
CPSC	340:
Machine	Learning	and	Data	Mining

Decision	Trees
Fall	2020

Admin
• Assignment	1 is	due	Friday:	start	early.
• Waiting	list	people:	you	should	be	registered	soon-ish.

– Start	on	the	assignment	now,	everybody	currently	on	the	waiting	list	will	get	in.
• Gradescope

– Use	access	code	9PX4B9
– You	must use	your	@ugrad.cs.ubc.ca email	alias	(as	listed	in	
https://www.cs.ubc.ca/getacct)	to	identify	yourself	on	Gradescope

– Failure	to	properly	identify	yourself	will	result	in	a	zero	for	all	homework	and	
exam	submissions	made	under	a	different	identity

• Course	webpage:	https://www.cs.ubc.ca/~fwood/CS340/
– Sign	up	for	Piazza.

• Tutorials	and	office	hours	have	already	started	(see	webpage	for	
calendar).

Last	Time:	Data	Representation	and	Exploration
• We	discussed	example-feature	representation:
– Samples:	another	name
we’ll	use	for	examples.

• We	discussed	summary	statistics and	visualizing	data.

http://www.statcrunch.com/5.0/viewresult.php?resid=1024581
http://cdn.okccdn.com/blog/humanexperiments/looks-v-personality.png
http://www.scc.ms.unimelb.edu.au/whatisstatistics/weather.html

Age Job? City Rating Income

23 Yes Van A 22,000.00

23 Yes Bur BBB 21,000.00

22 No Van CC 0.00

25 Yes Sur AAA 57,000.00

Last	Time:	Supervised	Learning
• We	discussed	supervised	learning:

• Input	for	an	example (day	of	the	week)	is	a	set	of	features (quantities	of	food).
• Output	is	a	desired	class	label	(whether	or	not	we	got	sick).
• Goal	of	supervised	learning:	

– Use	data	to	find	a	model	that	outputs	the	right	label	based	on	the	features.
• Above,	model	predicts	whether	foods	will	make	you	sick	(even	with	new	combinations).

– This	framework	can	be	applied	any	problem	where	we	have	input/output	examples.

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

Decision	Trees
• Decision	trees	are	simple	programs	consisting	of:

– A	nested	sequence	of	“if-else”	decisions	based	on	the	features (splitting	rules).
– A	class	label	as	a	return	value	at	the	end	of	each	sequence.

• Example	decision	tree:

if	(milk	>	0.5)	
{

return	‘sick’
}
else	
{

if	(egg	>	1)
return	‘sick’

else
return	‘not	sick’

}

Can	draw	sequences	of	decisions	as	a	tree:

Supervised	Learning	as	Writing	A	Program
• There	are	many	possible	decision	trees.

– We’re	going	to	search	for	one	that	is	good	at	our	supervised	learning	problem.

• So	our	input	is	data	and	the	output	will	be	a	program.
– This	is	called	“training”	the	supervised	learning	model.
– Different	than	usual	input/output	specification	for	writing	a	program.

• Supervised	learning	is	useful	when	you	have	lots	of	labeled	data	BUT:
1. Problem	is	too	complicated	to	write	a	program	ourselves.
2. Human	expert	can’t	explain	why	you	assign	certain	labels.

OR
2. We	don’t	have	a	human	expert	for	the	problem.

Learning	A	Decision	Stump:	“Search	and	Score”
• We’ll	start	with	"decision	stumps”:

– Simple	decision	tree	with	1	splitting	rule	based	on	thresholding	1	feature.

• How	do	we	find	the	best	“rule”	(feature,	threshold,	and	leaf	labels)?
1. Define	a	‘score’	for	the	rule.
2. Search for	the	rule	with	the	best	score.

Learning	A	Decision	Stump:	Accuracy	Score
• Most	intuitive	score:	classification	accuracy.
– “If	we	use	this	rule,	how	many	examples	do	we	label	correctly?”

• Computing	classification	accuracy	for	(egg	>	1):
– Find	most	common	labels	if	we	use	this	rule:

• When	(egg	>	1),	we	were	“sick”	2	times	out	of	2.
• When	(egg	≤	1),	we	were	“not	sick”	3	times	out	of	4.

– Compute	accuracy:	
• The	accuracy	(“score”)	of	the	rule	(egg	>	1)	is	5	times	out	of	6.

• This	“score”	evaluates	quality	of	a	rule.
– We	“learn”	a	decision	stump	by	finding	the	rule	with	the	best	score.

Sick?

1

1

0

0

1

0

Milk Fish Egg

0.7 0 1

0.7 0 2

0 0 0

0.7 1.2 0

0 1.2 2

0 0 0

Learning	A	Decision	Stump:	By	Hand
• Let’s	search for	the	decision	stump	maximizing	classification	score:

• Highest-scoring	rule:	(egg	>	0)	with	leaves	“sick”	and	“not	sick”.
• Notice	we	only	need	to	test	feature	thresholds	that	happen	in	the	data:

– There	is	no	point	in	testing	the	rule	(egg	>	3),	it	gets	the	“baseline”	score.
– There	is	no	point	in	testing	the	rule	(egg	>	0.5),	it	gets	the	(egg	>	0)	score.
– Also	note	that	we	don’t	need	to	test	“<“,	since	it	would	give	equivalent	rules.

Sick?

1

1

0

0

1

0

First	we	check	“baseline	rule”	of	predicting	mode	(no	split):	this	gets	3/6	accuracy.
If	(milk	>	0)	predict	“sick”	(2/3)	else	predict	“not	sick”	(2/3):	4/6	accuracy
If	(fish	>	0)	predict	“not	sick”	(2/3)	else	predict	“sick”	(2/3):	4/6	accuracy
If	(fish	>	1.2)	predict	“sick”	(1/1)	else	predict	“not	sick”	(3/5):	5/6	accuracy
If	(egg	>	0)	predict	“sick”	(3/3)	else	predict	“not	sick”	(3/3):	6/6	accuracy
If	(egg	>	1)	predict	“sick”	(2/2)	else	predict	“not	sick”	(3/4):	5/6	accuracy

Milk Fish Egg

0.7 0 1

0.7 0 2

0 1.2 0

0.7 1.2 0

0 1.3 2

0 0 0

Supervised	Learning	Notation	(MEMORIZE	THIS)

• Feature	matrix	‘X’ has	rows	as	examples,	columns	as	features.
– xij is	feature	‘j’	for	example	‘i’	(quantity	of	food	‘j’	on	day	‘i’).
– xi is	the	list	of	all	features	for	example	‘i’	(all	the	quantities	on	day	‘i’).
– xj is	column	‘j’	of	the	matrix (the	value	of	feature	‘j’	across	all	examples).	

• Label	vector	‘y’ contains	the	labels	of	the	examples.
– yi is	the	label	of	example	‘i’ (1	for	“sick”,	0	for	“not	sick”).

Egg Milk Fish Wheat Shellfish Peanuts

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

Supervised	Learning	Notation	(MEMORIZE	THIS)
Egg Milk Fish Wheat Shellfish Peanuts

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

Supervised	Learning	Notation	(MEMORIZE	THIS)

• Training	phase:	
– Use	‘X’	and	‘y’	to	find	a	‘model’	(like	a	decision	stump).

• Prediction	phase:	
– Given	an	example	xi,	use	‘model’	to	predict	a	label	‘𝑦"i’ (“sick”	or	“not	sick”).

• Training	error:
– Fraction	of	times	our	prediction	𝑦"𝑖 does	not	equal	the	true	yi label.

Egg Milk Fish Wheat Shellfish Peanuts

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

Decision	Stump	Learning	Pseudo-Code

Cost	of	Decision	Stumps
• How	much	does	this	cost?
• Assume	we	have:

– ‘n’	examples	(days	that	we	measured).
– ‘d’	features	(foods	that	we	measured).
– ‘k’	thresholds	(>0,	>1,	>2,	…)	for	each	feature.

• Computing	the	score	of	one	rule	costs	O(n):
– We	need	to	go	through	all	‘n’	examples	to	find	most	common	labels.
– We	need	to	go	through	all	‘n’	examples	again	to	compute	the	accuracy.
– See	notes	on	webpage	for	review	of	“O(n)”	notation.

• We	compute	score	for	up	to	k*d	rules	(‘k’	thresholds	for	each	of	‘d’	features):
– So	we	need	to	do	an	O(n)	operation	k*d	times,	giving	total	cost	of	O(ndk).

Cost	of	Decision	Stumps
• Is	a	cost	of	O(ndk)	good?
• Size	of	the	input	data	is	O(nd):

– If	‘k’	is	small	then	the	cost	is	roughly	the	same	cost	as	loading	the	data.
• We	should	be	happy	about	this,	you	can	learn	on	any	dataset	you	can	load!

– If	‘k’	is	large	then	this	could	be	too	slow	for	large	datasets.

• Example:	if	all	our	features	are	binary then	k=1,	just	test	(feature	>	0):
– Cost	of	fitting	decision	stump	is	O(nd),	so	we	can	fit	huge	datasets.

• Example:	if	all	our	features	are	numerical with	unique	values	then	k=n.
– Cost	of	fitting	decision	stump	is	O(n2d).

• We	don’t	like	having	n2	because	we	want	to	fit	datasets	where	‘n’	is	large!
– Bonus	slides:	how	to	reduce	the	cost	in	this	case	down	to	O(nd log	n).

• Basic	idea:	sort	features	and	track	labels. Allows	us	to	fit	decision	stumps	to	huge	datasets.

(pause)

Decision	Tree	Learning
• Decision	stumps have	only	1	rule	based	on	only	1	feature.
– Very	limited	class	of	models:	usually	not	very	accurate	for	most	tasks.

• Decision	trees	allow	sequences	of	splits based	on	multiple	features.
– Very	general	class	of	models:	can	get	very	high	accuracy.
– However,	it’s	computationally	infeasible	to	find	the	best	decision	tree.

• Most	common	decision	tree	learning	algorithm	in	practice:
– Greedy	recursive	splitting.

Example	of	Greedy	Recursive	Splitting
• Start	with	the	full	dataset:

Egg Milk …

0 0.7

1 0.7

0 0

1 0.6

1 0

2 0.6

0 1

2 0

0 0.3

1 0.6

2 0

Find	the	decision	stump	with	the	best	score:

Split	into	two	smaller	datasets	based	on	stump:
Egg Milk …

0 0

1 0

2 0

0 0.3

2 0

Egg Milk …

0 0.7

1 0.7

1 0.6

2 0.6

0 1

1 0.6

Sick?

1

1

0

1

0

1

1

1

0

0

1

Sick?

0

0

1

0

1

Sick?

1

1

1

1

1

0

Greedy	Recursive	Splitting
We	now	have	a	decision	stump	and	two	datasets:

Egg Milk … Sick?

0 0 0

1 0 0

2 0 1

0 0.3 0

2 0 1

Egg Milk … Sick?

0 0.7 1

1 0.7 1

1 0.6 1

2 0.6 1

0 1 1

1 0.6 0

Fit	a	decision	stump	to	each	leaf’s	data.

Greedy	Recursive	Splitting
We	now	have	a	decision	stump	and	two	datasets:

Egg Milk … Sick?

0 0 0

1 0 0

2 0 1

0 0.3 0

2 0 1

Egg Milk … Sick?

0 0.7 1

1 0.7 1

1 0.6 1

2 0.6 1

0 1 1

1 0.6 0

Fit	a	decision	stump	to	each	leaf’s	data.
Then	add	these	stumps	to	the	tree.

Greedy	Recursive	Splitting
This	gives	a	“depth	2”	decision	tree: It	splits	the	two	datasets	into	four	datasets:

Egg Milk … Sick?

0 0 0

1 0 0

2 0 1

0 0.3 0

2 0 1

Egg Milk … Sick?

0 0.7 1

1 0.7 1

1 0.6 1

2 0.6 1

0 1 1

1 0.6 0

Egg Milk … Sick?

0 0 0

1 0 0

0 0.3 0

Egg Milk … Sick?

2 0 1

2 0 1

Egg Milk … Sick?

0 0.7 1

1 0.7 1

1 0.6 1

2 0.6 1

Egg Milk … Sick?

1 0.6 0

Greedy	Recursive	Splitting
We	could	try	to	split	the	four	leaves	to	make	a	“depth	3”	decision	tree:

We	might	continue	splitting	until:
- The	leaves	each	have	only	one	label.
- We	reach	a	user-defined	maximum	depth.

Which	score	function	should	a	decision	tree	used?

• Shouldn’t	we	just	use	accuracy	score?
– For	leafs:	yes,	just	maximize	accuracy.
– For	internal	nodes:	not	necessarily.

• Maybe	no	simple	rule	like	(egg	>	0.5)	improves	accuracy.
– But	this	doesn’t	necessarily	mean	we	should	stop!

Example	Where	Accuracy	Fails
• Consider	a	dataset	with	2	features	and	2	classes	(‘x’	and	‘o’).

– Because	there	are	2	features,	we	can	draw	‘X’	as	a	scatterplot.
• Colours	and	shapes	denote	the	class	labels ‘y’.

• A	decision	stump	would	divide	space	by	a	horizontal	or	vertical	line.
– Testing	whether	xi1 >	t	or	whether	xi2 >	t.

• On	this	dataset	no	horizontal/vertical	line	improves	accuracy.
– Baseline	is	‘o’,	but	need	to	get	many	‘o’	wrong	to	get	one	‘x’	right.

Which	score	function	should	a	decision	tree	used?

• Most	common	score	in	practice	is	“information	gain”.
– “Choose	split	that	decreases	entropy of	labels	the	most”.

• Information	gain	for	baseline	rule	(“do	nothing”)	is	0.
– Infogain is	large	if	labels	are	“more	predictable”	(“less	random”)	in	next	layer.

• Even	if	it	does	not	increase	classification	accuracy	at	one	depth,
we	hope	that	it	makes	classification	easier	at	the	next	depth.

Example	Where	Accuracy	Fails

Example	Where	Accuracy	Fails

Example	Where	Accuracy	Fails

Discussion	of	Decision	Tree	Learning
• Advantages:

– Easy	to	implement.
– Interpretable.
– Learning	is	fast	prediction	is	very	fast.
– Can	elegantly	handle	a	small	number	missing	values	during	training.

• Disadvantages:
– Hard	to	find	optimal	set	of	rules.
– Greedy	splitting	often	not	accurate,	requires	very	deep	trees.

• Issues:
– Can	you	revisit	a	feature?

• Yes,	knowing	other	information	could	make	feature	relevant	again.
– More	complicated	rules?

• Yes,	but	searching	for	the	best	rule	gets	much	more	expensive.
– What	is	best	score?

• Infogain is	the	most	popular	and	often	works	well,	but	is	not	always	the	best.
– What	is	you	get	new	data?

• You	could	consider	splitting	if	there	is	enough	data	at	the	leaves,	but	occasionally	might	want	to	re-learn	the	whole	tree	or	sub-trees.
– What	depth?

Summary
• Supervised	learning:	
– Using	data	to	write	a	program	based	on	input/output	examples.

• Decision	trees:	predicting	a	label	using	a	sequence	of	simple	rules.	
• Decision	stumps:	simple	decision	tree	that	is	very	fast	to	fit.
• Greedy	recursive	splitting:	uses	a	sequence	of	stumps	to	fit	a	tree.
– Very	fast	and	interpretable,	but	not	always	the	most	accurate.

• Information	gain:	splitting	score	based	on	decreasing	entropy.

• Next	time:	the	most	important	ideas	in	machine	learning.

Entropy	Function

Other	Considerations	for	Food	Allergy	Example
• What	types	of	preprocessing might	we	do?

– Data	cleaning:	check	for	and	fix	missing/unreasonable	values.
– Summary	statistics:

• Can	help	identify	“unclean”	data.
• Correlation	might	reveal	an	obvious	dependence	(“sick”	ó “peanuts”).

– Data	transformations:	
• Convert	everything	to	same	scale?	(e.g.,	grams)
• Add	foods	from	day	before?	(maybe	“sick”	depends	on	multiple	days)
• Add	date?	(maybe	what	makes	you	“sick”	changes	over	time).

– Data	visualization:	look	at	a	scatterplot	of	each	feature	and	the	label.
• Maybe	the	visualization	will	show	something	weird	in	the	features.
• Maybe	the	pattern	is	really	obvious!

• What	you	do	might	depend	on	how	much	data	you	have:
– Very	little	data:	

• Represent	food	by	common	allergic	ingredients	(lactose,	gluten,	etc.)?
– Lots	of	data:

• Use	more	fine-grained	features	(bread	from	bakery	vs.	hamburger	bun)?

Julia	Decision	Stump	Code	(not	O(n	log	n)	yet)

Going	from	O(n2d)	to	O(nd log	n)	for	Numerical	Features

• Do	we	have	to	compute	score	from	scratch?
– As	an	example,	assume	we	eat	integer	number	of	eggs:

• So	the	rules	(egg	>	1)	and	(egg	>	2)	have	same	decisions,	except	when	(egg	==	2).
• We	can	actually	compute	the	best	rule	involving	‘egg’	in	O(n	log	n):

– Sort	the	examples	based	on	‘egg’,	and	use	these	positions	to	re-arrange	‘y’.
– Go	through	the	sorted	values	in	order,	updating	the	counts	of	#sick	and	#not-sick	that	

both	satisfy	and	don’t	satisfy	the	rules.
– With	these	counts,	it’s	easy	to	compute	the	classification	accuracy	(see	bonus	slide).

• Sorting	costs	O(n	log	n)	per	feature.
• Total	cost	of	updating	counts	is	O(n)	per	feature.
• Total	cost	is	reduced	from	O(n2d)	to	O(nd log	n).
• This	is	a	good	runtime:

– O(nd)	is	the	size	of	data,	same	as	runtime	up	to	a	log	factor.
– We	can	apply	this	algorithm	to	huge	datasets.

How	do	we	fit	stumps	in	O(nd log	n)?
• Let’s	say	we’re	trying	to	find	the	best	rule	involving	milk:

Egg Milk …

0 0.7

1 0.7

0 0

1 0.6

1 0

2 0.6

0 1

2 0

0 0.3

1 0.6

2 0

Sick?

1

1

0

1

0

1

1

1

0

0

1

First	grab	the	milk	column	and	sort	it	
(using	the	sort	positions	to	re-arrange	
the	sick	column).	This	step	costs	
O(n	log	n)	due	to	sorting.

Now,	we’ll	go	through	the	milk	values	
in	order,	keeping	track	of	#sick	and	
#not	sick	that	are	above/below	the	
current	value.	E.g.,	#sick	above	0.3	is	5.

With	these	counts,	accuracy	score	is	
(sum	of	most	common	label	above	and	
below)/n.

Milk

0

0

0

0

0.3

0.6

0.6

0.6

0.7

0.7

1

Sick?

0

0

0

0

0

1

1

0

1

1

1

How	do	we	fit	stumps	in	O(nd log	n)?

Milk

0

0

0

0

0.3

0.6

0.6

0.6

0.7

0.7

1

Sick?

0

0

0

0

0

1

1

0

1

1

1

Start	with	the	baseline	rule	()	which	is	always	“satisfied”:
If	satisfied,	#sick=5	and	#not-sick=6.
If	not	satisfied,	#sick=0	and	#not-sick=0.
This	gives	accuracy	of	(6+0)/n	=	6/11.

Next	try	the	rule	(milk	>	0),	and	update	the	counts	based	on	these	4	rows:
If	satisfied,	#sick=5 and	#not-sick=2.
If	not	satisfied,	#sick=0	and	#not-sick=4.
This	gives	accuracy	of	(5+4)/n	=	9/11,	which	is	better.

Next	try	the	rule	(milk	>	0.3),	and	update	the	counts	based	on	this	1	row:
If	satisfied,	#sick=5 and	#not-sick=1.
If	not	satisfied,	#sick=0	and	#not-sick=5.
This	gives	accuracy	of	(5+5)/n	=	10/11,	which	is	better.
(and	keep	going	until	you	get	to	the	end…)

How	do	we	fit	stumps	in	O(nd log	n)?

Milk

0

0

0

0

0.3

0.6

0.6

0.6

0.7

0.7

1

Sick?

0

0

0

0

0

1

1

0

1

1

1

Notice	that	for	each	row,	updating	the	counts	only	costs	O(1).
Since	there	are	O(n)	rows,	total	cost	of	updating	counts	is	O(n).

Instead	of	2	labels	(sick	vs.	not-sick),	consider	the	case	of	‘k’	labels:
- Updating	the	counts	still	costs	O(n),	since	each	row	has	one	label.
- But	computing	the	‘max’	across	the	labels	costs	O(k),	so	cost	is	O(kn).

With	‘k’	labels,	you	can	decrease	cost	using	a	“max-heap”	data	structure:
- Cost	of	getting	max	is	O(1),	cost	of	updating	heap	for	a	row	is	O(log	k).
- But	k	<=	n	(each	row	has	only	one	label).
- So	cost	is	in	O(log	n)	for	one	row.

Since	the	above	shows	we	can	find	best	rule	in	one	column	in	O(n	log	n),
total	cost	to	find	best	rule	across	all	‘d’	columns	is	O(nd log	n).

Can	decision	trees	re-visit	a	feature?
• Yes.

Knowing	(ice	cream	>	0.3)	makes	small	milk	quantities	relevant.

Can	decision	trees	have	more	complicated	rules?

• Yes!
• Rules	that	depend	on	more	than	one	feature:

• But	now	searching	for	the	best	rule	can	get	expensive.

Can	decision	trees	have	more	complicated	rules?

• Yes!
• Rules	that	depend	on	more	than	one	threshold:

• “Very	Simple	Classification	Rules	Perform	Well	on	Most	Commonly	Used	Datasets”
– Consider	decision	stumps	based	on	multiple	splits	of	1	attribute.
– Showed	that	this	gives	comparable	performance	to	more-fancy	methods	on	many	datasets.

Does	being	greedy	actually	hurt?
• Can’t	you	just	go	deeper	to	correct	greedy	decisions?
– Yes,	but	you	need	to	“re-discover”	rules	with	less	data.

• Consider	that	you	are	allergic	to	milk	(and	drink	this	often),	and	
also	get	sick	when	you	(rarely)	combine	diet	coke	with	mentos.

• Greedy	method	should	first	split	on	milk	(helps	accuracy	the	most):

Does	being	greedy	actually	hurt?
• Can’t	you	just	go	deeper	to	correct	greedy	decisions?
– Yes,	but	you	need	to	“re-discover”	rules	with	less	data.

• Consider	that	you	are	allergic	to	milk	(and	drink	this	often),	and	
also	get	sick	when	you	(rarely)	combine	diet	coke	with	mentos.

• Greedy	method	should	first	split	on	milk	(helps	accuracy	the	most).
• Non-greedy	method	could	get	simpler	tree	(split	on	milk	later):

Decision	Trees	with	Probabilistic	Predictions
• Often,	we’ll	have	multiple	‘y’	values	at	each	leaf	node.
• In	these	cases,	we	might	return	probabilities	instead	of	a	label.

• E.g.,	if	in	the	leaf	node	we	5	have	“sick”	examples	and	1	“not	sick”:
– Return	p(y	=	“sick”	|	xi)	=	5/6	and	p(y	=	“not	sick”	|	xi)	=	1/6.

• In	general,	a	natural	estimate	of	the	probabilities	at	the	leaf	nodes:
– Let	‘nk’	be	the	number	of	examples	that	arrive	to	leaf	node	‘k’.
– Let	‘nkc’	be	the	number	of	times	(y	==	c)	in	the	examples	at	leaf	node	‘k’.
– Maximum	likelihood	estimate	for	this	leaf	is	p(y	=	c	|	xi)	=	nkc/nk.

Alternative	Stopping	Rules
• There	are	more	complicated	rules	for	deciding	when	*not*	to	split.

• Rules	based	on	minimum	sample	size.
– Don’t	split	any	nodes	where	the	number	of	examples	is	less	than	some	‘m’.
– Don’t	split	any	nodes	that	create	children	with	less	than	‘m’	examples.

• These	types	of	rules	try	to	make	sure	that	you	have	enough	data	to	justify	decisions.

• Alternately,	you	can	use	a	validation	set	(see	next	lecture):
– Don’t	split	the	node	if	it	decreases	an	approximation	of	test	accuracy.

