CPSC 340: Machine Learning and Data Mining

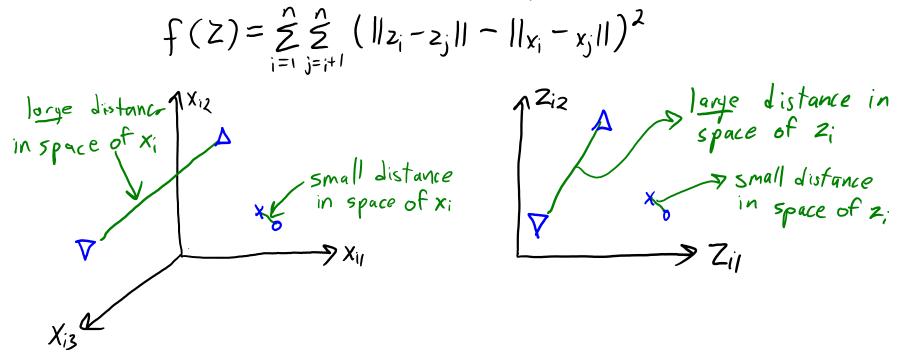
Last Time: Multi-Dimensional Scaling

- PCA for visualization:
 - We're using PCA to get the location of the z_i values.
 - We then plot the z_i values as locations in a scatterplot.
- Multi-dimensional scaling (MDS) is a crazy idea:
 - Let's directly optimize the pixel locations of the z_i values.
 - "Gradient descent on the points in a scatterplot".
 - Needs a "cost" function saying how "good" the z_i locations are.

Traditional MDS cost function:

$$f(Z) = \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} (||z_i - z_j|| - ||x_i - x_j||)^2 \quad distances match high - dimensional distance "
Sum over distance in distance in distance between points in original 'd' dimensions$$

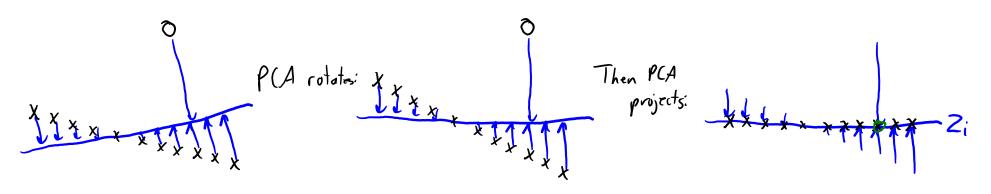
- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.



- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z}_{i=1} \hat{z}_{j=i+1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

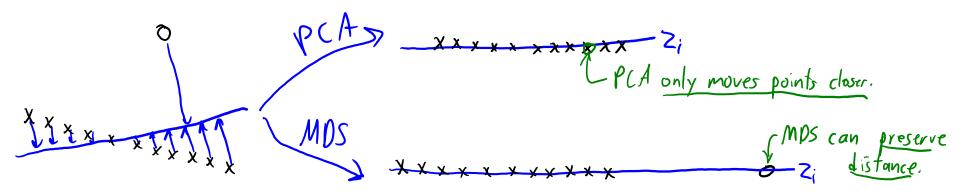
- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.



- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z}_{i=1}^{n} \hat{z}_{j=i+1}^{n} (||z_{i} - z_{j}|| - ||x_{i} - x_{j}||)^{2}$$

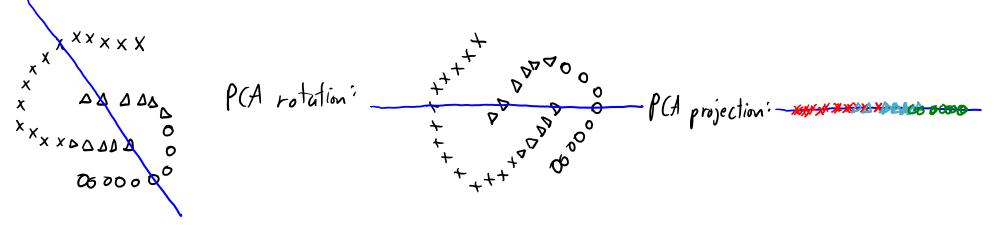
- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.



- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z}_{i=1} \hat{z}_{j=i+1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

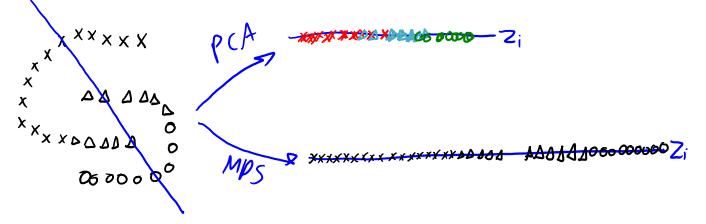
- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.



- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z}_{i=1} \hat{z}_{j=i+1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Non-parametric dimensionality reduction and visualization:
 - No 'W': just trying to make z_i preserve high-dimensional distances between x_i.



- Multi-dimensional scaling (MDS):
 - Directly optimize the final locations of the z_i values.

$$f(Z) = \hat{z}_{i=1} \hat{z}_{j=i+1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

- Cannot use SVD to compute solution:
 - Instead, do gradient descent on the z_i values.
 - You "learn" a scatterplot that tries to visualize high-dimensional data.
 - Not convex and sensitive to initialization.
 - And solution is not unique due to various factors like translation and rotation.

Different MDS Cost Functions

• MDS default objective: squared difference of Euclidean norms:

$$f(Z) = \hat{z}_{i=1} \hat{z}_{j=i+1} (||z_i - z_j|| - ||x_i - x_j||)^2$$

• But we can make z_i match different distances/similarities:

$$f(2) = \hat{z}_{j=1} \hat{z}_{j=1+1} d_3(d_2(z_{i_1} z_{j_1}) - d_1(x_{i_2} x_{j_1}))$$

- Where the functions are not necessarily the same:
 - d₁ is the high-dimensional distance we want to match.
 - d₂ is the low-dimensional distance we can control.
 - d₃ controls how we compare high-/low-dimensional distances.

Different MDS Cost Functions

• MDS default objective function with general distances/similarities:

$$f(2) = \hat{z} \hat{z}_{j=1}^{n} d_{3}(d_{2}(z_{i}, z_{j}) - d_{1}(x_{i}, x_{j}))$$

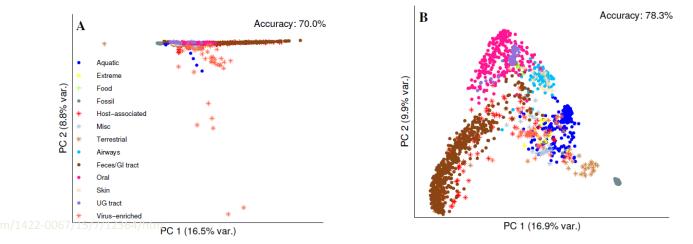
- A possibility is "classic" MDS with $d_1(x_i, x_j) = x_i^T x_j$ and $d_2(z_i, z_j) = z_i^T z_j$.
 - We obtain PCA in this special case (centered x_i , d_3 as the squared L2-norm).
 - Not a great choice because it's a linear model.

Different MDS Cost Functions

MDS default objective function with general distances/similarities:

$$f(Z) = \hat{z} \hat{z}_{j=1}^{n} d_{3}(d_{2}(z_{i}, z_{j}) - d_{1}(x_{i}, x_{j}))$$

- Another possibility: $d_1(x_i, x_j) = ||x_i x_j||_1$ and $d_2(z_i, z_j) = ||z_i z_j||$.
 - The z_i approximate the high-dimensional L_1 -norm distances.



Sammon's Mapping

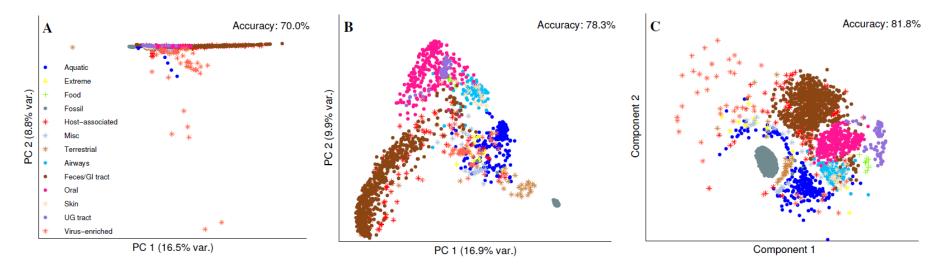
- Challenge for most MDS models: they focus on large distances.
 Leads to "crowding" effect like with PCA.
- Early attempt to address this is **Sammon's mapping**:
 - Weighted MDS so large/small distances are more comparable.

$$f(Z) = \sum_{j=1}^{n} \sum_{j=i+1}^{n} \left(\frac{d_2(z_i, z_j) - d_1(x_i, x_j)}{d_1(x_i, x_j)} \right)^2$$

- Denominator reduces focus on large distances.

Sammon's Mapping

- Challenge for most MDS models: they focus on large distances.
 - Leads to "crowding" effect like with PCA.
- Early attempt to address this is Sammon's mapping:
 - Weighted MDS so large/small distances are more comparable.

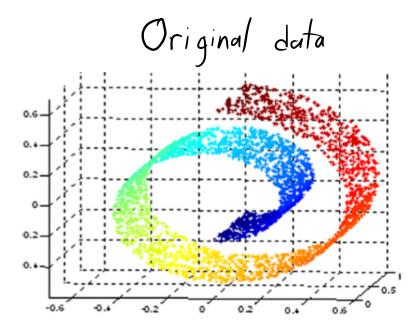


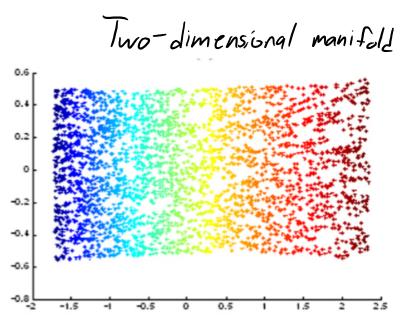
http://www.mdpi.com/1422-0067/15/7/12364/htm

(pause)

Learning Manifolds

- Consider data that lives on a low-dimensional "manifold".
- Example is the 'Swiss roll':

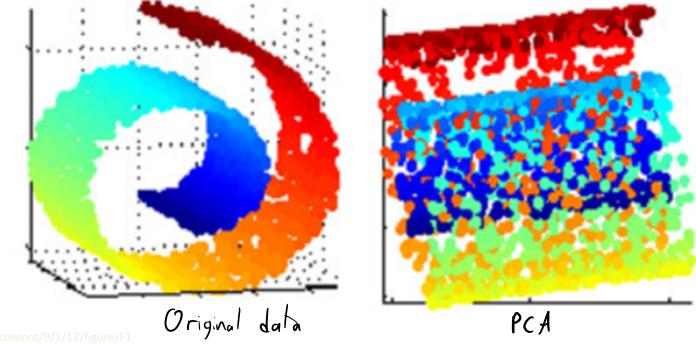




http://www.biomedcentral.com/content/pdf/1471-2105-13-S7-S3.pdf

Learning Manifolds

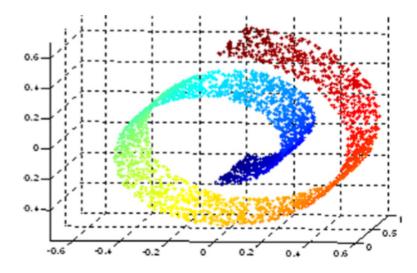
- Consider data that lives on a low-dimensional "manifold".
 - With usual distances, PCA/MDS will not discover non-linear manifolds.

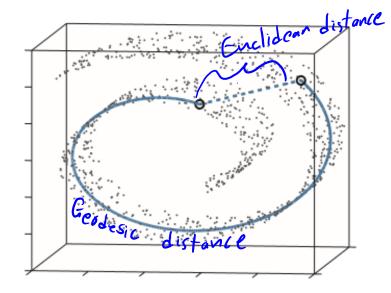


http://www.peh-med.com/content/9/1/12/figure/F1

Learning Manifolds

- Consider data that lives on a low-dimensional "manifold".
 - With usual distances, PCA/MDS will not discover non-linear manifolds.
- We need geodesic distance: the distance *through* the manifold.

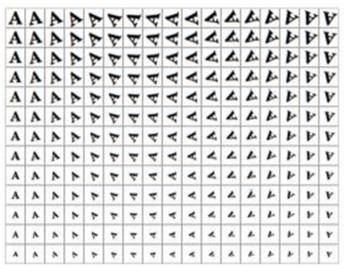




nttp://www.biomedcentral.com/content/pdf/1471-2105-13-S7-S3.pdf nttp://wearables.cc.gatech.edu/paper_of_week/isomap.pdf

Manifolds in Image Space

• Consider slowly-varying transformation of image:

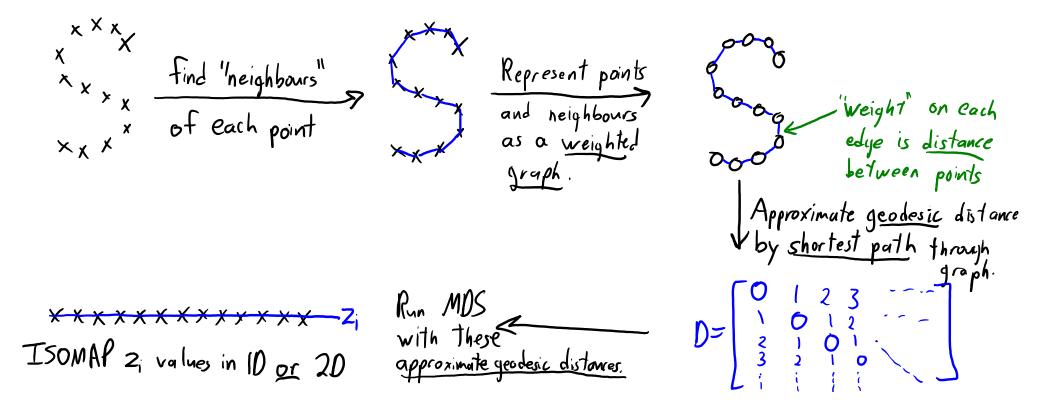


- Images are on a manifold in the high-dimensional space.
 - Euclidean distance doesn't reflect manifold structure.
 - Geodesic distance is distance through space of rotations/resizings.

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction

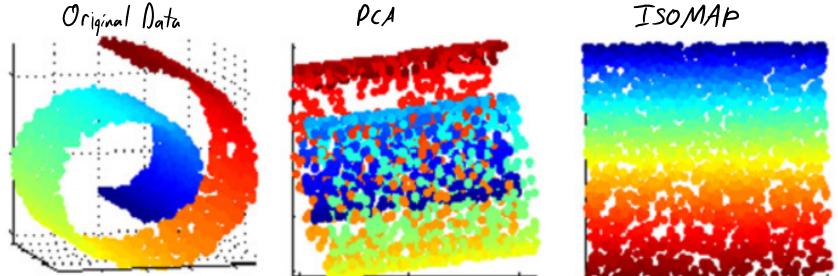
ISOMAP

• **ISOMAP** is latent-factor model for visualizing data on manifolds:



ISOMAP

- ISOMAP can "unwrap" the roll:
 - Shortest paths are approximations to geodesic distances.



- Sensitive to having the right graph:
 - Points off of manifold and gaps in manifold cause problems.

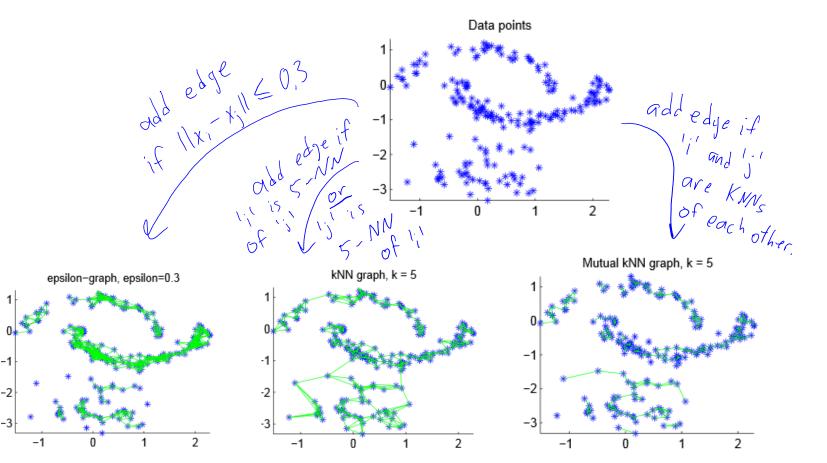
http://www.peh-med.com/content/9/1/12/figure/F1

Constructing Neighbour Graphs

- Sometimes you can define the graph/distance without features:
 - Facebook friend graph.
 - Connect YouTube videos if one video tends to follow another.
- But we can also convert from features x_i to a "neighbour" graph:
 - Approach 1 ("epsilon graph"): connect x_i to all x_j within some threshold ε .
 - Like we did with density-based clustering.
 - Approach 2 ("KNN graph"): connect x_i to x_i if:
 - x_j is a KNN of x_i **OR** x_i is a KNN of x_j .
 - Approach 2 ("mutual KNN graph"): connect x_i to x_j if:
 - x_j is a KNN of x_i **AND** x_i is a KNN of x_j .

http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf

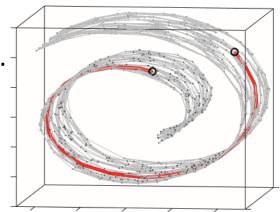
Converting from Features to Graph



http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5B0%5D.pd

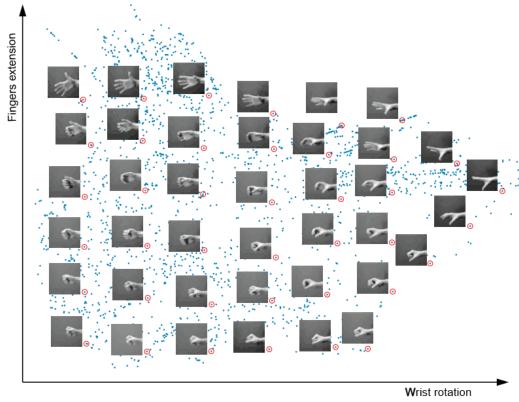
ISOMAP

- ISOMAP is latent-factor model for visualizing data on manifolds:
 - 1. Find the neighbours of each point.
 - Usually "k-nearest neighbours graph", or "epsilon graph".
 - 2. Compute edge weights:
 - Usually distance between neighbours.
 - 3. Compute weighted shortest path between all points.
 - Dijkstra or other shortest path algorithm.
 - 4. Run MDS using these distances.



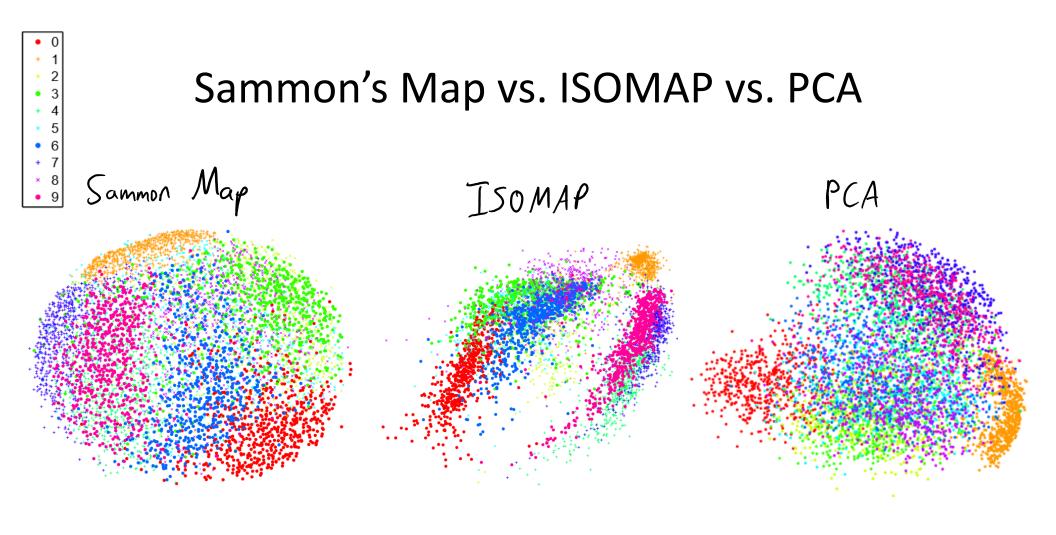
http://wearables.cc.gatech.edu/paper_of_week/isomap.pd

ISOMAP on Hand Images

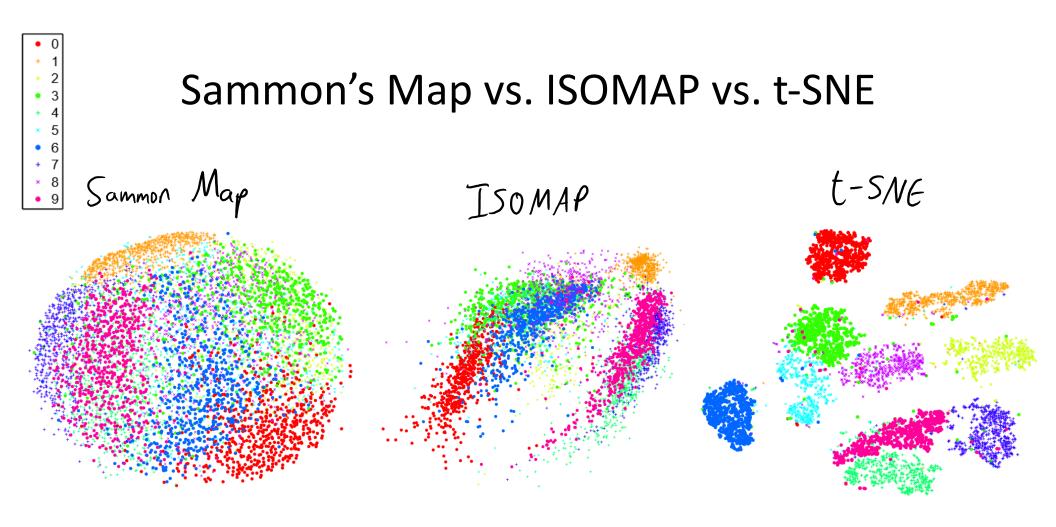


• Related method is "local linear embedding".

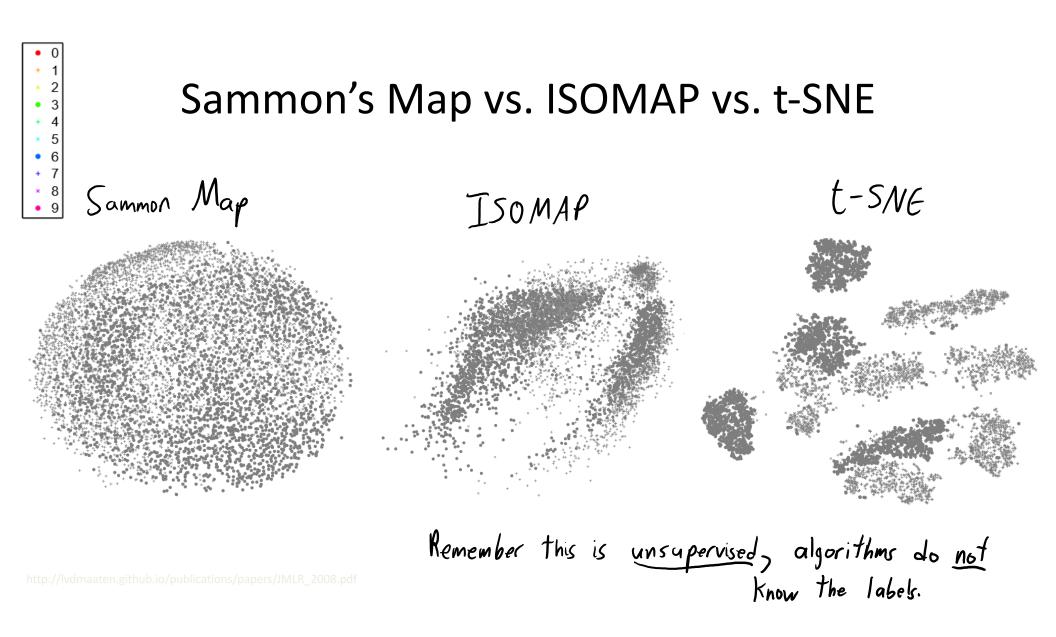
http://wearables.cc.gatech.edu/paper_of_week/isomap.pdf

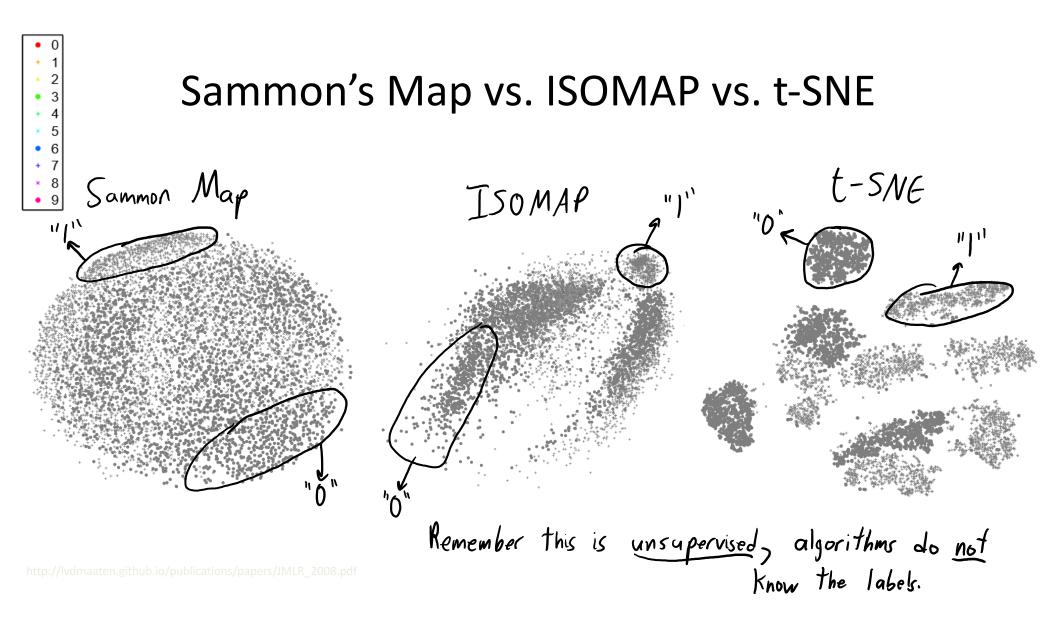


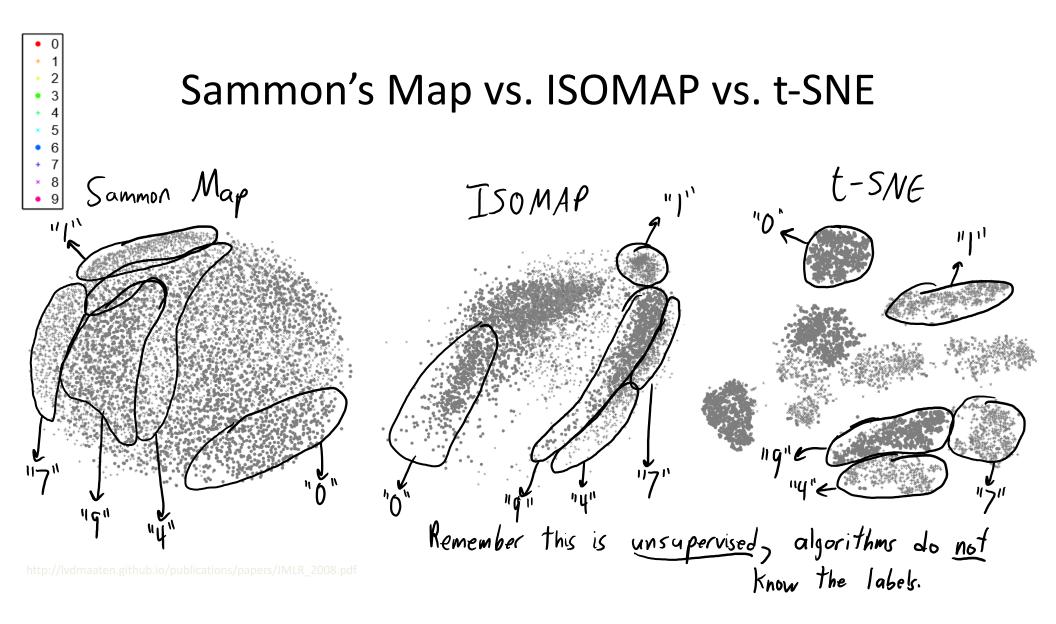
http://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf

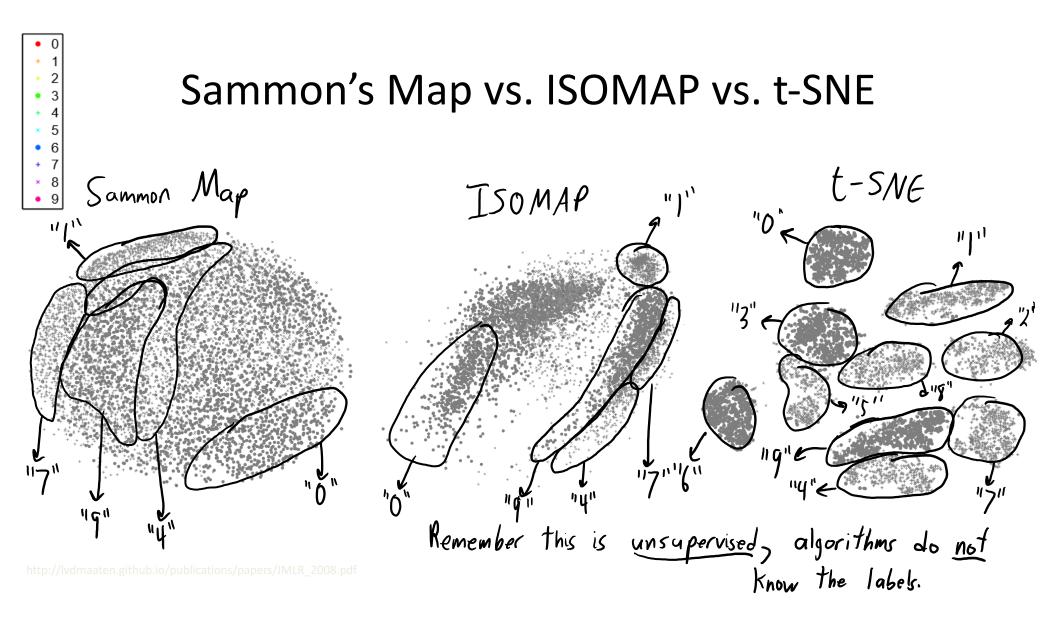


http://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf



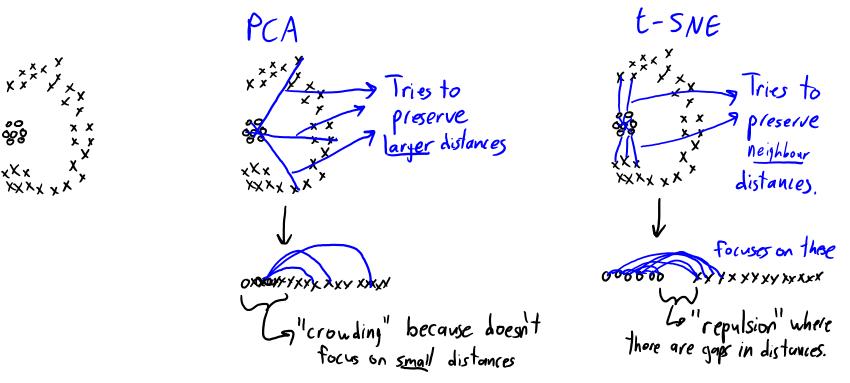






t-Distributed Stochastic Neighbour Embedding

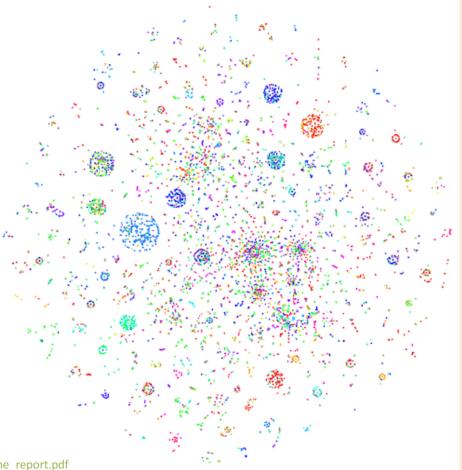
- One key idea in t-SNE:
 - Focus on distance to "neighbours" (allow large variance in other distances)



t-Distributed Stochastic Neighbour Embedding

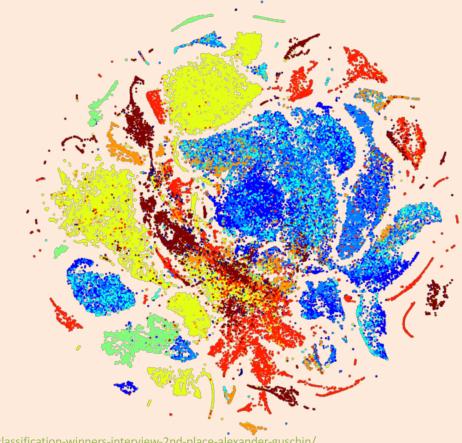
- t-SNE is a special case of MDS (specific d₁, d₂, and d₃ choices):
 - d_1 : for each x_i, compute probability that each x_i is a 'neighbour'.
 - Computation is similar to k-means++, but most weight to close points (Gaussian).
 - Doesn't require explicit graph.
 - d_2 : for each z_i , compute probability that each z_i is a 'neighbour'.
 - Similar to above, but uses student's t (grows really slowly with distance).
 - Avoids 'crowding', because you have a huge range that large distances can fill.
 - d_3 : Compare x_i and z_i using an entropy-like measure:
 - How much 'randomness' is in probabilities of x_i if you know the z_i (and vice versa)?
- Interactive demo: <u>https://distill.pub/2016/misread-tsne</u>

t-SNE on Wikipedia Articles



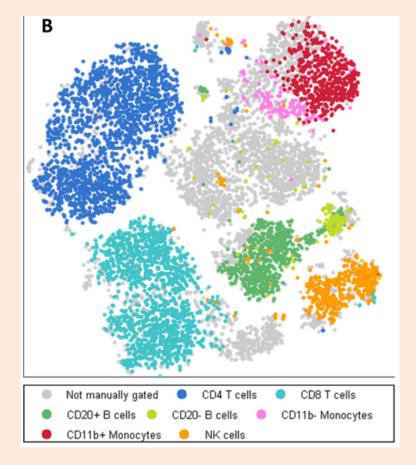
http://jasneetsabharwal.com/assets/files/wiki_tsne_report.pdf

t-SNE on Product Features



http://blog.kaggle.com/2015/06/09/otto-product-classification-winners-interview-2nd-place-alexander-guschin/

t-SNE on Leukemia Heterogeneity



http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076922/

(pause)

Latent-Factor Representation of Words

- For natural language, we often represent words by an index.
 E.g., "cat" is word 124056 among a "bag of words".
- But this may be inefficient:
 - Should "cat" and "kitten" share parameters in some way?
- We want a latent-factor representation of individual words:
 - Closeness in latent space should indicate similarity.
 - Distances could represent meaning?
- Recent alternative to PCA/NMF is word2vec...

Using Context

- Consider these phrases:
 - "the <u>cat</u> purred"
 - "the kitten purred"
 - "black <u>cat</u> ran"
 - "black kitten ran"
- Words that occur in the same context likely have similar meanings.
- Word2vec uses this insight to design an MDS distance function.

Word2Vec

- Two common word2vec approaches:
 - 1. Try to predict word from surrounding words (continuous bag of words).
 - 2. Try to predict surrounding words from word (skip-gram).

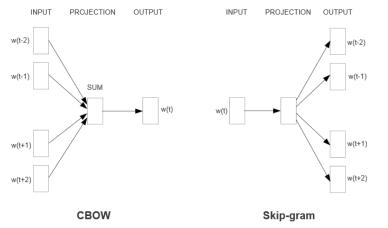


Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

• Train latent-factors to solve one of these supervised learning tasks.

https://arxiv.org/pdf/1301.3781.pdf

Word2Vec

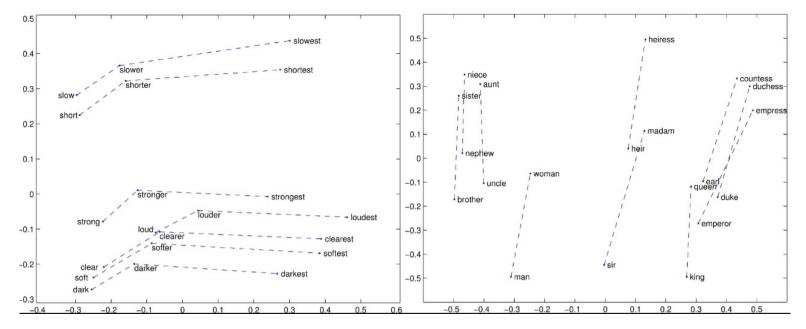
- In both cases, each word 'i' is represented by a vector z_i.
- In continuous bag of words (CBOW), we optimize the following likelihood:

$$\begin{aligned} f(x_i \mid x_{surround}) &= \prod_{j \in surround} p(x_i \mid x_j) & (independence assumption) \\ &= \prod_{j \in surround} \frac{exp(z_i^{-7}z_j)}{\sum_{c=1}^{k} exp(z_c^{-7}z_j)} & (softmax over all words) \end{aligned}$$

- Apply gradient descent to logarithm:
 - Encourages $z_i^T z_j$ to be big for words in same context (making z_i close to z_j).
 - Encourages $z_i^T z_j$ to be small for words not appearing in same context (makes z_i and z_j far).
- For CBOW, denominator sums over all words.
- For skip-gram it will be over all possible surrounding words.
 - Common trick to speed things up: sample terms in denominator ("negative sampling").

Word2Vec Example

• MDS visualization of a set of related words:



• Distances between vectors might represent semantics.

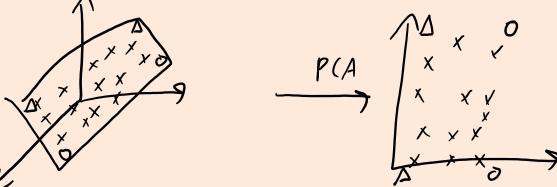
http://sebastianruder.com/secret-word2vec

Summary

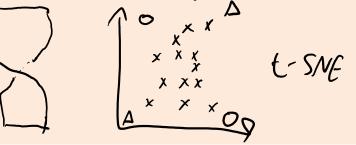
- Different MDS distances/losses/weights usually gives better results.
- Manifold learning focuses on low-dimensional curved structures.
- **ISOMAP** is most common approach:
 - Approximates geodesic distance by shortest path in weighted graph.
- t-SNE is promising new data MDS method.
- Word2vec:
 - Latent-factor (continuous) representation of words.
 - Based on predicting word from its context (or context from word).
- Next time: deep learning.

Does t-SNE always outperform PCA?

• Consider 3D data living on a 2D hyper-plane:

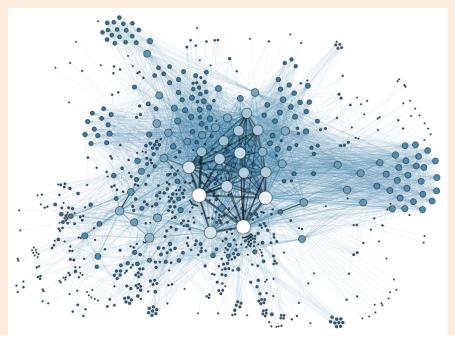


- PCA can perfectly capture the low-dimensional structure.
- T-SNE can capture the local structure, but can "twist" the plane.
 - It doesn't try to get long distances correct.



Graph Drawing

- A closely-related topic to MDS is graph drawing:
 - Given a graph, how should we display it?
 - Lots of interesting methods: <u>https://en.wikipedia.org/wiki/Graph_drawing</u>



Bonus Slide: Multivariate Chain Rule

- Recall the univariate chain rule:
- The multivariate chain rule:

$$\frac{d}{dw} \left[f(g(w)) \right] = f'(g(w)) g'(w)$$

$$\frac{\nabla \left[f(g(w)) \right]}{\sqrt{dx}} = \frac{f'(g(w)) \nabla g(w)}{\sqrt{dx}}$$

• Example:

$$\nabla \left(\frac{1}{2} \left(w^{T} \chi_{i} - y_{i} \right)^{1} \right)$$

$$= \nabla \left[f(q(w)) \right]$$
with $q(w) = w^{T} \chi_{i} - y_{i}$
and $f(r_{i}) = \frac{1}{2} r_{i}^{2}$

$$= \left(w^{T} \chi_{i} - y_{i} \right) \chi_{i}$$

Bonus Slide: Multivariate Chain Rule for MDS

General MDS formulation:

• Using multivariate chain rule we have:

$$\nabla_{z_{i}} g(d_{i}(x_{i}, x_{j}), d_{2}(z_{i}, z_{j})) = g'(d_{i}(x_{i}, x_{j}), d_{2}(z_{i}, z_{j})) \nabla_{z_{i}} d_{2}(z_{i}, z_{j}))$$

• Example: If $d_{i}(x_{i}, x_{j}) = |(x_{i} - x_{j})|$ and $l_{2}(z_{i}, z_{j}) = ||z_{i} - z_{j}||$ and $g(d_{i}, d_{2}) = \frac{1}{2}(d_{i} - d_{2})^{2}$ $\nabla_{z_{i}} g(d_{i}(x_{i}, x_{j}), d_{2}(z_{i}, z_{j})) = -(d_{i}(x_{i}, x_{j}) - d_{2}(z_{i}, z_{j})) \left[-\frac{(z_{i} - z_{j})}{2||z_{i} - z_{j}||} \right]$ $\nabla_{z_{i}} d_{2}(z_{i}, z_{j}) = -(d_{i}(x_{i}, x_{j}) - d_{2}(z_{i}, z_{j})) \left[-\frac{(z_{i} - z_{j})}{2||z_{i} - z_{j}||} \right]$ $\nabla_{z_{i}} d_{2}(z_{i}, z_{j})$ $\int_{z_{i}} d_{2}(z_{i}, z_{j}) d_{2}(z_{i}, z_{j}) = -(d_{i}(x_{i}, x_{j}) - d_{2}(z_{i}, z_{j})) \left[-\frac{(z_{i} - z_{j})}{2||z_{i} - z_{j}||} \right]$ $\int_{z_{i}} d_{2}(z_{i}, z_{j}) d_{2}$