
CPSC	340:
Machine	Learning	and	Data	Mining

Recommender	Systems
Fall	2020

Last	Few	Lectures:	Latent-Factor	Models
• We’ve	been	discussing	latent-factor	models	of	the	form:

• We	get	different	models	under	different	conditions:
– K-means:	each	zi has	one	‘1’	and	the	rest	are	zero.
– Least	squares:	we	only	have	one	variable	(d=1)	and	the	zi are	fixed.
– PCA:	no	restrictions	on	W	or	Z.

• Orthogonal PCA:	the	rows	wc have	a	norm	of	1	and	have	an	inner	product	of	zero.

– NMF: all	elements	of	W	and	Z	are	non-negative.

Variations	on	Latent-Factor	Models
• We	can	use	all	our	tricks	for	linear	regression	in	this	context:

• Absolute	loss	gives	robust	PCA	that	is	less	sensitive	to	outliers.
• We	can	use	L2-regularization.
– Though	only	reduces	overfitting	if	we	regularize	both	‘W’	and	‘Z’.

• We	can	use	L1-regularization to	give	sparse	latent	factors/features.
• We	can	use	logistic/softmax/Poisson	losses	for	discrete	xij.
• Can	use	change	of	basis	to	learn	non-linear latent-factor	models.

Application:	Image	Restoration

http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf

Latent-Factor	Models	for	Image	Patches
• Consider	building	latent-factors	for	general	image	patches:

Latent-Factor	Models	for	Image	Patches
• Consider	building	latent-factors	for	general	image	patches:

Typical	pre-processing:
1.	Usual	variable	centering	
2.	“Whiten”	patches.
(remove	correlations	- bonus)

Latent-Factor	Models	for	Image	Patches

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
http://stackoverflow.com/questions/16059462/comparing-textures-with-opencv-and-gabor-filters

Orthogonal	bases	don’t	seem	right:
• Few	PCs	do	almost	everything.
• Most	PCs	do	almost	nothing.

We	believe	“simple	cells”	in	visual	cortex	use:

‘Gabor’	filters

Latent-Factor	Models	for	Image	Patches
• Results	from	a	“sparse”	(non-orthogonal)	latent	factor	model:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Latent-Factor	Models	for	Image	Patches
• Results	from	a	“sparse”	(non-orthogonal)	latent-factor	model:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Recent	Work:	Structured	Sparsity
• Basis	learned	with	a	variant	of	“structured	sparsity”:

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Beyond	NMF:	Topic	Models
• For	modeling	data	as	combinations	of	non-negative	parts,

NMF	has	largely	replaced	by	“topic	models”.
– A	“fully-Bayesian”	model	where	sparsity	arises	naturally.
– Most	popular	example	is	called	“latent	Dirichlet allocation”	(CPSC	540).

http://menome.com/wp/wp-content/uploads/2014/12/Blei2011.pdf

(pause)

Recommender	System	Motivation:	Netflix	Prize
• Netflix	Prize:
– 100M	ratings	from	0.5M	users	on	18k	movies.
– Grand	prize	was	$1M	for	first	team	to	reduce	squared	error	by	10%.
– Started	on	October	2nd,	2006.
– Netflix’s	system	was	first	beat	October	8th.
– 1%	error	reduction	achieved	on	October	15th.
– Steady	improvement	after	that.

• ML	methods	soon	dominated.

– One	obstacle	was	‘Napolean Dynamite’	problem:
• Some	movie	ratings	seem	very	difficult	to	predict.
• Should	only	be	recommended	to	certain	groups.

Lessons	Learned	from	Netflix	Prize
• Prize	awarded	in	2009:
– Ensemble	method	that	averaged	107	models.
– Increasing	diversity	of	models	more	important	than	improving	models.

• Winning	entry	(and	most	entries)	used	collaborative	filtering:
– Methods	that	only	looks	at	ratings,	not	features	of	movies/users.

• A	simple	collaborative	filtering	method	that	does	really	well	(7%):
– “Regularized	matrix	factorization”.	Now	adopted	by	many	companies.

http://bits.blogs.nytimes.com/2009/09/21/netflix-awards-1-million-prize-and-starts-a-new-contest/?_r=0

Motivation:	Other	Recommender	Systems
• Recommender	systems	are	now	everywhere:
– Music,	news,	books,	jokes,	experts,	restaurants,	friends,	dates,	etc.

• Main	types	of	approaches:
1. Content-based	filtering.

• Supervised	learning:
– Extract	features	xi of	users	and	items,	building	model	to	predict	rating	yi given	xi.
– Apply	model	to	prediction	for	new	users/items.

• Example:	G-mail’s	“important	messages”	(personalization	with	“local”	features).

2. Collaborative	filtering.
• “Unsupervised”	learning (have	label	matrix	‘Y’	but	no	features):

– We	only	have	labels	yij (rating	of	user	‘i’	for	movie	‘j’).

• Example:	Amazon	recommendation	algorithm.

Collaborative	Filtering	Problem
• Collaborative	filtering	is	‘filling	in’	the	user-item	matrix:

• We	have	some	ratings	available	with	values	{1,2,3,4,5}.
• We	want	to	predict	ratings	“?”	by	looking	at	available	ratings.

Collaborative	Filtering	Problem
• Collaborative	filtering	is	‘filling	in’	the	user-item	matrix:

• What	rating	would	“Ryan	Reynolds”	give	to	“Green	Lantern”?
– Why	is	this	not	completely	crazy?	We	may	have	similar	users	and	movies.

Matrix	Factorization	for	Collaborative	Filtering
• Our	standard	latent-factor	model	for	entries	in	matrix	‘Y’:

• User	‘i’	has	latent	features	zi.
• Movie	‘j’	has	latent	features	wj.
• Our	loss	functions	sums	over	available	ratings	‘R’:

• And	we	add	L2-regularization to	both	types	of	features.
– Basically,	this	is	regularized	PCA	on	the	available	entries	of	Y.
– Typically	fit	with	SGD.

• This	simple	method	gives	you	a	7%	improvement	on	the	Netflix	problem.

Adding	Global/User/Movie	Biases
• Our	standard	latent-factor	model	for	entries	in	matrix	‘Y’:

• Sometimes	we	don’t	assume	the	yij have	a	mean	of	zero:
– We	could	add	bias	β reflecting	average	overall	rating:

– We	could	also	add	a	user-specific	bias	βi and	item-specific	bias	βj.

• Some	users	rate	things	higher	on	average,	and	movies	are	rated	better	on	average.
• These	might	also	be	regularized.

Beyond	Accuracy	in	Recommender	Systems
• Winning	system	of	Netflix	Challenge	was	never	adopted.
• Other	issues	important	in	recommender	systems:
– Diversity:	how	different	are	the	recommendations?

• If	you	like	‘Battle	of	Five	Armies	Extended	Edition’,	recommend	Battle	of	Five	Armies?
• Even	if	you	really	really like	Star	Wars,	you	might	want	non-Star-Wars	suggestions.

– Persistence:	how	long	should	recommendations	last?
• If	you	keep	not	clicking	on	‘Hunger	Games’,	should	it	remain	a	recommendation?

– Trust:	tell	user	why you	made	a	recommendation.
• Quora gives	explanations	for	recommendations.

– Social	recommendation:	what	did	your	friends	watch?
– Freshness:	people	tend	to	get	more	excited	about	new/surprising	 things.

• Collaborative	filtering	does	not	predict	well	for	new	users/movies.
– New	movies	don’t	yet	have	ratings,	and	new	users	haven’t	rated	anything.

Content-Based	vs.	Collaborative	Filtering
• Our	latent-factor	approach	to	collaborative	filtering (Part	4):

– Learns	about	each	user/movie,	but	can’t	predict	on	new	users/movies.
• A	linear	model	approach	to	content-based	filtering (Part	3):

– Here	xij is	a	vector	of	features for	the	movie/user.
• Usual	supervised	learning	setup:	‘y’	would	contain	all	the	yij,	X	would	have	xij as	rows.

– Can	predict	on	new	users/movies,	but	can’t	learn	about	each	user/movie.		

Hybrid	Approaches
• Hybrid	approaches	combine	content-based/collaborative	filtering:
– SVDfeature (won	“KDD	Cup”	in	2011	and	2012).

– Note	that	xij is	a	feature	vector.	Also,	‘w’	and	‘wj’	are	different	parameters.

Stochastic	Gradient	for	SVDfeature
• Common	approach	to	fitting	SVDfeature is	stochastic	gradient.
• Previously	you	saw	stochastic	gradient	for	supervised	learning:

• Stochastic	gradient	for	SVDfeature (formulas	as	bonus):

Social	Regularization
• Many	recommenders	are	now	connected	to	social	networks.
– “Login	using	your	Facebook	account”.

• Often,	people	like	similar	movies	to	their	friends.

• Recent	recommender	systems	use	social	regularization.
– Add	a	“regularizer”	encouraging	friends’	weights	to	be	similar:

– If	we	get	a	new	user,	recommendations	are	based	on	friend’s	preferences.

(pause)

Latent-Factor	Models	for	Visualization
• PCA	takes	features	xi and	gives	k-dimensional	approximation	zi.
• If	k	is	small,	we	can	use	this	to	visualize	high-dimensional	data.

http://www.turingfinance.com/artificial-intelligence-and-statistics-principal-component-analysis-and-self-organizing-maps/
http://scienceblogs.com/gnxp/2008/08/14/the-genetic-map-of-europe/

Motivation	for	Non-Linear	Latent-Factor	Models

• But	PCA	is	a	parametric	linear model
• PCA	may	not	find	obvious	low-dimensional	structure.

• We	could	use	change	of	basis	or	kernels:	but	still	need	to	pick	basis.
https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction

Multi-Dimensional	Scaling
• PCA	for	visualization:
– We’re	using	PCA	to	get	the	location	of	the	zi values.
– We	then	plot	the	zi values	as	locations	in	a	scatterplot.

• Multi-dimensional	scaling	(MDS) is	a	crazy	idea:
– Let’s	directly	optimize	the	pixel	locations	of	the	zi values.

• “Gradient	descent	on	the	points	in	a	scatterplot”.
– Needs	a	“cost”	function	saying	how	“good”	the	zi locations	are.

• Traditional	MDS	cost	function:

MDS	Method	(“Sammon Mapping”)	in	Action

• Unfortunately,	MDS	often	does	not	work	well	in	practice.

Multi-Dimensional	Scaling
• Multi-dimensional	scaling	(MDS):
– Directly	optimize	the	final	locations	of	the	zi values.

Summary
• Recommender	systems try	to	recommend	products.
• Collaborative	filtering tries	to	fill	in	missing	values	in	a	matrix.
– Matrix	factorization	is	a	common	approach.

• Multi-dimensional	scaling	is	a	non-parametric	latent-factor	model.

• Next	time:	making	a	scatterplot	by	gradient	descent.

Digression:	“Whitening”
• With	image	data,	features	will	be	very	redundant.

– Neighbouring pixels	tend	to	have	similar	values.
• A	standard	transformation	in	these	settings	is	“whitening”:

– Rotate	the	data	so	features	are	uncorrelated.
– Re-scale	the	rotated	features	so	they	have	a	variance	of	1.

• Using	SVD	approach	to	PCA,	we	can	do	this	with:
– Get	‘W’	from	SVD	(usually	with	k=d).
– Z	=	XWT (rotate	to	give	uncorrelated	features).
– Divide	columns	of	‘Z’	by	corresponding	singular	values	(unit	variance).

• Details/discussion	here.

Motivation	for	Topic	Models
• Want	a	model	of	the	“factors”	making	up	documents.
– Instead	of	latent-factor	models,	they’re	called	topic	models.
– The	canonical	topic	model	is	latent	Dirichlet allocation	(LDA).

– “Topics”	could	be	useful	for	things	like	searching	for	relevant	documents.

http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/

Term	Frequency	– Inverse	Document	Frequency

• In	information	retrieval,	classic	word	importance	measure	is	TF-IDF.

• First	part	is	the	term	frequency	tf(t,d)	of	term	‘t’	for	document	‘d’.
– Number	of	times	“word”	‘t’	occurs	in	document	‘d’,	divided	by	total	words.
– E.g.,	7%	of	words	in	document	‘d’	are	“the”	and	2%	of	the	words	are	“Lebron”.

• Second	part	is	document	frequency	df(t,D).
– Compute	number	of	documents	that	have	‘t’ at	least	once.
– E.g.,	100%	of	documents	contain	“the”	and	0.01%	have	“LeBron”.

• TF-IDF	is	tf(t,d)*log(1/df(t,D)).

Term	Frequency	– Inverse	Document	Frequency

• The TF-IDF statistic	is	tf(t,d)*log(1/df(t,D)).
– It’s	high	if	word	‘t’	happens	often	in	document	‘d’,	but	isn’t	common.
– E.g.,	seeing	“LeBron”	a	lot	it	tells	you	something	about	“topic”	of	article.
– E.g.,	seeing	“the”	a	lot	tells	you	nothing.

• There	are	*many*	variations	on	this	statistic.
– E.g.,	avoiding	dividing	by	zero	and	all	types	of	“frequencies”.

• Summarizing	‘n’	documents	into	a	matrix	X:
– Each	row	corresponds	to	a	document.
– Each	column	gives	the	TF-IDF	value	of	a	particular	word	in	the	document.

Latent	Semantic	Indexing
• TF-IDF features	are	very	redundant.
– Consider	TF-IDFs	of	“LeBron”,	“Durant”,	“Harden”,	and	“Kobe”.	
– High	values	of	these	typically	just	indicate	topic	of	“basketball”.

• We	can	probably	compress	this	information	quite	a	bit.

• Latent	Semantic	Indexing/Analysis:
– Run	latent-factor	model	(like	PCA	or	NMF)	on	TF-IDF	matrix	X.
– Treat	the	principal	components	as	the	“topics”.
– Latent	Dirichlet allocation	is	a	variant	that	avoids	weird	df(t,D)	heuristic.

SVDfeature with	SGD:	the	gory	details

Tensor	Factorization
• Tensors	are	higher-order	generalizations	of	matrices:

• Generalization	of	matrix	factorization	is	tensor	factorization:

• Useful	if	there	are	other	relevant	variables:
• Instead	of	ratings	based	on	{user,movie},	ratings	based	{user,movie,group}.
• Useful	if	you	have	groups	of	users,	or	if	ratings	change	over	time.

Field-Aware	Matrix	Factorization
• Field-aware	factorization	machines	(FFMs):

– Matrix	factorization	with	multiple	zi or	wc for	each	example	or	part.
– You	choose	which	zi or	wc to	use	based	on	the	value	of	feature.

• Example	from	“click	through	rate”	prediction:
– E.g.,	predict	whether	“male”	clicks	on	“nike”	advertising	on	“espn”	page.
– A	previous	matrix	factorization	method	for	the	3	factors	used:

– FFMs	could	use:
• wespnA is	the	factor	we	use	when	multiplying	by	a	an	advertiser’s	latent	factor.
• wespnG is	the	factor	we	use	when	multiplying	by	a	group’s	latent	factor.

• This	approach	has	won	some	Kaggle competitions	(link),
and	has	shown	to	work	well	in	production	systems	too	(link).

Warm-Starting
• We’ve	used	data	{X,y}	to	fit	a	model.
• We	now	have	new	training	data	and	want	to	fit	new	and	old	data.

• Do	we	need	to	re-fit	from	scratch?

• This	is	the	warm	starting	problem.
– It’s	easier	to	warm	start	some	models	than	others.

Easy	Case:	K-Nearest	Neighbours	and	Counting
• K-nearest	neighbours:
– KNN	just	stores	the	training	data,	so	just	store	the	new	data.

• Counting-based models:
– Models	that	base	predictions	on	frequencies	of	events.
– E.g.,	naïve	Bayes.

– Just	update	the	counts:

– Decision	trees	with	fixed	rules:	just	update	counts	at	the	leaves.

Medium	Case:	L2-Regularized	Least	Squares
• L2-regularized	least	squares	is	obtained	from	linear	algebra:

– Cost	is	O(nd2 +	d3)	for	‘n’	training	examples	and	‘d’	features.
• Given	one	new	point,	we	need	to	compute:

– XTy with	one	row	added,	which	costs	O(d).
– Old	XTX	plus	xixiT,	which	costs	O(d2).	
– Solution	of	linear	system,	which	costs	O(d3).
– So	cost	of	adding	‘t’	new	data	point	is	O(td3).

• With	“matrix	factorization	updates”,	can	reduce	this	to	O(td2).
– Cheaper	than	computing	from	scratch,	particularly	for	large	d.

Medium	Case:	Logistic	Regression
• We	fit	logistic	regression	by	gradient	descent	on	a	convex	function.

• With	new	data,	convex	function	f(w)	changes	to	new	function	g(w).

• If	we	don’t	have	much	more	data,	‘f’	and	‘g’	will	be	“close”.
– Start	gradient	descent	on	‘g’	with	minimizer	of	‘f’.
– You	can	show	that	it	requires	fewer	iterations.

Hard	Cases:	Non-Convex/Greedy	Models
• For	decision	trees:

– “Warm	start”:	continue	splitting	nodes	that	haven’t	already	been	split.
– “Cold	start”:	re-fit	everything.

• Unlike	previous	cases,	this	won’t	in	general	give	same	result	as	re-fitting:
– New	data	points	might	lead	to	different	splits	higher	up	in	the	tree.

• Intermediate:	usually	do	warm	start	but	occasionally	do	a	cold	start.

• Similar	heuristics/conclusions	for	other	non-convex/greedy	models:
– K-means	clustering.
– Matrix	factorization (though	you	can	continue	PCA	algorithms).

