularization to	avoid	overfitting.

• Next	lecture:
– Special	‘W’	restrictions	to	further	avoid	overfitting.



• Recall	fitting	line	regression	with	a	bias:

– We	avoided	this	by	adding	a	column	of	ones	to	X.

• In	neural	networks	we	often	want	a	bias	on	the	output:

• But	we	also	often	also	include	biases	on	each	zic:

– A	bias	towards	this	h(zic)	being	either	0	or	1.

• Equivalent	to	adding	to	vector	h(zi)	an	extra	value	that	is	always	1.
– For	sigmoids,	you	could	equivalently	make	one	row	of	wc be	equal	to	0.

But	first:	Adding	Bias	Variables



But	first:	Adding	Bias	Variables



Artificial	Neural	Networks
• With	squared	loss	and	1	hidden	layer,	our	objective	function	is:

• Usual	training	procedure:	stochastic	gradient.
– Compute	gradient	of	random	example	‘i’,	update	both	‘v’	and	‘W’.
– Highly	non-convex	and	can	be	difficult	to	tune.

• Computing	the	gradient	is	known	as	“backpropagation”.
– Video	giving	motivation	here.



Backpropagation
• Overview	of	how	we	compute	neural	network	gradient:

– Forward	propagation:
• Compute	zi(1) from	xi.
• Compute	zi(2) from	zi(1).
• …
• Compute	𝑦"i from	zi(m),	and	use	this	to	compute	error.

– Backpropagation:
• Compute	gradient	with	respect	to	regression	weights	‘v’.
• Compute	gradient	with	respect	to	zi(m) weights	W(m).
• Compute	gradient	with	respect	to	zi(m-1) weights	W(m-1).
• …
• Compute	gradient	with	respect	to	zi(1) weights	W(1).

• “Backpropagation”	is	the	chain	rule	plus	some	bookkeeping	for	speed.



Backpropagation
• Let’s	illustrate	backpropagation	in	a	simple	setting:
– 1	training	example,	3	hidden	layers,	1	hidden	“unit”	in	layer.



Backpropagation
• Let’s	illustrate	backpropagation	in	a	simple	setting:
– 1	training	example,	3	hidden	layers,	1	hidden	“unit”	in	layer.



Backpropagation
• Let’s	illustrate	backpropagation	in	a	simple	setting:
– 1	training	example,	3	hidden	layers,	1	hidden	“unit”	in	layer.

– Only	the	first	‘r’	changes	if	you	use	a	different	loss.
– With	multiple	hidden	units,	you	get	extra	sums.

• Efficient	if	you	store	the	sums	rather	than	computing	from	scratch.



Backpropagation
• I’ve	marked	those	backprop math	slides	as	bonus.
• Do	you	need	to	know	how	to	do	this?

– Exact	details	are	probably	not	vital	(there	are	many	implementations).
– “Automatic	differentiation”	is	becoming	standard	and	has	same	cost.
– But	understanding	basic	idea	helps	you	know	what	can	go	wrong.

• Or	give	hints	about	what	to	do	when	you	run	out	of	memory.
– See	discussion	here by	a	neural	network	expert.

• You	should	know	cost	of	backpropagation:
– Forward	pass	dominated	by	matrix	multiplications	by	W(1),	W(2),	W(3),	and	‘v’.

• If	have	‘m’	layers	and	all	zi have	‘k’	elements,	cost	would	be	O(dk +	mk2).
– Backward	pass	has	same	cost	as	forward	pass.

• For	multi-class	or	multi-label	classification,	you	replace	‘v’	by	a	matrix:
– Softmax loss	is	often	called	“cross	entropy”	in	neural	network	papers.



Deep	Learning	Vocabulary
• “Deep	learning”:	Models	with	many	hidden	layers.

– Usually	neural	networks.
• “Neuron”:	node	in	the	neural	network	graph.

– “Visible	unit”:	feature.
– “Hidden	unit”:	latent	factor	zic or	h(zic).

• “Activation	function”:	non-linear	transform.
• “Activation”:	h(zi).
• “Backpropagation”:	compute	gradient	of	neural	network.

– Sometimes	“backpropagation”	means	“training	with	SGD”.
• “Weight	decay”:	L2-regularization.
• “Cross	entropy”:	softmax loss.
• “Learning	rate”:	SGD	step-size.
• “Learning	rate	decay”:	using	decreasing	step-sizes.
• “Vanishing	gradient”:	underflow/overflow	during	gradient	calculation.



(pause)



ImageNet	Challenge	and	Optimization
• ImageNet	challenge:
– Use	millions	of	images	to	recognize	1000	objects.

• ImageNet	organizer	visited	UBC	summer	2015.
• “Besides	huge	dataset/model/cluster,	what	is	the	most	important?”

1. Image	transformations	(translation,	rotation,	scaling,	lighting,	etc.).
2. Optimization.

• Why	would	optimization	be	so	important?
– Neural	network	objectives	are	highly	non-convex (and	worse	with	depth).	
– Optimization	has	huge	influence	on	quality	of	model.



Stochastic	Gradient	Training
• Standard	training	method	is	stochastic	gradient	(SG):

– Choose	a	random	example	‘i’.
– Use	backpropagation	to	get	gradient	with	respect	to	all	parameters.
– Take	a	small	step	in	the	negative	gradient	direction.

• Challenging	to	make	SG	work:
– Often	doesn’t	work	as	a	“black	box”	learning	algorithm.
– But	people	have	developed	a	lot	of	tricks/modifications	to	make	it	work.

• Highly	non-convex,	so	are	the	problem	local	mimina?
– Some	empirical/theoretical	evidence	that	local	minima	are	not	the	problem.
– If	the	network	is	“deep”	and	“wide”	enough,	we	think	all	local	minima	are	good.
– But	it	can	be	hard	to	get	SG	to	close	to	a	local	minimum	in	reasonable	time.



Parameter	Initialization
• Parameter	initialization	is	crucial:
– Can’t	initialize	weights	in	same	layer	to	same	value,	or	they	will	stay	same.
– Can’t	initialize	weights	too	large,	it	will	take	too	long	to	learn.

• A	traditional	random	initialization:
– Initialize	bias	variables	to	0.
– Sample	from	standard	normal,	divided	by	105 (0.00001*randn).

• w	=	.00001*randn(k,1)
– Performing	multiple	initializations	does	not	seem	to	be	important.



Parameter	Initialization
• Parameter	initialization	is	crucial:
– Can’t	initialize	weights	in	same	layer	to	same	value,	or	they	will	stay	same.
– Can’t	initialize	weights	too	large,	it	will	take	too	long	to	learn.

• Also	common	to	transform	data in	various	ways:
– Subtract	mean,	divide	by	standard	deviation,	“whiten”,	standardize	yi.

• More	recent	initializations	try	to	standardize	initial	zi:
– Use	different	initialization	in	each	layer.
– Try	to	make	variance	of	zi the	same	across	layers.

• Popular	approach	is	to	sample	from	standard	normal,	divide	by	sqrt(2*nInputs).

– Use	samples	from	uniform	distribution	on	[-b,b],	where



Setting	the	Step-Size
• Stochastic	gradient	is	very	sensitive	to	the	step	size in	deep	models.
• Common	approach:	manual	“babysitting”	of	the	step-size.
– Run	SG	for	a	while	with	a	fixed	step-size.
– Occasionally	measure	error	and	plot	progress:

– If	error	is	not	decreasing,	decrease	step-size.



Setting	the	Step-Size
• Stochastic	gradient	is	very	sensitive	to	the	step	size in	deep	models.
• Bias	step-size	multiplier:	use	bigger	step-size	for	the	bias	variables.
• Momentum (stochastic	version	of	“heavy-ball”	algorithm):
– Add	term	that	moves	in	previous	direction:

– Usually	βt =	0.9.



Gradient	Descent	vs.	Heavy-Ball	Method



Gradient	Descent	vs.	Heavy-Ball	Method



Gradient	Descent	vs.	Heavy-Ball	Method



Gradient	Descent	vs.	Heavy-Ball	Method



Gradient	Descent	vs.	Heavy-Ball	Method



Gradient	Descent	vs.	Heavy-Ball	Method



Gradient	Descent	vs.	Heavy-Ball	Method



Gradient	Descent	vs.	Heavy-Ball	Method



Setting	the	Step-Size
• Automatic	method	to	set	step	size	is	Bottou trick:	

1. Grab	a	small	set	of	training	examples	(maybe	5%	of	total).
2. Do	a	binary	search	for	a	step	size	that	works	well	on	them.
3. Use	this	step	size	for	a	long	time	(or	slowly	decrease	it	from	there).

• Several	recent	methods	using	a	step	size	for	each	variable:
– AdaGrad,	RMSprop,	Adam (often	work	better	“out	of	the	box”).
– Seem	to	be	losing	popularity	to	stochastic	gradient	(often	with	momentum).

• SGD	often	yields	lower	test	error	even	though	it	takes	longer	and	requires	more	tuning	of	step-size.
• Batch	size	(number	of	random	examples)	also	influences	results.

– Bigger	batch	sizes	often	give	faster	convergence	but	maybe	to	worse	solutions?

• Another	recent	trick	is	batch	normalization:
– Try	to	“standardize”	the	hidden	units	within	the	random	samples	as	we	go.
– Held	as	example	of	deep	learning	“alchemy”	(blog	post	here about	deep	learning	claims).

• Sounds	science-ey and	often	works	but	little	theoretical	justification/understanding.



Vanishing	Gradient	Problem
• Consider	the	sigmoid	function:

• Away	from	the	origin,	the	gradient	is	nearly	zero.
• The	problem	gets	worse	when	you	take	the	sigmoid	of	a	sigmoid:

• In	deep	networks,	many	gradients	can	be	nearly	zero	everywhere.



Rectified	Linear	Units	(ReLU)
• Replace	sigmoid	with	perceptron	loss	(ReLU):

• Just	sets	negative	values	zic to	zero.
– Fixes	vanishing	gradient	problem.
– Gives	sparser	activations.
– Not	really	simulating	binary	signal,	but	could	be	simulating	“rate	coding”.



“Swish”	Activiation
• Recent	work	searched	for	“best”	activation:

• Found	that	zic/(1+exp(-zic)) worked	best	(“swish”	function).
– A	bit	weird	because	it	allows	negative	values	and	is	non-monotonic.
– But	basically	the	same	as	ReLU when	not	close	to	0.



Summary
• Unprecedented	performance	on	difficult	pattern	recognition	tasks.
• Backpropagation computes	neural	network	gradient	via	chain	rule.
• Parameter	initialization	is	crucial	to	neural	net	performance.
• Optimization	and	step	size	are	crucial	to	neural	net	performance.
– “Babysitting”,	momentum.

• ReLU avoid	“vanishing	gradients”.

• Next	time:	The	most	important	idea	in	computer	vision?



• Autoencoders are	an	unsupervised	deep	learning	model:
– Use	the	inputs	as	the	output	of	the	neural	network.

– Middle	layer	could	be	latent	features	in	non-linear	latent-factor	model.
• Can	do	outlier	detection,	data	compression,	visualization,	etc.

– A	non-linear	generalization	of	PCA.
• Equivalent	to	PCA	if	you	don’t	have	non-linearities.

Autoencoders

http://inspirehep.net/record/1252540/plots



Autoencoders

https://www.cs.toronto.edu/~hinton/science.pdf



• Denoising autoencoders add	noise	to	the	input:

– Learns	a	model	that	can	remove	the	noise.

Denoising Autoencoder

http://inspirehep.net/record/1252540/plots


