CPSC 340:
Machine Learning and Data Mining
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Fall 2020



Last Time: Multi-Dimensional Scaling

 Modern multi-dimensional scaling (MDS) methods:
— ISOMAP uses geodesic distance in data manifold.
— T-SNE tends to reveal clusters and manifold structures.

— Word2vec gives continuous alternative to bag of words.
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Word2Vec

Subtracting word vectors to find related vectors.

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4| (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship

Example 1

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

Italy: Rome
small: larger
Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo
Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy
France: tapas

Florida: Tallahassee
quick: quicker
Kona: Hawaii

Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza

Table

[B]shows words that follow various relationships. We follow the approach described above: the

word vectors, and the result is added to another word. Thus

relationship is defined by subtracti
for example,@ris - France + Italy = Rome.) As it can be seen, accuracy is quite good, although

* Word vectors for 157 languages here.



End of Part 4: Key Concepts

e We discussed linear latent-factor models:

P(W,2)= 2 % (o= )

i y=!

= Z’\ lW'z, —x/*
= lzw - xli

* Represent ‘X’ as linear combination of latent factors ‘w_".

— Latent features ‘z give a lower-dimensional version of each ‘x;".

— When k=1, finds direction that minimizes squared orthogonal distance.
* Applications:

— Outlier detection, dimensionality reduction, data compression, features for linear
models, visualization, factor discovery, filling in missing entries.



End of Part 4: Key Concepts

We discussed linear latent-factor models:

P(W2)=2 2 (=)
Principal component analysis (PCA):
— Often uses orthogonal factors and fits them sequentially (via SVD).
Non-negative matrix factorization:
— Uses non-negative factors giving sparsity.
— Can be minimized with projected gradient.
Many variations are possible:

— Different regularizers (sparse coding) or loss functions (robust/binary PCA).
— Missing values (recommender systems) or change of basis (kernel PCA).



End of Part 4: Key Concepts

We discussed multi-dimensional scaling (MDS):
— Non-parametric method for high-dimensional data visualization.

— Tries to match distance/similarity in high-/low-dimensions.
* “Gradient descent on scatterplot points”.

Main challenge in MIDS methods is “crowding” effect:
— Methods focus on large distances and lose local structure.
Common solutions:

— Sammon mapping: use weighted cost function.

— ISOMAP: approximate geodesic distance using via shortest paths in graph.
— T-SNE: give up on large distances and focus on neighbour distances.

Word2vec is a recent MDS method giving better “word features”.



Supervised Learning Roadmap

Part 1: “Direct” Supervised Learning.

— We learned parameters ‘w’ based on the original features x, and target y..
Part 3: Change of Basis.

— We learned parameters ‘v’ based on a change of basis z, and target y..
Part 4: Latent-Factor Models.

— We learned parameters ‘W’ for basis z, based on only on features x. @

— You can then learn ‘v’ based on change of basis z; and target y;. /;/' \
Vv
Part 5: Neural Networks.

— Jointly learn ‘W’ and ‘v’ based on x; and y.. VY
Wy
— Learn basis z; that is good for supervised learning. ’




A Graphical Summary of CPSC 340 Parts 1-5
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Notation for Neural Networks
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Linear-Linear Model

* Obvious choice: linear latent-factor model with linear regression.
USc Fea\'fwxes ’rrom latent- foctor model: z = WX,'
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* We want to train ‘W’ and ‘v’ jointly, so we could minimize:

f(W=3 2 (2= =12 (VT (W)~ y)"

=N~
‘Mﬁu/‘ rear«oss;or\ Z; (eme 'Fram
with Z, &s Feqfurej |citen] ~Faclpr mod el

(xd
e But this is just a linear model: T T _ Sy T
J vz =V (WX;> = (v W)y, S wX

Some vector 'wW



Introducing Non-Linearity

To increase flexibility, something needs to be non-linear.
Typical choice: transform z, by non-linear function ‘h’.
T
Z,' — W)(,' y' -V L(Zi)
— Here the function ‘h’ transforms ‘k’ inputs to ‘k’” outputs.
Common choice for ‘h’: applying sigmoid function element-wise:
' + exr(-z;c)
So this takes the z_ in (-e0,o2) and maps it to (0,1).

This is called a “multi-layer perceptron” or a “neural network”.



Why Sigmoid?
* Consider setting ‘h’ to define binary features z, using:
NERE \ if 2,70

hiz.)
0 if 2.<0
Zic

— Each h(zi) can be viewed as binary feature.

* “You either have this ‘part’ or you don’t have it.”

— We can make 2k objects by all the Motivation: Pixels vs. Parts
pOSS|bIe ”pa rt com blnatlonS”. * We could represent other digits as different combinations of “parts”:
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Why Sigmoid?

* Consider setting ‘h’ to define binary features z, using:

h—/

h(zic): \ ”c Zib?/o l ‘:_4"(2[0)
0 if 2.<0 _Herplux)

Zic
— Each h(zi) can be viewed as binary feature.
* “You either have this ‘part’ or you don’t have it.”

— But this is hard to optimize (non-differentiable/discontinuous).

* Sigmoid is a smooth approximation to these binary features.

— Non-parametric version is a universal approximator:
* If ‘k’ grows appropriately with ‘n’, can model any continuous function.



Supervised Learning Roadmap
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Why “Neural Network”?

Dendrite Axon terminal
|

Node of
Ranvier

III

Cartoon of “typical” neuron:

Schwann cell

Myelin sheath
Nucleus

Neuron has many “dendrites”, which take an input signal.
Neuron has a single “axon”, which sends an output signal.

With the right input to dendrites:
— “Action potential” along axon (like a binary signal):

Voltage (mV)
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Why “Neural Network”?

Dendrite Axon terminal
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Why “Neural Network”?
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Why “Neural Network”?
/"7P/£Ji(f’toms baseJ on 059“?"7'7"" V7A(IA/)(,)

at )i "newa,\

/>; gyan;f /oefWem Zy omJ y/‘

/) \
Neuron
lDMW‘y Su/mml lf\(WLX;) Sent
°'IOV\7 "w(o.n
ﬁ/eumn “39"’9017‘?3 S'yﬂﬁkiw}i

o dlalty B 20 Mewon

ore recivin7 xg VaIMCJ



III

“Artificial” Neural Nets vs. “Real” Networks Nets

* Artificial neural network:
— X, is measurement of the world.
— z; is internal representation of world.
— v, is output of neuron for classification/regression.

* Real neural networks are more complicated:

— Timing of action potentials seems to be important.
e “Rate coding”: frequency of action potentials simulates continuous output.

— Neural networks don’t reflect sparsity of action potentials.

— How much computation is done inside neuron?

— Brain is highly organized (e.g., substructures and cortical columns).
— Connection structure changes.

— Different types of neurotransmitters.




Deep Learning
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“Hierarchies of Parts” Motivation for Deep Learning

Each “neuron” might recognize

a “part” of a digit.

— “Deeper” neurons might recognize
combinations of parts.

— Represent complex objects as
hierarchical combinations of
re-useable parts (a simple “grammar”).

Watch the full video here:
— https://www.youtube.com/watch?v=aircAruvnKk

Theory:
— 1 big-enough hidden layer already gives universal approximation.

— But some functions require exponentially-fewer parameters to approximate with
more layers (can fight curse of dimensionality).



Deep Learning

L'mear Mo&cli

9i = W-l)(i D‘ef ,Cafh}/kl" )
- hz;
/\/Cu/r\al ne‘fww/r wi’/b\ ' ‘\iJJo/\ la)lef' 2
Vi= v' h(Wx;?
. @&
Nev\m\ netwack with 2 hidden |ay€fs-' Se( L L &
\/i: V-( k(%77 0{ [qff/ﬂl Zl\etdwg

/Vewu' Y‘dw()('( wilh g hi dden ’q)’f’f Yow (an mu

Mmove | q)Ifrgn 1’0

Q/i: "TL\(W(”"(W(NKKW‘D ) 40 "deeper’

k/—z"i(/z%‘_/ ’ ’ )
3 7

Z m

= ! )
)




Deep Learning

* For 4 layers, we could write the prediction as:
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ML and Deep Learning History

e 1950 and 1960s: Initial excitement.

— Perceptron: linear classifier and stochastic gradient (roughly).
— “the embryo of an electronic computer that [the Navy] expects will be able

-

to walk, talk, see, write, reproduce itself and be conscious of its existence.” w'X,'
New York Times (1958).

e https://www.youtube.com/watch?v=IEFRtz68m-8

— Object recognition
assigned to students as a
summer project

 Then drop in popularity:




ML and Deep Learning History

e 1970 and 1980s: Connectionism (brain-inspired ML)
— Want “connected networks of simple units”.
* Use parallel computation and distributed representations.

— Adding hidden layers z, increases expressive power.
* With 1 layer and enough sigmoid units, a universal approximator.
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ML and Deep Learning History

* 1990s and early-2000s: drop in popularity.

— It proved really difficult to get multi-layer models working robustly.

— We obtained similar performance with simpler models:

 Rise in popularity of logistic regression and SVMs with regularization and kernels.
— Lots of internet successes (spam filtering, web search, recommendation).

— ML moved closer to other fields like numerical optimization and statistics.



ML and Deep Learning History

* Late 2000s: push to revive connectionism as “deep learning”.
— Canadian Institute For Advanced Research (CIFAR) NCAP program:

e “Neural Computation and Adaptive Perception”.
* Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio (“Canadian mafia”).

— Unsupervised successes: “deep belief networks” and “autoencoders”.
* Could be used to initialize deep neural networks.

* https://www.youtube.com/watch?v=KuPaiOogiHk
B - Py A‘*J’O"‘é“‘{‘e"
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2010s: DEEP LEARNING!!!

* Bigger datasets, bigger models, parallel computing (GPUs/clusters).

— And some tweaks to the models from the 1980s.
* Huge improvements in automatic speech recognition (2009).
— All phones now have deep learning.

* Huge improvements in computer vision (2012).
— Changed computer vision field almost instantly. .,
— This is now finding its way into products. | person

chair




2010s: DEEP LEARNING!!!

* Media hype:

— “How many computers to identify a cat? 16,000”
New York Times (2012).

— “Why Facebook is teaching its machines to think like humans”
Wired (2013).

— “What is ‘deep learning” and why should businesses care?”
Forbes (2013).

— “Computer eyesight gets a lot more accurate”
New York Times (2014).

e 2015: huge improvement in language understanding.



Summary

Neural networks learn features z, for supervised learning.
Sigmoid function avoids degeneracy by introducing non-linearity.

— Universal approximator with large-enough ‘K.

Biological motivation for (deep) neural networks.

Deep learning considers neural networks with many hidden layers.
— Can more-efficiently represent some functions.

Unprecedented performance on difficult pattern recognition tasks.

Next time:

— Training deep networks.



Multiple Word Prototypes

 What about homonyms and polysemy?

— The word vectors would need to account for all meanings.

* More recent approaches:

— Try to cluster the different contexts where words appear.

— Use different vectors for different contexts.
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Multiple Word Prototypes
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Why z. = Wx;,?

In PCA we had that the optimal Z = XWT(WWT)-.
If W had normalized+orthogonal rows, Z = XW' (since WWT' = ).

— So z, = WXx; in this normalized+orthogonal case.

Why we would use z; = Wx; in neural networks?

— We didn’t enforce normalization or orthogonality.

Well, the value WT(WWT)1 is just “some matrix”.

— You can think of neural networks as just directly learning this matrix.



Cool Picture Motivation for Deep Learning

* Faces might be composed of different “parts”:

Deep Learning learns layers of features
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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* Attempt to visualize second layer: 4
— Corners, angles, surface boundaries?

* Models require many tricks to work.
— We'll discuss these next time.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf



Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:

= AZSEBIINT N4 gueqwﬁm,\
N NMUINSSSW e

* Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosst



Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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—r 'ﬁ.’)ﬁ

""\:\. '
.\.,-*l{.

.\ BEI=¥ '

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf



Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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* Visualization of second and third layers trained on specific objects:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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* Visualization of second and third layers trained on specific objects:

faces cars elephants chairs
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http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf



Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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* Visualization of second and third layers trained on specific objects:

faces cars elephants chairs faces, cars, airplanes, motorbikes
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