CPSC 340: Machine Learning and Data Mining

More PCA Fall 2020

Admin

- Online Tutorial Sessions
 - https://ca.bbcollab.com/guest/be40f4b7d14b494fbe4ca8a4169475f5
- Online TA Office Hours
 - https://ca.bbcollab.com/guest/521c551bad2c4049a69b3e3419fb65d1
- Professor Office Hour
 - https://ca.bbcollab.com/guest/88051c9b2f834bd5924b9f29790eb85c
- Final
 - Heads up: changing to take-home project-based Kaggle-like final, due on last day of exam period. Hashing out design and requirements now. *Feel free to go home!* May allow work on Final starting now.
- Slides & Homework
 - Everything will be released today or tomorrow. Work at your own pace. Do not submit before due date.

1. Decision trees

- 2. Naïve Bayes classification
- 3. Ordinary least squares regression
- 4. Logistic regression
- 5. Support vector machines
- 6. Ensemble methods
- 7. Clustering algorithms
- 8. Principal component analysis
- 9. Singular value decomposition
- 10. Independent component analysis (bonus)

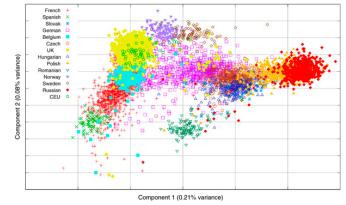
The 10 Algorithms Machine Learning Engineers Need to Know

Last Time: Latent-Factor Models

• Latent-factor models take input data 'X' and output a basis 'Z':

- Usually, 'Z' has fewer features than 'X'.

• Uses: dimensionality reduction, visualization, factor discovery.



Trait	Description
Openness	Being curious, original, intellectual, creative, and open to new ideas.
Conscientiousness	Being organized, systematic, punctual, achievement- oriented, and dependable.
Extraversion	Being outgoing, talkative, sociable, and enjoying social situations.
Agreeableness	Being affable, tolerant, sensitive, trusting, kind, and warm.
Neuroticism	Being anxious, irritable, temperamental, and moody.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html https://new.edu/resources/big-5-personality-traits

Last Time: Principal Component Analysis

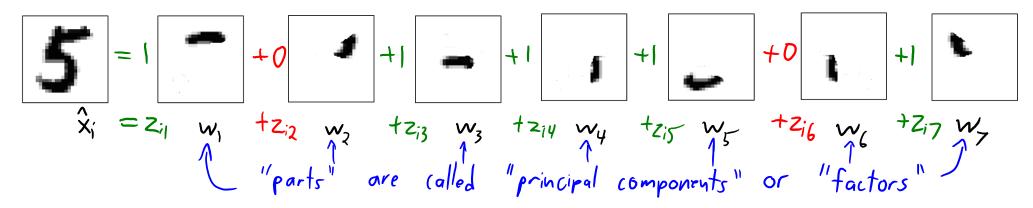
• Principal component analysis (PCA) is a linear latent-factor model:

- These models "factorize" matrix X into matrices Z and W:

$$X_{n \times d} \approx Z_{n \times k} W_{k \times d} \qquad x_i \approx W_{z_i} \qquad x_{ij} \approx \langle w_{j, z_i} \rangle$$

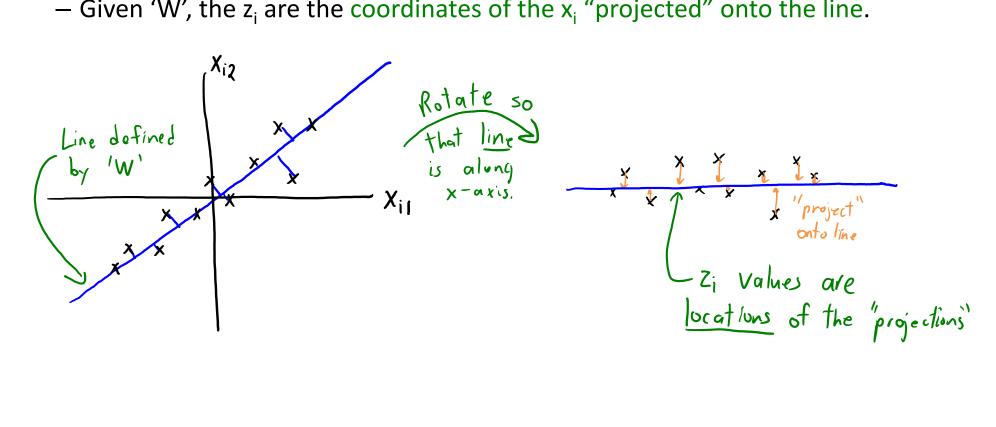
– We can think of rows w_c of W as 'k' fixed "part" (used in all examples).

 $- z_i$ is the "part weights" for example x_i : "how much of each part w_c to use".



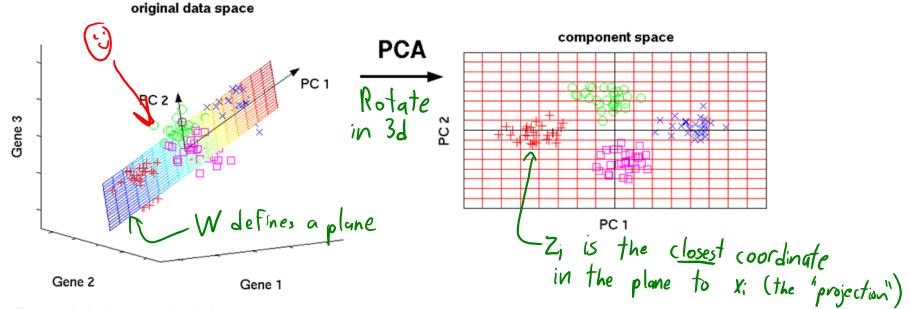
Last Time: PCA Geometry

- When k=1, the W matrix defines a line:
 - We choose 'W' as the line minimizing squared distance to the data.
 - Given 'W', the z_i are the coordinates of the x_i "projected" onto the line.



Last Time: PCA Geometry

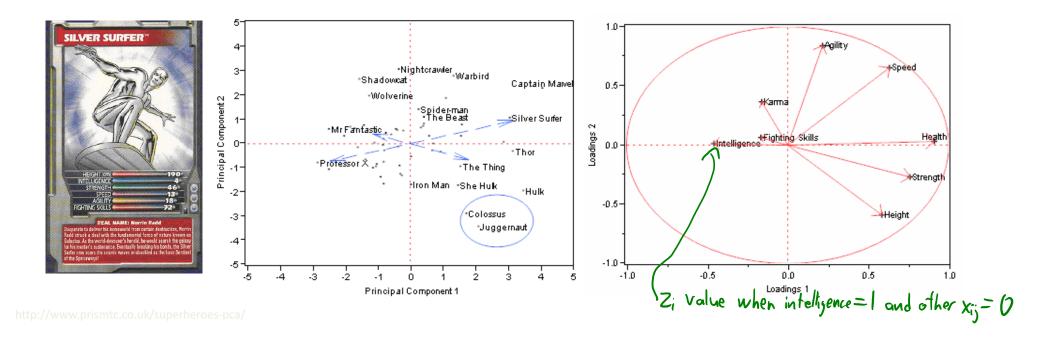
- When k=2, the W matrix defines a plane:
 - We choose 'W' as the plane minimizing squared distance to the data.
 - Given 'W', the z_i are the coordinates of the x_i "projected" onto the plane.



http://www.nlpca.org/fig_pca_principal_component_analysis.png

Last Time: PCA Geometry

- When k=2, the W matrix defines a plane:
 - Even if the original data is high-dimensional, we can visualize data "projected" onto this plane.



PCA Objective Function

• In PCA we minimize the squared error of the approximation:

$$f(W, Z) = \sum_{i=1}^{2} ||W^{T}z_{i} - x_{i}||^{2}$$

- This is equivalent to the k-means objective:
 - In k-means z_i only has a single '1' value and other entries are zero.
- But in PCA, the entries of z_i can be any real numbers.
 - We approximate x_i as a linear combination of all means/factors.

PCA Objective Function

• In PCA we minimize the squared error of the approximation:

- We can also view this as solving 'd' regression problems:
 - Each w^j is trying to predict column ' $x^{j'}$ from the basis z_i .
 - The output " y_i " we try to predict here is actually the features " x_i ".
 - And unlike in regression we are also learning the features z_i .

Principal Component Analysis (PCA)

• The 3 different ways to write the PCA objective function:

$$f(W, z) = \sum_{i=1}^{n} \sum_{j=1}^{d} (\langle w_{j}^{i} z_{i}^{j} - x_{ij}^{j} \rangle^{2} \quad (approximating \ x_{ij} \ by \ \langle w_{j}^{j} z_{i}^{j} \rangle$$

$$= \sum_{i=1}^{n} ||W^{T} z_{i} - x_{i}^{j}||^{2} \quad (approximating \ x_{i} \ by \ W^{T} z_{i})$$

$$= ||ZW - X||_{F}^{2} \quad (approximating \ X \ by \ ZW)$$

Digression: Data Centering (Important)

• In PCA, we assume that the data X is "centered".

- Each column of X has a mean of zero.

• It's easy to center the data:

Set
$$M_j = -\frac{1}{N_{j-1}} \sum_{i=1}^{n} x_{ij}$$
 (mean of colum 'j')
Replace each x_{ij} with $(x_{ij} - M_j)$

- There are PCA variations that estimate "bias in each coordinate".
 - In basic model this is equivalent to centering the data.

PCA Computation: Prediction

- At the end of training, the "model" is the μ_j and the W matrix.
 PCA is parametric.
- PCA prediction phase:
 - Given new data \tilde{X} , we can use μ_i and W this to form \tilde{Z} :

1. Center: replace each
$$\tilde{x}_{ij}$$
 with $(\tilde{x}_{ij} - m_j)$
2. Find \tilde{Z} minimizing squared error:
 $\tilde{Z} = \tilde{X} W^T (WW^T)^T$

 $(could just store this dxk matrix)$

PCA Computation: Prediction

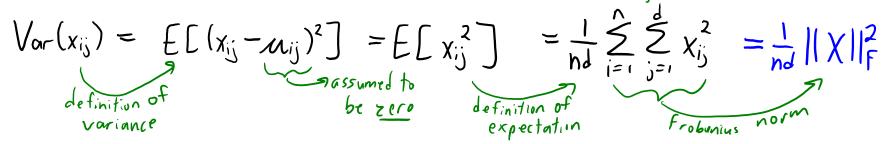
- At the end of training, the "model" is the μ_j and the W matrix.
 PCA is parametric.
- PCA prediction phase:
 - Given new data \tilde{X} , we can use μ_j and W this to form \tilde{Z} :
 - The "reconstruction error" is how close approximation is to \tilde{X} :

$$\frac{1}{\hat{X}} = \frac{1}{\hat{X}} = \frac{1$$

– Our "error" from replacing the x_i with the z_i and W.

Choosing 'k' by "Variance Explained"

• Common to choose 'k' based on variance of the x_{ii}.



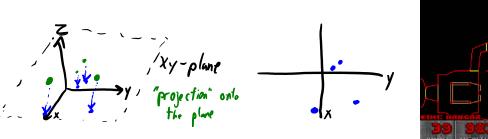
– For a given 'k' we compute (variance of errors)/(variance of x_{ii}):

$$\frac{||ZW - X||_{F}^{2}}{||X||_{F}^{2}}$$

- Gives a number between 0 (k=d) and 1 (k=0), giving "variance remaining".
 - If you want to "explain 90% of variance", choose smallest 'k' where ratio is < 0.10.

"Variance Explained" in the Doom Map

• Recall the Doom latent-factor model (where map ignores height):



• Interpretation of "variance remaining" formula:

$$\frac{||ZW - X||_{F}^{2}}{||X||_{F}^{2}} \leftarrow Variance in z-dimension (variance in x- and y-dimensions fully captured by overhead map)}{||X||_{F}^{2}} \leftarrow Variance of character in 3-dimensions}$$

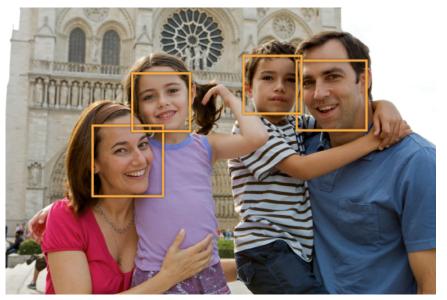
• If we had a 3D map the "variance remaining" would be 0.

https://en.wikipedia.org/wiki/Doom_(1993_video_game https://forum.minetest.net/viewtopic.php?f=5&t=9666

(pause)

Application: Face Detection

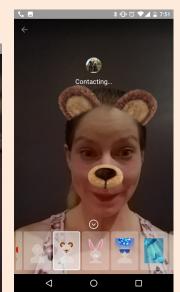
• Consider problem of face detection:

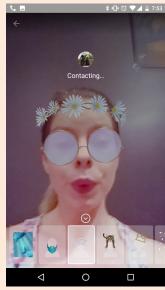


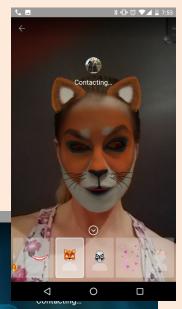
- Classic methods use "eigenfaces" as basis:
 - PCA applied to images of faces.

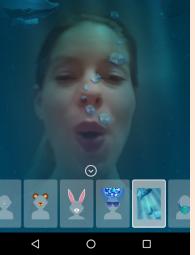
https://developer.apple.com/library/content/documentation/GraphicsImaging/Conceptual/CoreImaging/ci_detect_faces/ci_detect_faces.html

Application: Face Detection



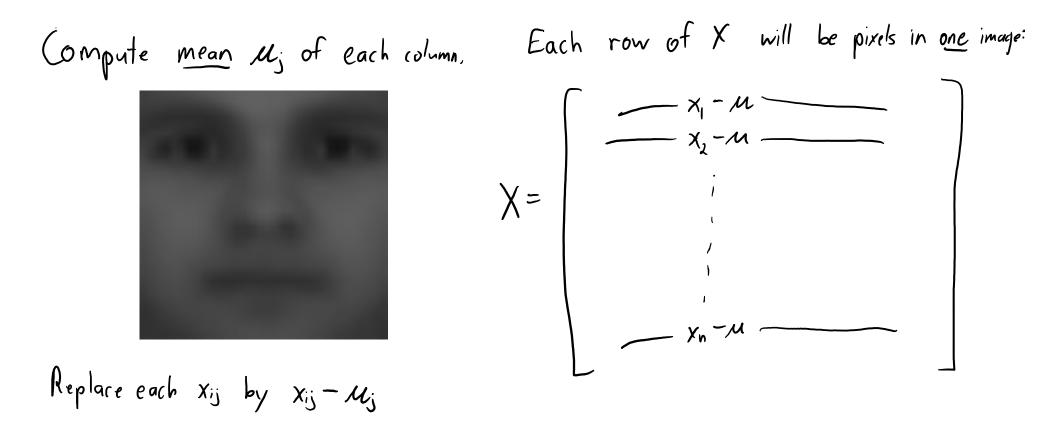


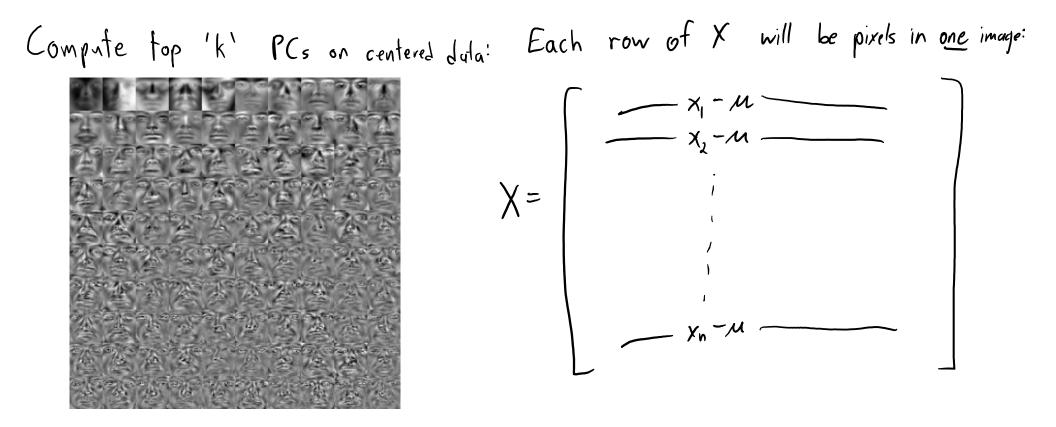


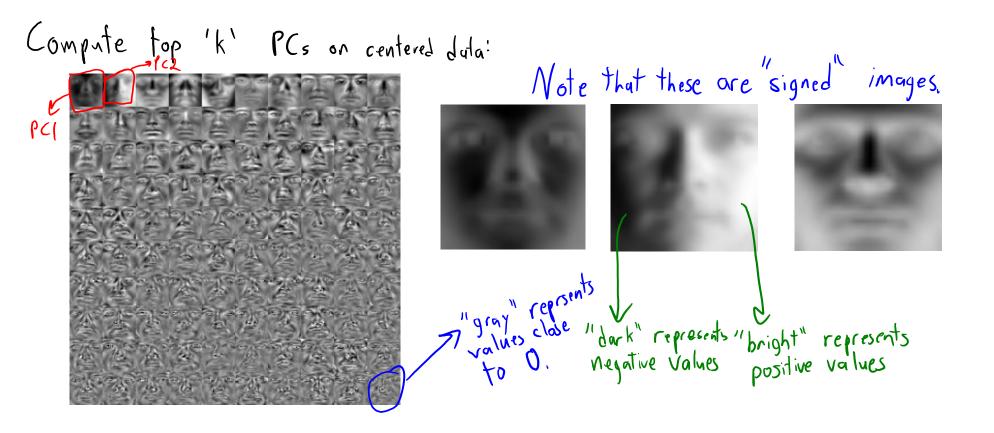


• Collect a bunch of images of faces under different conditions:

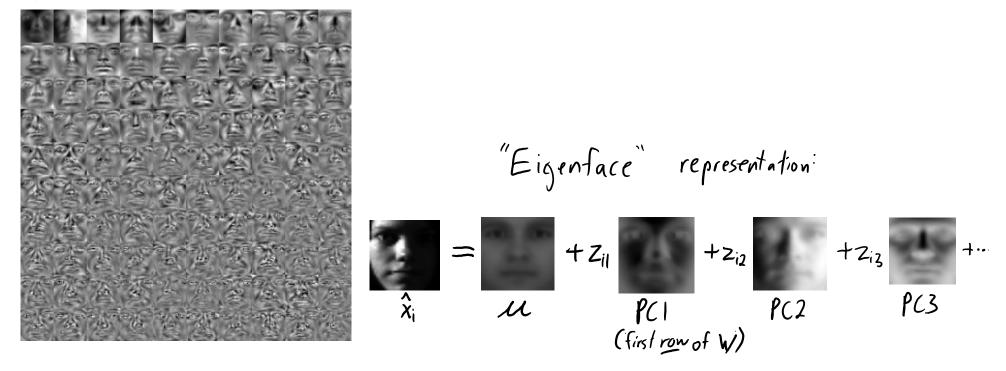


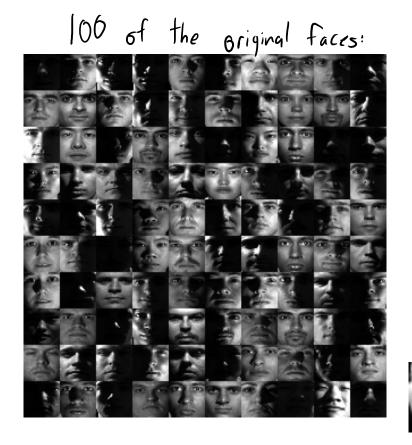






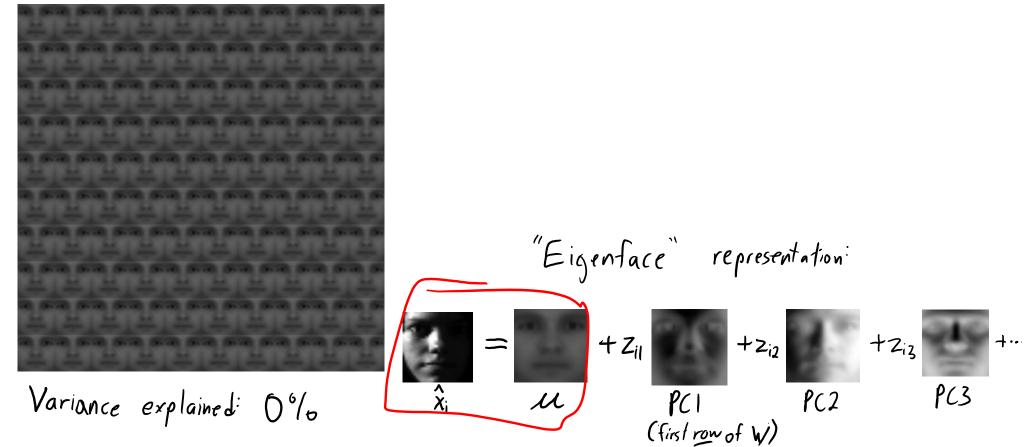
Compute top 'k' PCs on centered duta:

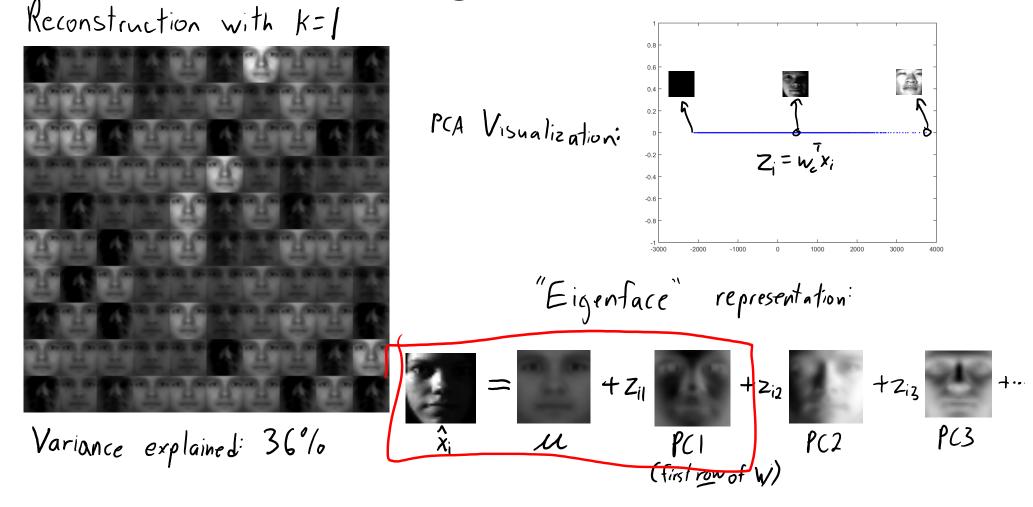




"Eigenface" representation +213 +... +Z_{il} +212 = PC3 \hat{x}_i м PC2 PCI (first row of W)

Reconstruction with K= O





Reconstruction with K=2

Variance explained: 71%

Eigenfaces 2000 1000 PCA Visualization -1000 -2000 <u> ()-></u> -3000 4000 2000 3000 1000 "Eigenface" representation: +Z_{il} + 2,2 +Ziz +... PC3 ∧ Xi PCI PC2 \mathcal{M} (first row of W)

 \hat{x}_i

PCA Visualization

1000

-500 ~ -1000 ~ -1500 > 4000

2000

"Eigenface" representation:

PCI

(first row of W)

 $+Z_{il}$

M

-2000

-4000

+ zi2

2000 3000 4000 1000 2000

+Ziz

PC3

4..

-3000 -2000 -1000 0

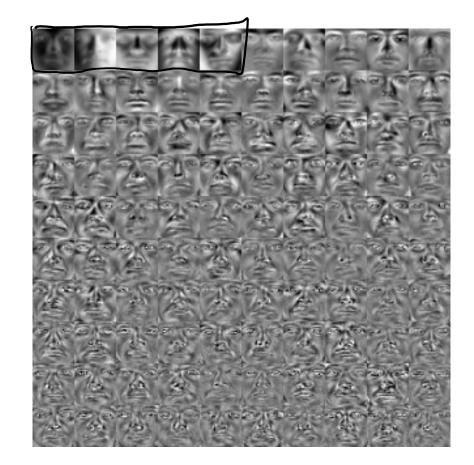
PC2

Reconstruction with K= 3

Variance explained: 76%

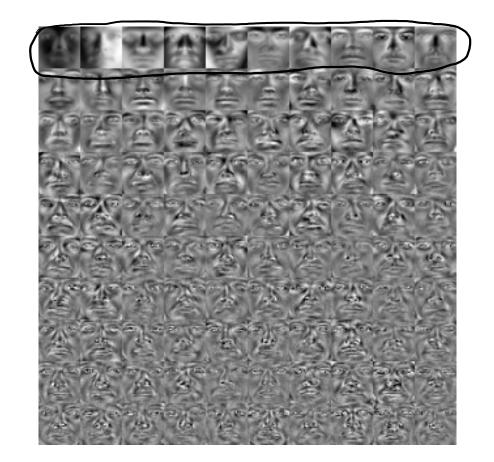
Reconstruction with K=5

Variance explained: 80°/0



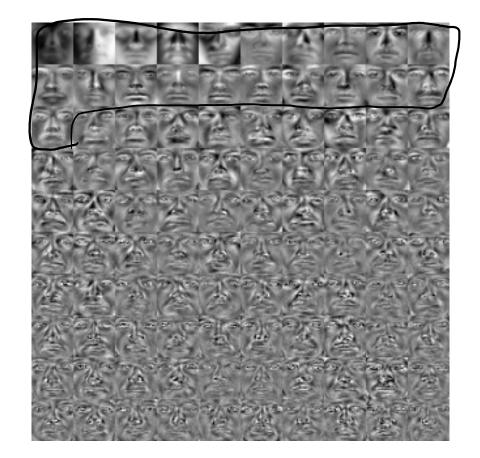
Reconstruction with K=10

Variance explained: 85%



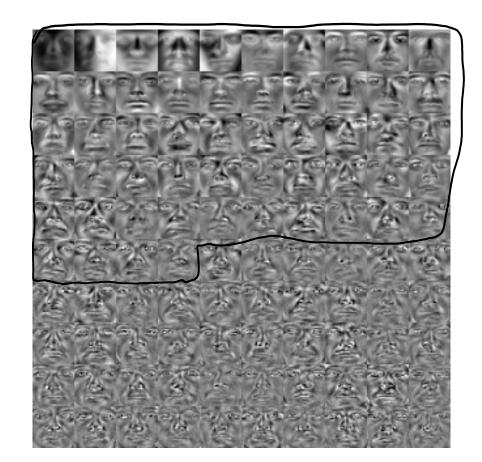
Reconstruction with K=21

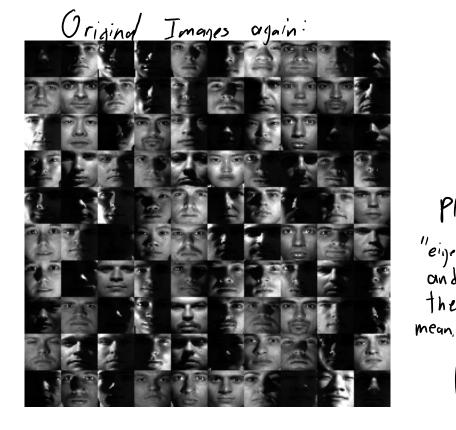
Variance explained: 90°/0



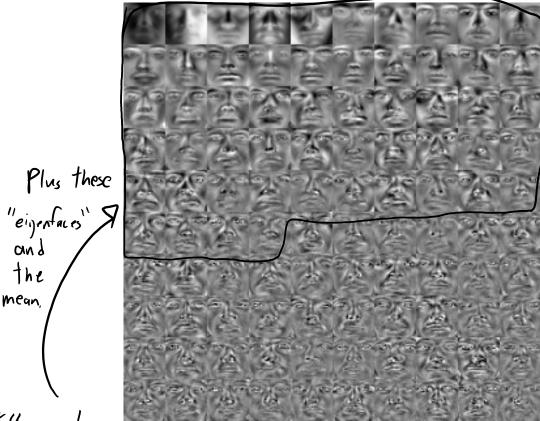
Reconstruction with K=54

Variance explained: 95%





We can replace 1024 xi values by 54 z; values

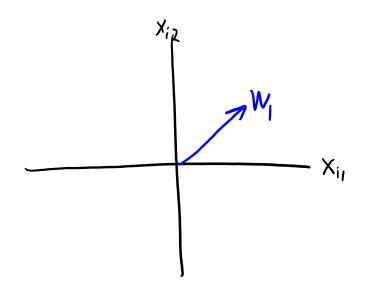


(pause)

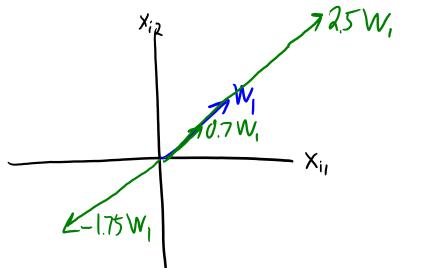
Non-Uniqueness of PCA

- Unlike k-means, we can efficiently find global optima of f(W,Z).
 Algorithms coming later.
- Unfortunately, there never exists a unique global optimum.
 - There are actually several different sources of non-uniqueness.
- To understand these, we'll need idea of "span" from linear algebra.
 - This also helps explain the geometry of PCA.
 - We'll also see that some global optima may be better than others.

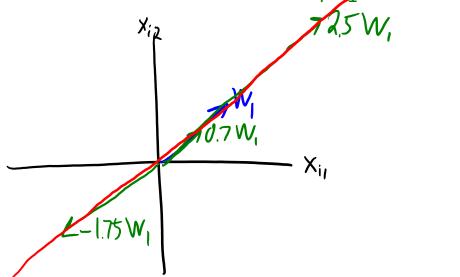
• Consider a single vector w₁ (k=1).



- Consider a single vector w₁ (k=1).
- The span(w₁) is all vectors of the form $z_i w_1$ for a scalar z_i .

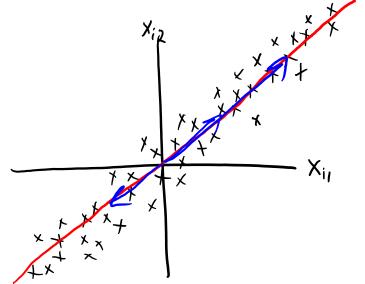


- Consider a single vector w₁ (k=1).
- The span(w_1) is all vectors of the form $z_i w_1$ for a scalar z_i .



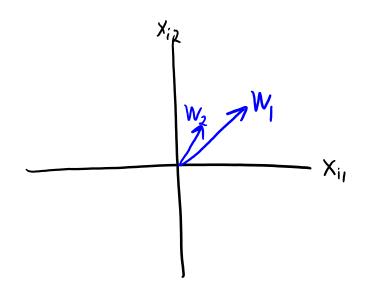
• If $w_1 \neq 0$, this forms a line.

- But note that the "span" of many different vectors gives same line.
 - Mathematically: αw_1 defines the same line as w_1 for any scalar $\alpha \neq 0$.

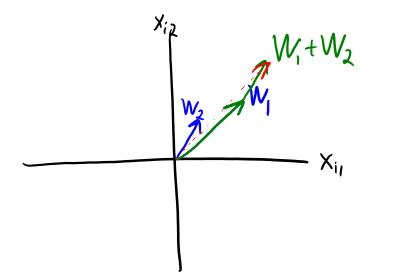


- PCA solution can only be defined up to scalar multiplication.
 - If (W,Z) is a solution, then $(\alpha W,(1/\alpha)Z)$ is also a solution. $\| (\alpha W)(\frac{1}{\alpha}Z) \chi \|_{F}^{2} = \| WZ \chi \|_{F}^{2}$

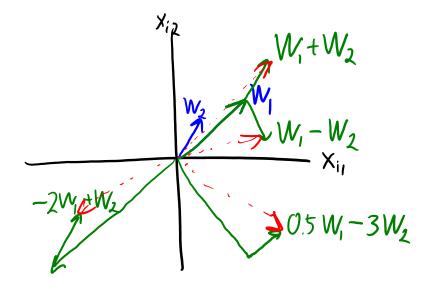
• Consider two vector w₁ and w₂ (k=2).



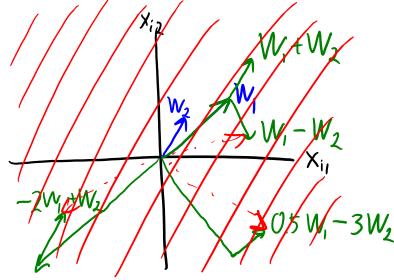
• Consider two vector w₁ and w₂ (k=2).



• Consider two vector w₁ and w₂ (k=2).

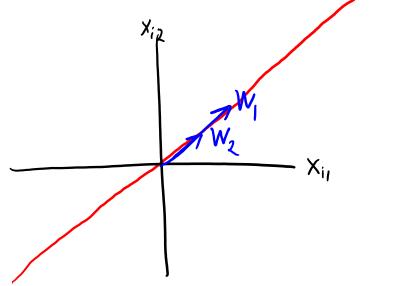


• Consider two vector w₁ and w₂ (k=2).



- For most non-zero 2d vectors, span(w_1, w_2) is a plane.
 - In the case of two vectors in R^2 , the plane will be *all* of R^2 .

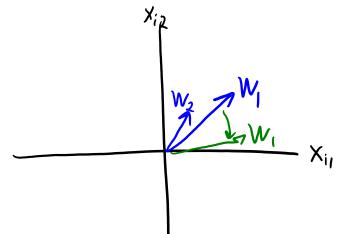
• Consider two vector w₁ and w₂ (k=2).



- For most non-zero 2d vectors, $span(w_1, w_2)$ is plane.
 - Exception is if w_2 is in span of w_1 ("collinear"), then span(w_1, w_2) is just a line.

• Consider two vector w₁ and w₂ (k=2).

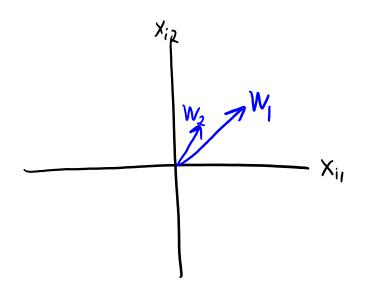
- The span(w_1, w_2) is all vectors of form $z_{i1}w_1 + z_{i2}w_2$ for a scalars z_{i1} and z_{i2} .



– New issues for PCA (k >= 2):

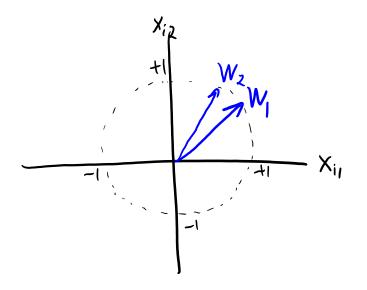
- We have label switching: span(w₁,w₂) = span(w₂,w₁).
- We can rotate factors within the plane (if not rotated to be collinear).

- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.

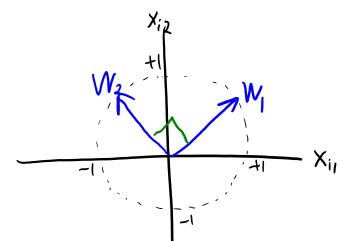


• 2 tricks to make vectors defining a plane "more unique":

- Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.



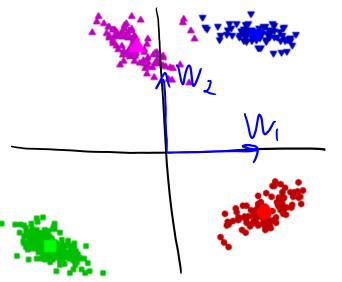
- 2 tricks to make vectors defining a plane "more unique":
 - Normalization: enforce that $||w_1|| = 1$ and $||w_2|| = 1$.
 - Orthogonality: enforce that $w_1^T w_2 = 0$ ("perpendicular").



- Now I can't grow/shrink vectors (though I can still reflect).
- Now I can't rotate one vector (but I can still rotate *both*).

Digression: PCA only makes sense for $k \le d$

• Remember our clustering dataset with 4 clusters:



- It doesn't make sense to use PCA with k=4 on this dataset.
 - We only need two vectors [1 0] and [0 1] to exactly represent all 2d points.
 - With k=2, I could set Z=X and W=I to get X=ZW exactly.

Span in Higher Dimensions

- In higher-dimensional spaces:
 - Span of 1 non-zero vector w_1 is a line.
 - Span of 2 non-zero vectors w_1 and w_2 is a plane (if not collinear).
 - Can be visualized as a 2D plot.
 - Span of 3 non-zeros vectors $\{w_1, w_2, w_3\}$ is a 3d space (if not "coplanar").

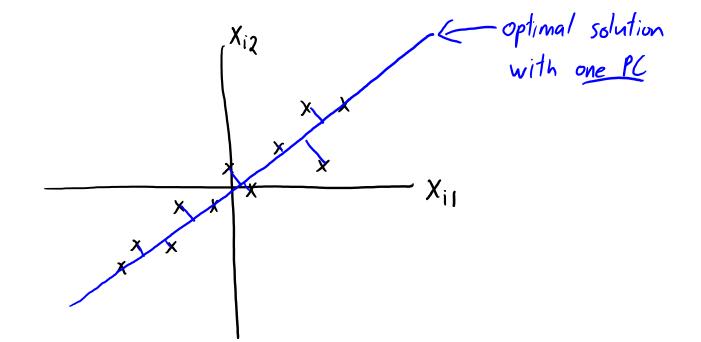
— ...

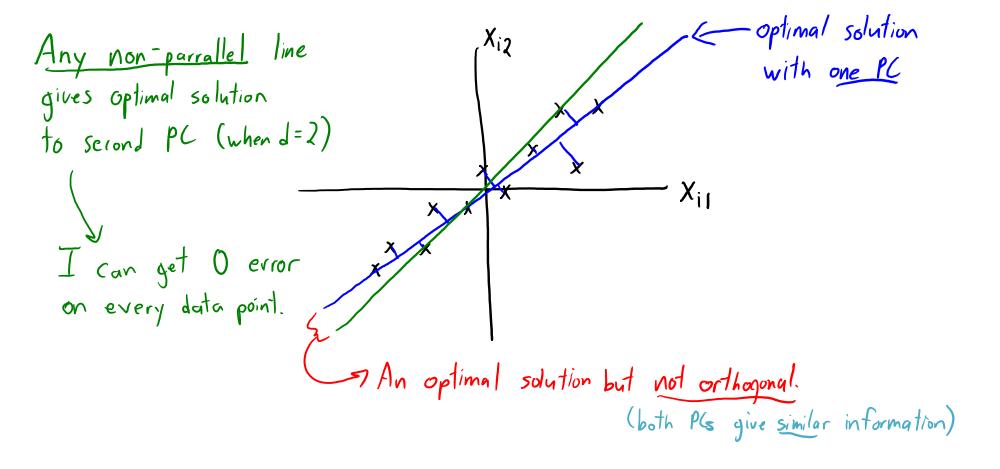
• This is how the W matrix in PCA defines lines, planes, spaces, etc.

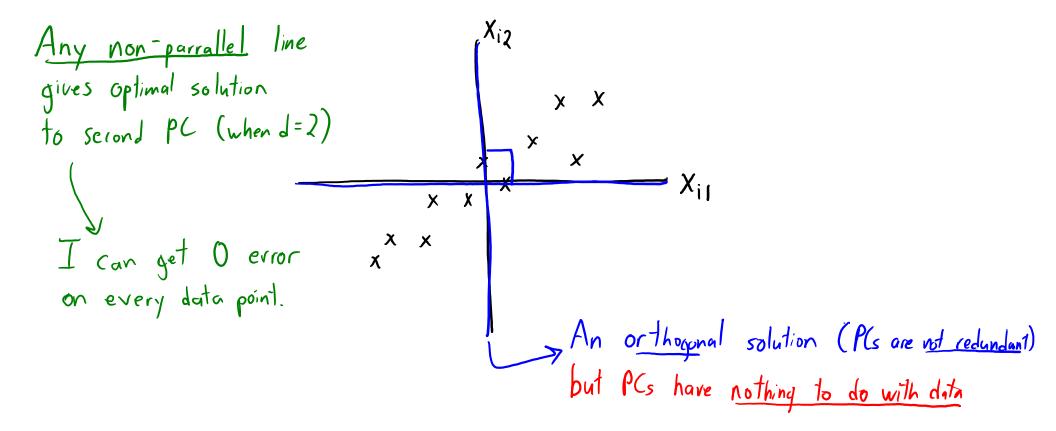
- Each time we increase 'k', we add an extra "dimension" to the "subspace".

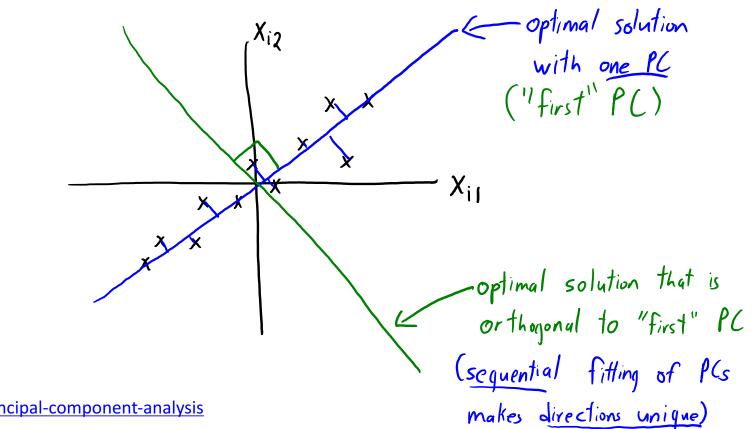
Making PCA Unique

- We've identified several reasons that optimal W is non-unique:
 - I can multiply any w_c by any non-zero α .
 - I can rotate any w_c almost arbitrarily within the span.
 - I can switch any w_c with any other $w_{c'}$.
- PCA implementations add constraints to make solution unique:
 - Normalization: we enforce that $||w_c|| = 1$.
 - Orthogonality: we enforce that $w_c^T w_{c'} = 0$ for all $c \neq c'$.
 - Sequential fitting: We first fit w_1 ("first principal component") giving a line.
 - Then fit w_2 given w_1 ("second principal component") giving a plane.
 - Then we fit w_3 given w_1 and w_2 ("third principal component") giving a space.









http://setosa.io/ev/principal-component-analysis

PCA Computation: SVD

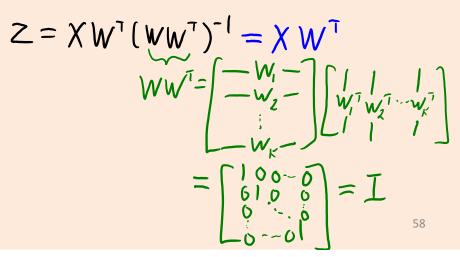
- How do we fit with normalization/orthogonality/sequential-fitting?
 - It can be done with the "singular value decomposition" (SVD).
 - Take CPSC 302.
- 4 lines of Julia code:
 - -mu = mean(X,1)
 - X -= repmat(mu,n,1)
 - -(U,S,V) = svd(X)
 - -W = V[:,1:k]'

Computing \widetilde{Z} is cheaper now: $\widetilde{Z} = \widetilde{X} W^{\intercal} (WW^{\intercal})^{-1} = \widetilde{X} W^{\intercal}$ $WW^{\intercal} = \begin{bmatrix} -W_{1} - \\ -W_{2} - \\ W_{1} - \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ W_{1} - W_{2} - \\ W_{2} - \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = I$

PCA Computation: SVD

- How do we fit with normalization/orthogonality/sequential-fitting?
 - It can be done with the "singular value decomposition" (SVD).
 - Take CPSC 302.
- 4 lines of Python code:
 - mu = np.mean(X,axis=0)
 - X -= mu
 - U,s,Vh = np.linalg.svd(X)
 - -W = Vh[:k]

• Computing Z is cheaper now:



Summary

- PCA objective:
 - Minimizes squared error between elements of X and elements of ZW.
- Choosing 'k':
 - We can choose 'k' to explain "percentage of variance" in the data.
- PCA non-uniqueness:
 - Due to scaling, rotation, and label switching.
- Orthogonal basis and sequential fitting of PCs (via SVD):
 - Leads to non-redundant PCs with unique directions.
- Next time: cancer signatures and NBA shot charts.

Making PCA Unique

- PCA implementations add constraints to make solution unique:
 - Normalization: we enforce that $||w_c|| = 1$.
 - Orthogonality: we enforce that $w_c^T w_{c'} = 0$ for all $c \neq c'$.
 - Sequential fitting: We first fit w_1 ("first principal component") giving a line.
 - Then fit w₂ given w₁ ("second principal component") giving a plane.
 - Then we fit w_3 given w_1 and w_2 ("third principal component") giving a space.
 - ...
- Even with all this, the solution is only unique up to sign changes:
 - I can still replace any $w_c by w_c$:
 - $-w_c$ is normalized, is orthogonal to the other $w_{c'}$, and spans the same space.
 - Possible fix: require that first non-zero element of each w_c is positive.
 - And this is assuming you don't have repeated singular values.
 - In that case you can rotate the repeated ones within the same plane.