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Last Time: Multi-Dimensional Scaling

e PCA for visualization:
— We're using PCA to get the location of the z, values.
— We then plot the z, values as locations in a scatterplot.

e Multi-dimensional scaling (MDS) is a crazy idea:

— Let’s directly optimize the pixel locations of the z, values.
* “Gradient descent on the points in a scatterplot”.

— Needs a“cost” function saying how “good” the z, locations are.

* Traditional MDS cost function: ’7”17 to moke SCqHPrp‘oJr
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Multi-Dimensional Scaling

e Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z; values.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
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— Non-parametric dimensionality reduction and visualization:

* No ‘W’: just trying to make z, preserve high-dimensional distances between x.
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Multi-Dimensional Scaling

e Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.
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— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
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— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z, values.
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— Non-parametric dimensionality reduction and visualization:
* No ‘W’: just trying to make z, preserve high-dimensional distances between x.
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Multi-Dimensional Scaling

e Multi-dimensional scaling (MDS):
— Directly optimize the final locations of the z; values.
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* Cannot use SVD to compute solution:
— Instead, do gradient descent on the z, values.

— You “learn” a scatterplot that tries to visualize high-dimensional data.

— Not convex and sensitive to initialization.
* And solution is not unique due to various factors like translation and rotation.



Different MDS Cost Functions

* MDS default objective: squared difference of Euclidean norms:
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* But we can make z, match different distances/similarities:
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— Where the functions are not necessarily the same:
* d, is the high-dimensional distance we want to match.

* d, is the low-dimensional distance we can control.
* d, controls how we compare high-/low-dimensional distances.



Different MDS Cost Functions

* MDS default objective function with general distances/similarities:
r2)= g S 4(hala,z) — dileyx)
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* A possibility is “classic” MDS with d,(x;,x;) = x;'x; and d,(z;,z) = z;'z,
— We obtain PCA in this special case (centered x;, d; as the squared L2-norm).
— Not a great choice because it’s a linear model.



Different MDS Cost Functions

* MDS default objective function with general distances/similarities:
P27 235 dylkla,z) = dilxyx)
’l:ljzl“l

* Another possibility: d;(x;,x)) = | |x;—x;| |; and d,(z;,z) = | |z;— | |.
— The z, approximate the high-dimensional L;-norm distances.
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Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

* Early attempt to address this is Sammon’s mapping:
— Weighted MDS so Iarg?\/srrpall distances are more comparable.
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— Denominator reduces focus on large distances.



PC 2 (8.8% var.)

Sammon’s Mapping

* Challenge for most MDS models: they focus on large distances.
— Leads to “crowding” effect like with PCA.

* Early attempt to address this is Sammon’s mapping:
— Weighted MDS so large/small distances are more comparable.

A Accuracy: 70.0% B Accuracy: 78.3% C Accuracy: 81.8%
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(pause)



Learning Manifolds

|H

Consider data that lives on a low-dimensional “manifold”.

* Example is the ‘Swiss roll’:
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Learning Manifolds

Consider data that lives on a low-dimensional “manifold”.
— With usual distances, PCA/MDS will not discover non-linear manifolds.
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Learning Manifolds

|H

 Consider data that lives on a low-dimensional “manifold”.

— With usual distances, PCA/MDS will not discover non-linear manifolds.

* We need geodesic distance: the distance through the manifold.
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Manifolds in Image Space

e Consider slowly-varying transformation of image:
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* Images are on a manifold in the high-dimensional space.
— Euclidean distance doesn’t reflect manifold structure.
— Geodesic distance is distance through space of rotations/resizings.



ISOMAP

* ISOMAP is latent-factor model for visualizing data on manifolds:
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ISOMAP

* ISOMAP can “unwrap” the roll:
— Shortest paths are approximations to geodesic distances.
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* Sensitive to having the right graph:
— Points off of manifold and gaps in manifold cause problems.



Constructing Neighbour Graphs

* Sometimes you can define the graph/distance without features:
— Facebook friend graph.
— Connect YouTube videos if one video tends to follow another.

* But we can also convert from features x; to a “neighbour” graph:

— Approach 1 (“epsilon graph”): connect x; to all x; within some threshold «.
* Like we did with density-based clustering.

— Approach 2 (“KNN graph”): connect x; to x; if:
* X is a KNN of x; OR x; is a KNN of x;.

— Approach 2 (“mutual KNN graph”): connect x; to x; if:
* X is a KNN of x; AND x; is a KNN of x;.



Converting from Features to Graph

Data points

kNN graph, k=5
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ISOMAP

* ISOMAP is latent-factor model for visualizing data on manifolds:

1. Find the neighbours of each point.
e Usually “k-nearest neighbours graph”, or “epsilon graph”.

2. Compute edge weights:
» Usually distance between neighbours.

3. Compute weighted shortest path between all points. -
* Dijkstra or other shortest path algorithm.

4. Run MDS using these distances. 1




ISOMAP on Hand Images

[
L

Fingers extension

Wrist rotation

* Related method is “local linear embedding”.

http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf



Sammon’s Map vs. ISOMAP vs. PCA
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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t-Distributed Stochastic Neighbour Embedding

* One key idea in t-SNE:

— Focus on distance to “neighbours”(allow large variance in other distances)
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t-Distributed Stochastic Neighbour Embedding

* t-SNE is a special case of MDS (specific d,, d,, and d; choices):

— d;: for each x;, compute probability that each x; is a ‘neighbour”.
* Computation is similar to k-means++, but most weight to close points (Gaussian).
* Doesn’t require explicit graph.

— d,: for each z;, compute probability that each z; is a ‘neighbour’.
* Similar to above, but uses student’s t (grows really slowly with distance).
* Avoids ‘crowding’, because you have a huge range that large distances can fill.

— d;: Compare x; and z, using an entropy-like measure:
* How much ‘randomness’ is in probabilities of x; if you know the z; (and vice versa)?

* |nteractive demo: https://distill.pub/2016/misread-tsne




ipedia Articles

t-SNE on Wik




t-SNE on Product Features

. °
. ¥
http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/



t-SNE on Leukemia Heterogeneity

Not manually gated @ CD4Tcells @ CD8T cells
® CD20+B cells CD20-Bcells @ CD11b- Monocytes
® CD11b+ Monocytes @ NK cells

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/



(pause)



Latent-Factor Representation of Words

For natural language, we often represent words by an index.
— E.g., “cat” is word 124056 among a “bag of words”.

But this may be inefficient:
— Should “cat” and “kitten” share parameters in some way?

We want a latent-factor representation of individual words:
— Closeness in latent space should indicate similarity.
— Distances could represent meaning?

Recent alternative to PCA/NMF is word2vec...



Using Context

* Consider these phrases:
— “the cat purred”

— “the kitten purred”

— “black cat ran”
— “black kitten ran”

* Words that occur in the same context likely have similar meanings.

* Word2vec uses this insight to design an MDS distance function.



Word2Vec

Two common word2vec approaches:
1. Tryto predict word from surrounding words (continuous bag of words).
2. Tryto predict surrounding words from word (skip-gram).

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT
w(t-2) w(t-2)
w(t-1) w(t-1)

L » w(t) w(t) —
w(t+) 7( x wit+1)
w(t+2) w(t+2)
CBOW Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

Train latent-factors to solve one of these supervised learning tasks.



Word2Vec

In both cases, each word ‘i’ is represented by a vector z..
In continuous bag of words (CBOW), we optimize the following likelihood:
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Apply gradient descent to logarithm:

— Encourages z;z; to be big for words in same context (making z; close to z)).

— Encourages z,'z; to be small for words not appearing in same context (makes z and z; far).
For CBOW, denominator sums over all words.

For skip-gram it will be over all possible surrounding words.

— Common trick to speed things up: sample terms in denominator (“negative sampling”).



Word2Vec Example

e MDS visualization of a set of related words:
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e Distances between vectors might represent semantics.



Summary

Different MDS distances/losses/weights usually gives better results.
Manifold learning focuses on low-dimensional curved structures.

ISOMAP is most common approach:
— Approximates geodesic distance by shortest path in weighted graph.
t-SNE is promising new data MDS method.

Word2vec:

— Latent-factor (continuous) representation of words.
— Based on predicting word from its context (or context from word).

Next time: deep learning.



Does t-SNE always outperform PCA?

* Consider 3D data living on a 2D hyper-plane:
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 PCA can perfectly capture the low-dimensional structure.
* T-SNE can capture the local structure, but can “twist” the plane.
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Graph Drawing

* A closely-related topic to MDS is graph drawing:
— Given a graph, how should we display it?
— Lots of interesting methods: https://en.wikipedia.org/wiki/Graph drawing




e Recall the univariate chain rule:

Bonus Slide: Multivariate Chain Rule
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Bonus Slide: Multivariate Chain Rule for MDS

e General MDS formulation:
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e Using multivariate chain rule we have:
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