# CPSC 340: Machine Learning and Data Mining

Deep Learning Fall 2020

# Last Time: Multi-Dimensional Scaling

- Modern multi-dimensional scaling (MDS) methods:
  - ISOMAP uses geodesic distance in data manifold.
  - T-SNE tends to reveal clusters and manifold structures.
  - Word2vec gives continuous alternative to bag of words.



http://wearables.cc.gatech.edu/paper\_of\_week/isomap.pdf http://lvdmaaten.github.io/publications/papers/JMLR\_2008.pd http://sebastianruder.com/secret-word2vec http://sebastianruder.com/secret-word2vec

#### Word2Vec

Subtracting word vectors to find related vectors.

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

| Relationship         | Example 1           | Example 2         | Example 3            |
|----------------------|---------------------|-------------------|----------------------|
| France - Paris       | Italy: Rome         | Japan: Tokyo      | Florida: Tallahassee |
| big - bigger         | small: larger       | cold: colder      | quick: quicker       |
| Miami - Florida      | Baltimore: Maryland | Dallas: Texas     | Kona: Hawaii         |
| Einstein - scientist | Messi: midfielder   | Mozart: violinist | Picasso: painter     |
| Sarkozy - France     | Berlusconi: Italy   | Merkel: Germany   | Koizumi: Japan       |
| copper - Cu          | zinc: Zn            | gold: Au          | uranium: plutonium   |
| Berlusconi - Silvio  | Sarkozy: Nicolas    | Putin: Medvedev   | Obama: Barack        |
| Microsoft - Windows  | Google: Android     | IBM: Linux        | Apple: iPhone        |
| Microsoft - Ballmer  | Google: Yahoo       | IBM: McNealy      | Apple: Jobs          |
| Japan - sushi        | Germany: bratwurst  | France: tapas     | USA: pizza           |

Table 8 shows words that follow various relationships. We follow the approach described above: the relationship is defined by subtracting two word vectors, and the result is added to another word. Thus for example, Paris - France + Italy = Rome. As it can be seen, accuracy is quite good, although

Word vectors for 157 languages <u>here</u>.

#### End of Part 4: Key Concepts

We discussed linear latent-factor models:

$$f(W,2) = \sum_{i=1}^{2} \sum_{j=1}^{d} (\langle w_{j} z_{i} \rangle - x_{ij})^{2}$$

$$= \sum_{i=1}^{2} ||W^{T}z_{i} - x_{i}||^{2}$$

$$= ||ZW - X||_{F}^{2}$$

- Represent 'X' as linear combination of latent factors 'w.'.
  - Latent features 'z<sub>i</sub>' give a lower-dimensional version of each 'x<sub>i</sub>'.
  - When k=1, finds direction that minimizes squared orthogonal distance.
- Applications:
  - Outlier detection, dimensionality reduction, data compression, features for linear models, visualization, factor discovery, filling in missing entries.

#### End of Part 4: Key Concepts

We discussed linear latent-factor models:

$$f(W,Z) = \sum_{i=1}^{n} \sum_{j=1}^{d} (\langle w_{j}^{i} z_{j} \rangle - x_{ij})^{2}$$

- Principal component analysis (PCA):
  - Often uses orthogonal factors and fits them sequentially (via SVD).
- Non-negative matrix factorization:
  - Uses non-negative factors giving sparsity.
  - Can be minimized with projected gradient.
- Many variations are possible:
  - Different regularizers (sparse coding) or loss functions (robust/binary PCA).
  - Missing values (recommender systems) or change of basis (kernel PCA).

#### End of Part 4: Key Concepts

- We discussed multi-dimensional scaling (MDS):
  - Non-parametric method for high-dimensional data visualization.
  - Tries to match distance/similarity in high-/low-dimensions.
    - "Gradient descent on scatterplot points".
- Main challenge in MDS methods is "crowding" effect:
  - Methods focus on large distances and lose local structure.
- Common solutions:
  - Sammon mapping: use weighted cost function.
  - ISOMAP: approximate geodesic distance using via shortest paths in graph.
  - T-SNE: give up on large distances and focus on neighbour distances.
- Word2vec is a recent MDS method giving better "word features".

#### Supervised Learning Roadmap

- Part 1: "Direct" Supervised Learning.
  - We learned parameters 'w' based on the original features  $x_i$  and target  $y_i$ .
- Part 3: Change of Basis.
  - We learned parameters 'v' based on a change of basis z<sub>i</sub> and target y<sub>i</sub>.
- Part 4: Latent-Factor Models.
  - We learned parameters 'W' for basis  $z_i$  based on only on features  $x_i$ .
  - You can then learn 'v' based on change of basis z<sub>i</sub> and target y<sub>i</sub>.
- Part 5: Neural Networks.
  - Jointly learn 'W' and 'v' based on x<sub>i</sub> and y<sub>i</sub>.
  - Learn basis z<sub>i</sub> that is good for supervised learning.

# A Graphical Summary of CPSC 340 Parts 1-5



#### Notation for Neural Networks

We have our usual supervised learning notation:

$$X = \begin{bmatrix} \frac{1}{x_1} & \frac{1}{x_2} \\ \frac{1}{y_2} & \frac{1}{y_n} \end{bmatrix}$$

$$X = \begin{bmatrix} \frac{1}{y_1} & \frac{1}{y_2} \\ \frac{1}{y_n} & \frac{1}{y_n} \end{bmatrix}$$

$$Z = \begin{bmatrix} -z_1^{7} - z_2^{7} - z_2^{7} - z_1^{7} - z_1^{7}$$

$$Z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \qquad V = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_K \end{bmatrix} \qquad W = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_K \end{bmatrix}$$

$$N \times K$$

$$K \times J$$

$$K \times J$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array}\end{array}\end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c}$$

#### Linear-Linear Model

Obvious choice: linear latent-factor model with linear regression.

Use features from latent-factor model: 
$$z_i = Wx_i$$
  
Make predictions using a linear model:  $y_i = v^T z_i$ 

We want to train 'W' and 'v' jointly, so we could minimize:

• We want to train 'W' and 'V' jointly, so we could minimize:
$$f(W,v) = \frac{1}{\lambda} \sum_{i=1}^{n} (\sqrt{Z_i} - y_i)^2 = \frac{1}{\lambda} \sum_{i=1}^{n} (\sqrt{W_{X_i}} - y_i)^2$$
| Interregression with  $z_i$  as features | Latent-factor model |
| Y =  $\sqrt{Z_i} = \sqrt{W_{X_i}} = \sqrt{W_{X_i}} = \sqrt{W_{X_i}}$ 
| Some vector 'W' |

### Introducing Non-Linearity

- To increase flexibility, something needs to be non-linear.
- Typical choice: transform z<sub>i</sub> by non-linear function 'h'.

$$z_i = W_{x_i}$$
  $y_i = v^T h(z_i)$ 

- Here the function 'h' transforms 'k' inputs to 'k' outputs.
- Common choice for 'h': applying sigmoid function element-wise:

$$h(z_{ic}) = \frac{1}{1 + exp(-z_{ic})}$$

- So this takes the  $z_{ic}$  in  $(-\infty,\infty)$  and maps it to (0,1).
- This is called a "multi-layer perceptron" or a "neural network".

# Why Sigmoid?

Consider setting 'h' to define binary features z<sub>i</sub> using:

$$h(z_{ic}) = \begin{cases} 1 & \text{if } z_{ic} = 70 \\ 0 & \text{if } z_{ic} < 0 \end{cases}$$

- Each h(zi) can be viewed as binary feature.
  - "You either have this 'part' or you don't have it."
- We can make 2<sup>k</sup> objects by all the possible "part combinations".



h(zic)

## Why Sigmoid?

Consider setting 'h' to define binary features z<sub>i</sub> using:

$$h(z_{ic}) = \begin{cases} 1 & \text{if } z_{ic} \neq 0 \\ 0 & \text{if } z_{ic} \leq 0 \end{cases}$$

- $\frac{1}{1+exp(-w_cx_i)}$ Zic
- Each h(zi) can be viewed as binary feature.
  - "You either have this 'part' or you don't have it."
- But this is hard to optimize (non-differentiable/discontinuous).
- Sigmoid is a smooth approximation to these binary features.
  - Non-parametric version is a universal approximator:
    - If 'k' grows appropriately with 'n', can model any continuous function.

# Supervised Learning Roadmap

Hand-engineered features:



Requires domain knowledge and can be time- consuming

Learn a latent-factor model:



Use latent features in supervised model:



Good representation of X; might be bad for predicting y;

Neural network:



Extra non-linear transformation 'h'

#### Why "Neural Network"?

Cartoon of "typical" neuron:



- Neuron has many "dendrites", which take an input signal.
- Neuron has a single "axon", which sends an output signal.
- With the right input to dendrites:
  - "Action potential" along axon (like a binary signal):



# Why "Neural Network"?





### Why "Neural Network"?



#### "Artificial" Neural Nets vs. "Real" Networks Nets

- Artificial neural network:
  - $-x_i$  is measurement of the world.
  - z<sub>i</sub> is internal representation of world.
  - $-y_i$  is output of neuron for classification/regression.
- Real neural networks are more complicated:
  - Timing of action potentials seems to be important.
    - "Rate coding": frequency of action potentials simulates continuous output.
  - Neural networks don't reflect sparsity of action potentials.
  - How much computation is done inside neuron?
  - Brain is highly organized (e.g., substructures and cortical columns).
  - Connection structure changes.
  - Different types of neurotransmitters.



Deep Learning Deep learning h(212)) (2/k) (h(z;3)) Second "layer" of latent features  $h(z_{ij}^{(i)})$ (h(2,2)) more "layers" to go "deeper"

#### "Hierarchies of Parts" Motivation for Deep Learning

- Each "neuron" might recognize a "part" of a digit.
  - "Deeper" neurons might recognize combinations of parts.
  - Represent complex objects as hierarchical combinations of re-useable parts (a simple "grammar").
- Watch the full video here:
  - https://www.youtube.com/watch?v=aircAruvnKk

#### Theory:

- 1 big-enough hidden layer already gives universal approximation.
- But some functions require exponentially-fewer parameters to approximate with more layers (can fight curse of dimensionality).



Deep Learning

Neural network with I hidden layer:  $y_i = v^T h(Wx_i)$ 

Neural network with 2 hidden layers:  $\hat{y}_i = v^T h(W^{(2)} h(W^{(1)} x_i))$ 

Neural network with 3 hidden layers  $\sqrt{1} = \sqrt{1} h(W^{(3)}h(W^{(2)}h(W^{(1)}x_i)))$   $\sqrt{1} = \sqrt{1} h(W^{(3)}h(W^{(2)}x_i))$ 



#### Deep Learning

For 4 layers, we could write the prediction as:

$$\dot{y}_i = \sqrt{\left(\frac{1}{L^{-1}} h(W^{(\ell)} x_i)\right)}$$



f, of, of, of, (1)

- 1950 and 1960s: Initial excitement.
  - Perceptron: linear classifier and stochastic gradient (roughly).

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."
 New York Times (1958).

- https://www.youtube.com/watch?v=IEFRtz68m-8
- Object recognition
   assigned to students as a
   summer project
- Then drop in popularity:
  - Quickly realized limitations of linear models.



- 1970 and 1980s: Connectionism (brain-inspired ML)
  - Want "connected networks of simple units".
    - Use parallel computation and distributed representations.
  - Adding hidden layers z<sub>i</sub> increases expressive power.
    - With 1 layer and enough sigmoid units, a universal approximator.
  - Success in optical character recognition.







https://en.wikibooks.org/wiki/Sensory\_Systems/Visual\_Signal\_Processing http://www.datarobot.com/blog/a-primer-on-deep-learning/http://blog.csdn.net/strint/article/details/44163869

- 1990s and early-2000s: drop in popularity.
  - It proved really difficult to get multi-layer models working robustly.
  - We obtained similar performance with simpler models:
    - Rise in popularity of logistic regression and SVMs with regularization and kernels.
  - Lots of internet successes (spam filtering, web search, recommendation).
  - ML moved closer to other fields like numerical optimization and statistics.

- Late 2000s: push to revive connectionism as "deep learning".
  - Canadian Institute For Advanced Research (CIFAR) NCAP program:
    - "Neural Computation and Adaptive Perception".
    - Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio ("Canadian mafia").
  - Unsupervised successes: "deep belief networks" and "autoencoders".
    - Could be used to initialize deep neural networks.
    - https://www.youtube.com/watch?v=KuPai0ogiHk





https://www.cs.toronto.edu/~hinton/science.pdf

#### 2010s: DEEP LEARNING!!!

- Bigger datasets, bigger models, parallel computing (GPUs/clusters).
  - And some tweaks to the models from the 1980s.
- Huge improvements in automatic speech recognition (2009).
  - All phones now have deep learning.
- Huge improvements in computer vision (2012).
  - Changed computer vision field almost instantly.
  - This is now finding its way into products.



http://www.image-net.org/challenges/LSVRC/2014/

#### 2010s: DEEP LEARNING!!!

#### Media hype:

- "How many computers to identify a cat? 16,000"

New York Times (2012).

"Why Facebook is teaching its machines to think like humans"
 Wired (2013).

"What is 'deep learning' and why should businesses care?"
 Forbes (2013).

– "Computer eyesight gets a lot more accurate"

New York Times (2014).

2015: huge improvement in language understanding.

#### Summary

- Neural networks learn features z<sub>i</sub> for supervised learning.
- Sigmoid function avoids degeneracy by introducing non-linearity.
  - Universal approximator with large-enough 'k'.
- Biological motivation for (deep) neural networks.
- Deep learning considers neural networks with many hidden layers.
  - Can more-efficiently represent some functions.
- Unprecedented performance on difficult pattern recognition tasks.
- Next time:
  - Training deep networks.

### Multiple Word Prototypes

- What about homonyms and polysemy?
  - The word vectors would need to account for all meanings.
- More recent approaches:
  - Try to cluster the different contexts where words appear.

- Use different vectors for different contexts.

# Multiple Word Prototypes



Why 
$$z_i = Wx_i$$
?

- In PCA we had that the optimal  $Z = XW^{T}(WW^{T})^{-1}$ .
- If W had normalized+orthogonal rows,  $Z = XW^T$  (since  $WW^T = I$ ).
  - So  $z_i = Wx_i$  in this normalized+orthogonal case.
- Why we would use  $z_i = Wx_i$  in neural networks?
  - We didn't enforce normalization or orthogonality.
- Well, the value W<sup>T</sup>(WW<sup>T</sup>)<sup>-1</sup> is just "some matrix".
  - You can think of neural networks as just directly learning this matrix.

• Faces might be composed of different "parts":



http://www.datarobot.com/blog/a-primer-on-deep-learning/

• First layer of z<sub>i</sub> trained on 10 by 10 image patches:



- Attempt to visualize second layer:
  - Corners, angles, surface boundaries?
- Models require many tricks to work.
  - We'll discuss these next time.



• First layer of z<sub>i</sub> trained on 10 by 10 image patches:



} "Gabor filters"

Visualization of second and third layers trained on specific objects:





http://www.cs.toronto.edu/~rgrosse

• First layer of z<sub>i</sub> trained on 10 by 10 image patches:



Visualization of second and third layers trained on specific objects:



http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

• First layer of z<sub>i</sub> trained on 10 by 10 image patches:



Visualization of second and third layers trained on specific objects:



• First layer of z<sub>i</sub> trained on 10 by 10 image patches:



Visualization of second and third layers trained on specific objects:



• First layer of z<sub>i</sub> trained on 10 by 10 image patches:



Visualization of second and third layers trained on specific objects:

