CPSC 340:
Machine Learning and Data Mining



Admin

Online Tutorial Sessions

— https://ca.bbcollab.com/guest/be40f4b7d14b494fbedca8ad4169475f5
Online TA Office Hours

— https://ca.bbcollab.com/guest/521c551bad2c4049a69b3e3419fb65d1
Professor Office Hour

— https://ca.bbcollab.com/guest/88051c9b2f834bd5924b9f29790eb85¢

Final

— Heads up: changing to take-home project-based Kaggle-like final, due on last day of
exam period. Hashing out design and requirements now. Feel free to go home! May
allow work on Final starting now.

Slides & Homework

— Everything will be released today or tomorrow. Work at your own pace. Do not submit
before due date.



The 10 Algorithms
Machine Learning gﬁﬂ 2(301|g
. Engineers Need to oo
Decision trees Know Blog

Naive Bayes classification

Ordinary least squares regression

Logistic regression

Support vector machines

Ensemble methods

Clustering algorithms

Principal component analysis

9. Singular value decomposition
10.Independent component analysis (bonus)
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e Latent-factor models take input data ‘X’ and output a basis 7’
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Last Time: Latent-Factor Models
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— Usually, ‘2’ has fewer features than ‘X.

* Uses: dimensionality reduction, visualization, factor discovery.

Component 2 (0.08% variance)

French

Component 1 (0.21% variance)

Trait

Open ness

Description

Being curious, original, intellectual, creative, and open to
new ideas.

Conscientiousness

Being organized, systematic, punctual, achievement-
oriented, and dependable.

Extraversion

Being outgoing, talkative, sociable, and enjoying
social situations.

Agreeableness

Being affable, tolerant, sensitive, trusting, kind,
and warm.

Neuroticism

Being anxious, irritable, temperamental, and moody.



Last Time: Principal Component Analysis

* Principal component analysis (PCA) is a linear latent-factor model:

— These models “factorize” matrix X into matrices Z and W:

7 g
X~ 7W x~ W2, X & W22
nXd nxk )(Xé
— We can think of rows w_ of W as ‘k’ fixed “part” (used in all examples).

— z; is the “part weights” for example x.: “how much of each part w_ to use”.
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Last Time: PCA Geometry

* When k=1, the W matrix defines a line:

— We choose ‘W’ as the line minimizing squared distance to the data.
— Given ‘W’, the z, are the coordinates of the x, “projected” onto the line.
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Last Time: PCA Geometry

When k=2, the W matrix defines a plane:

— We choose ‘W’ as the plane minimizing squared distance to the data.

— Given ‘W’, the z, are the coordinates of the x, “projected” onto the plane.
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Last Time: PCA Geometry

* When k=2, the W matrix defines a plane:

— Even if the original data is high-dimensional,
we can visualize data “projected” onto this plane.
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PCA Objective Function

* In PCA we minimize the squared error of the approximation:

F(Wy2)= 2 [|W'2 =x I
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* This is equivalent to the k-means objective:

— In k-means z only has a single ‘1’ value and other entries are zero.

* Butin PCA, the entries of z, can be any real numbers.

— We approximate x; as a linear combination of all means/factors.



PCA Objective Function

* In PCA we minimize the squared error of the approximation:
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* We can also view this as solving ‘d’ regression problems:

— Each Wl is trying to predict column ‘%’ from the basis z..
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* The output “y,” we try to predict here is actually the features “x;”.

— And unlike in regression we are also learning the features z..



Principal Component Analysis (PCA)

* The 3 different ways to write the PCA objective function:
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Digression: Data Centering (Important)

* |In PCA, we assume that the data X is “centered”.

— Each column of X has a mean of zero.

* It’s easy to center the data:
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* There are PCA variations that estimate “bias in each coordinate”.

— In basic model this is equivalent to centering the data.



PCA Computation: Prediction

* Atthe end of training, the “model” is the p; and the W matrix.

— PCA is parametric.

* PCA prediction phase:

— Given new data X, we can use L and W this to form Z:
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PCA Computation: Prediction

* Atthe end of training, the “model” is the p; and the W matrix.
— PCA is parametric.
* PCA prediction phase:

— Given new data X, we can use L and W this to form Z:

— The “reconstruction error” is how close approximation is to X:
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— Our “error” from replacing the x; with the z.and W.



Choosing ‘k’ by “Variance Explained”

* Common to choose k" based on variance of the x;.
n d
) = 2
Var(x&[ X /{A,,J) ] JE£XJ] = thg. ; Xij = “X“?
Ae{mif\un o_‘: Mﬁfg:m;c_rf: W M

vorianc® e)cpecfmfm" 'Efoémzus 4

— For a given k" we compute (variance of errors)/(variance of x;):
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— Gives a number between 0 (k-d) and 1 (k=0), giving “variance remaining”.
* If you want to “explain 90% of variance”, choose smallest ‘k’ where ratio is < 0.10.



“Variance Explained” in the Doom Map

e Recall the Doom latent-factor model (where map ignores height):
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* Interpretation of “variance remaining” formula:
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* If we had a 3D map the “variance remaining” would be O.



(pause)



Application: Face Detection

e Consider problem of face detection:

el |

* Classic methods use “eigenfaces” as basis:
— PCA applied to images of faces.
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Eigenfaces

e Collect a bunch of images of faces under different conditions:
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Eigenfaces
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Eigenfaces
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Eigenfaces

on centered Jdla
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Eigenfaces
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Non-Uniqueness of PCA

* Unlike k-means, we can efficiently find global optima of f(W,Z2).

— Algorithms coming later.

e Unfortunately, there never exists a unique global optimum.

— There are actually several different sources of non-uniqueness.

* To understand these, we’ll need idea of “span” from linear algebra.
— This also helps explain the geometry of PCA.
— We'll also see that some global optima may be better than others.



Span of 1 Vector

* Consider a single vector w, (k=1).




Span of 1 Vector

* Consider a single vector w, (k=1).

* The span(w,) is all vectors of the form zw, for a scalar z..
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Span of 1 Vector

* Consider a single vector w, (k=1).
* The span(w,) is all vectors of the form zw, for a scalar z..

* If w; 20, this forms a line.



Span of 1 Vector

* But note that the “span” of many different vectors gives same line.

— Mathematically: aw, defines the same line as w, for any scalar a # 0.

— PCA solution can only be defined up to scalar multiplication.
 If (W,Z) is a solution, then (aW,(1/a)Z) is also a solution. “ (o(W)(;'(Z) "XM:Z:”WZ’X#



Span of 2 Vectors

* Consider two vector w, and w, (k=2).




Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,,w, + z,w, for a scalars z;; and z,,.
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,,w, + z,w, for a scalars z;; and z,,.
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,,w, + z,w, for a scalars z;; and z,,.
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— For most non-zero 2d vectors, span(w,,w,) is a plane.
* In the case of two vectors in R?, the plane will be *all* of R.
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Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,,w, + z,w, for a scalars z,; and z,,.

— For most non-zero 2d vectors, span(w,,w,) is plane.

* Exception is if w, is in span of w, (“collinear”), then span(w,,w,) is just a line.



Span of 2 Vectors

* Consider two vector w, and w, (k=2).

— The span(w,,w,) is all vectors of form z,,w, + z,w, for a scalars z;; and z,,.

Xia

w, 2
Lw,

Xi,

— New issues for PCA (k >= 2):}
* We have label switching: span(w,,w,) = span(w,,w,).
* We can rotate factors within the plane (if not rotated to be collinear).



Span of 2 Vectors

* 2 tricks to make vectors defining a plane “more unique”:

— Normalization: enforce that | |w,|| =1and | |w,]|| = 1.




Span of 2 Vectors

* 2 tricks to make vectors defining a plane “more unique”:

— Normalization: enforce that | |w,|| =1and | |w,]|| = 1.




Span of 2 Vectors

* 2 tricks to make vectors defining a plane “more unique”:
— Normalization: enforce that | |w,|| =1and | |w,]|| = 1.

— Orthogonality: enforce that w,'w, = 0 (“perpendicular”).

Xia

|

el

~ /'—-\'l xil

—

-\

— Now | can’t grow/shrink vecto&s (though | can still reflect).
— Now | can’t rotate one vector (but | can still rotate *both*).



Digression: PCA only makes sense for k < d

« Remember our clustering dataset with 4 clusters:

A A, a v v
A A""w
W,

W

. "
e |t doesn’t make sense to use PCA with k=4 on this dataset.

— We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.
e With k=2, | could set Z=X and W=l to get X=ZW exactly.



Span in Higher Dimensions

* In higher-dimensional spaces:
— Span of 1 non-zero vector w, is a line.

— Span of 2 non-zero vectors w, and w, is a plane (if not collinear).
e Can be visualized as a 2D plot.

— Span of 3 non-zeros vectors {w,, w,, w,} is a 3d space (if not “coplanar”).

* This is how the W matrix in PCA defines lines, planes, spaces, etc.

— Each time we increase ‘k’, we add an extra “dimension” to the “subspace”.



Making PCA Unique

* We've identified several reasons that optimal W is non-unique:
— | can multiply any w_ by any non-zero o.
— | can rotate any w_ almost arbitrarily within the span.

— | can switch any w_ with any other w..

 PCA implementations add constraints to make solution unique:
— Normalization: we enforce that | |w_| | = 1.
— Orthogonality: we enforce that w_'w_ =0 for all c # ¢’.
— Sequential fitting: We first fit w, (“first principal component”) giving a line.
* Then fit w, given w, (“second principal component”) giving a plane.
* Then we fit w; given w, and w, (“third principal component”) giving a space.



Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting
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Basis, Orthogonality, Sequential Fitting
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PCA Computation: SVD

* How do we fit with normalization/orthogonality/sequential-fitting?

— It can be done with the “singular value decomposition” (SVD).
— Take CPSC 302.

* 4 lines of Julia code: Computing Z is cheaper now:
= meanix 1) %=X ww'y = ¥ w’
— X -=repmat(mu,n,1) W: — W= o
— (U,SV) = svd(X) [_L?/Z ,J [‘4,/»;4 >
— W =V[;,1:k]’ W



PCA Computation: SVD

* How do we fit with normalization/orthogonality/sequential-fitting?

— It can be done with the “singular value decomposition” (SVD).
— Take CPSC 302.

e 4 lines of Python code: * Computing Z is cheaper now:
— mu = np.mean(X,axis=0) 7 = 1 AL T
' XKW lvw') "= X W
— X-=mu W\A/T: —\/\/,~ l / ’
— U,s,Vh = np.linalg.svd(X) -\?/Z’ [‘4/47%7‘ ‘;{
— W = Vh[:K] W~ !



Summary

PCA objective:

— Minimizes squared error between elements of X and elements of ZW.
Choosing ‘k’:

— We can choose ‘k’ to explain “percentage of variance” in the data.
PCA non-uniqueness:

— Due to scaling, rotation, and label switching.

Orthogonal basis and sequential fitting of PCs (via SVD):
— Leads to non-redundant PCs with unique directions.

Next time: cancer signatures and NBA shot charts.



Making PCA Unique

* PCA implementations add constraints to make solution unique:
— Normalization: we enforce that | |w_| | = 1.
— Orthogonality: we enforce that w.'w_ = 0 for all c # c’.
— Sequential fitting: We first fit w, (“first principal component”) giving a line.
* Then fit w, given w, (“second principal component”) giving a plane.
* Then we fit w; given w, and w, (“third principal component”) giving a space.

e Even with all this, the solution is only unique up to sign changes:
— | can still replace any w_ by —w_:
* -w_is normalized, is orthogonal to the other w,, and spans the same space.
— Possible fix: require that first non-zero element of each w_ is positive.

— And this is assuming you don’t have repeated singular values.
* In that case you can rotate the repeated ones within the same plane.



