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Admin
• Online	Tutorial	Sessions

– https://ca.bbcollab.com/guest/be40f4b7d14b494fbe4ca8a4169475f5
• Online	TA	Office	Hours

– https://ca.bbcollab.com/guest/521c551bad2c4049a69b3e3419fb65d1
• Professor	Office	Hour

– https://ca.bbcollab.com/guest/88051c9b2f834bd5924b9f29790eb85c

• Final
– Heads	up:	changing	to	take-home	project-based	Kaggle-like	final,	due	on	last	day	of	

exam	period.		Hashing	out	design	and	requirements	now.		Feel	free	to	go	home!		May	
allow	work	on	Final	starting	now.

• Slides	&	Homework
– Everything	will	be	released	today	or	tomorrow.		Work	at	your	own	pace.		Do	not	submit	

before	due	date.



1. Decision	trees
2. Naïve	Bayes	classification
3. Ordinary	least	squares	regression
4. Logistic	regression
5. Support	vector	machines
6. Ensemble	methods
7. Clustering	algorithms
8. Principal	component	analysis
9. Singular	value	decomposition
10.Independent	component	analysis	(bonus)

http://www.kdnuggets.com/2016/08/10-algorithms-machine-learning-engineers.html



Last	Time:	Latent-Factor	Models
• Latent-factor	models	take	input	data	‘X’	and	output	a	basis	‘Z’:

– Usually,	‘Z’	has	fewer	features	than	‘X’.

• Uses:	dimensionality	reduction,	visualization,	factor	discovery.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html
https://new.edu/resources/big-5-personality-traits



Last	Time:	Principal	Component	Analysis
• Principal	component	analysis	(PCA) is	a	linear	latent-factor	model:
– These	models	“factorize”	matrix	X	into	matrices	Z	and	W:

– We	can	think	of	rows	wc of	W	as	‘k’	fixed	“part”	(used	in	all	examples).
– zi is	the	“part	weights”	for	example	xi:	“how	much	of	each	part	wc to	use”.



Last	Time:	PCA	Geometry
• When	k=1,	the	W	matrix	defines	a	line:	
– We	choose	‘W’	as	the	line	minimizing	squared	distance	to	the	data.
– Given	‘W’,	the	zi are	the	coordinates	of	the	xi “projected”	onto	the	line.



• When	k=2,	the	W	matrix	defines	a	plane:	
– We	choose	‘W’	as	the	plane	minimizing	squared	distance	to	the	data.
– Given	‘W’,	the	zi are	the	coordinates	of	the	xi “projected”	onto	the	plane.

Last	Time:	PCA	Geometry

http://www.nlpca.org/fig_pca_principal_component_analysis.png



Last	Time:	PCA	Geometry
• When	k=2,	the	W	matrix	defines	a	plane:	
– Even	if	the	original	data	is	high-dimensional,	
we	can	visualize	data	“projected”	onto	this	plane.

http://www.prismtc.co.uk/superheroes-pca/



PCA	Objective	Function
• In	PCA	we	minimize	the	squared	error	of	the	approximation:

• This	is	equivalent	to	the	k-means	objective:
– In	k-means	zi only	has	a	single	‘1’	value	and	other	entries	are	zero.

• But	in	PCA,	the	entries	of zi can	be	any	real	numbers.
– We	approximate	xi as	a	linear	combination	of	all means/factors.



PCA	Objective	Function
• In	PCA	we	minimize	the	squared	error	of	the	approximation:

• We	can	also	view	this	as	solving	‘d’	regression	problems:
– Each	wj is	trying	to	predict	column	‘xj’ from	the	basis	zi.

• The	output	“yi”	we	try	to	predict	here	is	actually	the	features	“xi”.	

– And	unlike	in	regression	we	are	also	learning	the	features	zi.



Principal	Component	Analysis	(PCA)
• The	3	different	ways	to	write	the	PCA	objective	function:



Digression:	Data	Centering	(Important)
• In	PCA,	we	assume	that	the	data	X	is	“centered”.
– Each	column	of	X	has	a	mean	of	zero.

• It’s	easy	to	center	the	data:

• There	are	PCA	variations	that	estimate	“bias	in	each	coordinate”.
– In	basic	model	this	is	equivalent to	centering	the	data.



PCA	Computation:	Prediction
• At	the	end	of	training,	the	“model”	is	the	µj and	the	W	matrix.
– PCA	is	parametric.

• PCA	prediction	phase:
– Given	new	data	𝑋",	we	can	use	µj and	W	this	to	form	𝑍":



PCA	Computation:	Prediction
• At	the	end	of	training,	the	“model”	is	the	µj and	the	W	matrix.
– PCA	is	parametric.

• PCA	prediction	phase:
– Given	new	data	𝑋",	we	can	use	µj and	W	this	to	form	𝑍":
– The	“reconstruction	error”	is	how	close	approximation	is	to	𝑋":

– Our	“error”	from	replacing	the	xi with	the	zi and	W.	



Choosing	‘k’	by	“Variance	Explained”
• Common	to	choose	‘k’ based	on	variance	of	the	xij.

– For	a	given	‘k’	we	compute	(variance	of	errors)/(variance	of	xij):

– Gives	a	number	between	0	(k=d)	and	1	(k=0),	giving	“variance	remaining”.
• If	you	want	to	“explain	90%	of	variance”,	choose	smallest	‘k’	where	ratio	is	<	0.10.



“Variance	Explained”	in	the	Doom	Map
• Recall	the	Doom	latent-factor	model	(where	map	ignores	height):

• Interpretation	of	“variance	remaining”	formula:

• If	we	had	a	3D	map	the	“variance	remaining”	would	be	0.
https://en.wikipedia.org/wiki/Doom_(1993_video_game)
https://forum.minetest.net/viewtopic.php?f=5&t=9666



(pause)



Application:	Face	Detection
• Consider	problem	of	face	detection:

• Classic	methods	use	“eigenfaces”	as	basis:
– PCA	applied	to	images	of	faces.

https://developer.apple.com/library/content/documentation/GraphicsImaging/Conceptual/CoreImaging/ci_detect_faces/ci_detect_faces.html



Application:	Face	Detection



Eigenfaces
• Collect	a	bunch	of	images	of	faces	under	different	conditions:
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(pause)



Non-Uniqueness	of	PCA
• Unlike	k-means,	we	can	efficiently	find	global	optima	of	f(W,Z).
– Algorithms	coming	later.

• Unfortunately,	there	never	exists	a	unique	global	optimum.
– There	are	actually	several	different	sources	of	non-uniqueness.

• To	understand	these,	we’ll	need	idea	of	“span”	from	linear	algebra.
– This	also	helps	explain	the	geometry	of	PCA.
– We’ll	also	see	that	some	global	optima	may	be	better	than	others.



Span	of	1	Vector
• Consider	a	single	vector	w1 (k=1).



Span	of	1	Vector
• Consider	a	single	vector	w1 (k=1).
• The	span(w1)	is	all	vectors	of	the	form	ziw1 for	a	scalar	zi.



Span	of	1	Vector
• Consider	a	single	vector	w1 (k=1).
• The	span(w1)	is	all	vectors	of	the	form	ziw1 for	a	scalar	zi.

• If	w1 ≠	0,	this	forms	a	line.



• But	note	that	the	“span”	of	many	different	vectors gives	same	line.
– Mathematically:	αw1 defines	the	same	line	as	w1 for	any	scalar	α ≠	0.

– PCA	solution	can	only	be	defined	up	to	scalar	multiplication.
• If	(W,Z)	is	a	solution,	then	(αW,(1/α)Z)	is	also	a	solution.

Span	of	1	Vector



Span	of	2	Vectors
• Consider	two vector	w1	and	w2 (k=2).
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– The	span(w1,w2)	is	all	vectors	of	form	zi1w1 +	zi2w2 for	a	scalars	zi1 and	zi2.
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Span	of	2	Vectors
• Consider	two vector	w1	and	w2 (k=2).
– The	span(w1,w2)	is	all	vectors	of	form	zi1w1 +	zi2w2 for	a	scalars	zi1 and	zi2.

– For	most	non-zero	2d	vectors,	span(w1,w2)	is	a	plane.
• In	the	case	of	two	vectors	in	R2,	the	plane	will	be	*all*	of	R2.



• Consider	two vector	w1	and	w2 (k=2).
– The	span(w1,w2)	is	all	vectors	of	form	zi1w1 +	zi2w2 for	a	scalars	zi1 and	zi2.

– For	most	non-zero	2d	vectors,	span(w1,w2)	is	plane.
• Exception	is	if	w2 is	in	span	of	w1	(“collinear”),	then	span(w1,w2)	is	just	a	line.

Span	of	2	Vectors



Span	of	2	Vectors
• Consider	two vector	w1	and	w2 (k=2).
– The	span(w1,w2)	is	all	vectors	of	form	zi1w1 +	zi2w2 for	a	scalars	zi1 and	zi2.

– New	issues	for	PCA	(k	>=	2):
• We	have	label	switching:	span(w1,w2)	=	span(w2,w1).
• We	can	rotate	factors	within	the	plane	(if	not	rotated	to	be		collinear).



Span	of	2	Vectors
• 2	tricks	to	make	vectors	defining	a	plane	“more	unique”:
– Normalization:	enforce	that	||w1||	=	1	and	||w2||	=	1.
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Span	of	2	Vectors
• 2	tricks	to	make	vectors	defining	a	plane	“more	unique”:
– Normalization:	enforce	that	||w1||	=	1	and	||w2||	=	1.
– Orthogonality:	enforce	that	w1

Tw2 =	0	(“perpendicular”).

– Now	I	can’t	grow/shrink	vectors	(though	I	can	still	reflect).
– Now	I	can’t	rotate	one	vector	(but	I	can	still	rotate	*both*).



Digression:	PCA	only	makes	sense	for	k	≤	d
• Remember	our	clustering	dataset	with	4	clusters:

• It	doesn’t	make	sense	to	use	PCA	with	k=4	on	this	dataset.
– We	only	need	two	vectors	[1	0]	and	[0	1]	to	exactly	represent	all	2d	points.

• With	k=2,	I	could	set	Z=X	and	W=I	to	get	X=ZW	exactly.



Span	in	Higher	Dimensions
• In	higher-dimensional	spaces:
– Span	of	1	non-zero	vector	w1 is	a	line.
– Span	of	2	non-zero	vectors	w1 and	w2 is	a	plane	(if	not	collinear).

• Can	be	visualized	as	a	2D	plot.
– Span	of	3	non-zeros	vectors	{w1,	w2,	w3}	is	a	3d	space (if	not	“coplanar”).
– …

• This	is	how	the	W	matrix	in	PCA	defines	lines,	planes,	spaces,	etc.
– Each	time	we	increase	‘k’,	we	add	an	extra	“dimension”	to	the	“subspace”.



Making	PCA	Unique
• We’ve	identified	several	reasons	that	optimal	W	is	non-unique:
– I	can	multiply	any	wc by	any	non-zero	α.
– I	can	rotate	any	wc almost	arbitrarily within	the	span.
– I	can	switch	any	wc with	any	other	wc’.

• PCA	implementations	add	constraints	to	make	solution	unique:
– Normalization:	we	enforce	that	||wc||	=	1.
– Orthogonality:	we	enforce	that	wc

Twc’ =	0	for	all	c	≠	c’.
– Sequential	fitting:	We	first	fit	w1 (“first	principal	component”)	giving	a	line.

• Then	fit	w2 given	w1 (“second	principal	component”)	giving	a	plane.
• Then	we	fit	w3 given	w1 and	w2 (“third	principal	component”)	giving	a	space.



Basis,	Orthogonality,	Sequential	Fitting



Basis,	Orthogonality,	Sequential	Fitting



Basis,	Orthogonality,	Sequential	Fitting



Basis,	Orthogonality,	Sequential	Fitting

http://setosa.io/ev/principal-component-analysis



PCA	Computation:	SVD
• How	do	we	fit	with	normalization/orthogonality/sequential-fitting?
– It	can	be	done	with	the	“singular	value	decomposition”	(SVD).
– Take	CPSC	302.

• 4	lines	of	Julia	code:	 Computing	𝑍" is	cheaper	now:
– mu	=	mean(X,1)
– X	-=	repmat(mu,n,1)
– (U,S,V)	=	svd(X)
– W	=	V[:,1:k]’



PCA	Computation:	SVD
• How	do	we	fit	with	normalization/orthogonality/sequential-fitting?
– It	can	be	done	with	the	“singular	value	decomposition”	(SVD).
– Take	CPSC	302.

• 4	lines	of	Python	code:
– mu	=	np.mean(X,axis=0)
– X	-=	mu
– U,s,Vh =	np.linalg.svd(X)
– W	=	Vh[:k]

58

• Computing	Z	is	cheaper	now:



Summary
• PCA	objective:
– Minimizes	squared	error	between	elements	of	X	and	elements	of	ZW.

• Choosing	‘k’:
– We	can	choose	‘k’	to	explain	“percentage	of	variance”	in	the	data.

• PCA	non-uniqueness:
– Due	to	scaling,	rotation,	and	label	switching.

• Orthogonal	basis	and	sequential	fitting	of	PCs	(via	SVD):
– Leads	to	non-redundant	PCs	with	unique	directions.

• Next	time:	cancer	signatures	and	NBA	shot	charts.



Making	PCA	Unique
• PCA	implementations	add	constraints	to	make	solution	unique:

– Normalization:	we	enforce	that	||wc||	=	1.
– Orthogonality:	we	enforce	that	wc

Twc’ =	0	for	all	c	≠	c’.
– Sequential	fitting:	We	first	fit	w1 (“first	principal	component”)	giving	a	line.

• Then	fit	w2 given	w1 (“second	principal	component”)	giving	a	plane.
• Then	we	fit	w3 given	w1 and	w2 (“third	principal	component”)	giving	a	space.
• …

• Even	with	all	this,	the	solution	is	only	unique	up	to	sign	changes:
– I	can	still	replace	any	wc by	–wc:

• -wc is	normalized,	is	orthogonal	to	the	other	wc’,	and	spans	the	same	space.
– Possible	fix:	require	that	first	non-zero	element	of	each	wc is	positive.
– And	this	is	assuming	you	don’t	have	repeated	singular	values.

• In	that	case	you	can	rotate	the	repeated	ones	within	the	same	plane.


