
CPSC	340:
Machine	Learning	and	Data	Mining

Principal	Component	Analysis
Fall	2020



Last	Time:	MAP	Estimation
• MAP	estimation	maximizes posterior:

• Likelihood measures	probability	of	labels	‘y’	given	parameters	‘w’.
• Prior measures	probability	of	parameters	‘w’	before	we	see	data.
• For	IID	training	data	and	independent	priors,	equivalent	to	using:

• So	log-likelihood	is	an	error	function,	and	log-prior	is	a	regularizer.
– Squared	error	comes	from	Gaussian	likelihood.
– L2-regularization	comes	from	Gaussian	prior.



Motivation:	Human	vs.	Machine	Perception
• Huge	difference	between	what	we	see	and	what	computer	sees:

• But	maybe images	shouldn’t	be	written	as	combinations	of	pixels.
– Can	we	learn	a	better	representation?
– In	other	words,	can	we	learn	good	features?

What	we	see: What	the	computer	“sees”:



Motivation:	Pixels	vs.	Parts
• Can	view	28x28	image	as	weighted	sum	of	“single	pixel	on”	images:

– We	have	one	image/feature	for	each	pixel.
– The	weights specify	“how	much	of	this	pixel	is	in	the	image”.

• A	weight	of	zero	means	that	pixel	is	white,	a	weight	of	1	means	it’s	black.

• This	is	non-intuitive,	isn’t	a	“3”	made	of	small	number	of	“parts”?

– Now	the	weights	are	“how	much	of	this	part	is	in	the	image”.



Motivation:	Pixels	vs.	Parts
• We	could	represent	other	digits	as	different	combinations	of	“parts”:

• Consider	replacing	images	xi by	the	weights	zi of	the	different	parts:
– The	784-dimensional	xi for	the	“5”	image	is	replaced	by	7	numbers:	zi =	[1 0 1	1	1 0 1].
– Features	like	this	could	make	learning	much	easier.



Part	4:	Latent-Factor	Models
• The	“part	weights”	are	a	change	of	basis	from	xi to	some	zi.

– But	in	high	dimensions,	it	can	be	hard	to	find	a	good	basis.

• Part	4	is	about	learning	the	basis	from	the	data.

• Why?
– Supervised	learning:	we	could	use	“part	weights”	as	our	features.
– Outlier	detection:	it	might	be	an	outlier	if	isn’t	a	combination	of	usual	parts.
– Dimension	reduction:	compress	data	into	limited	number	of	“part	weights”.
– Visualization:	if	we	have	only	2	“part	weights”,	we	can	view	data	as	a	scatterplot.
– Interpretation:	we	can	try	and	figure	out	what	the	“parts”	represent.



Previously:	Vector	Quantization
• Recall	using	k-means	for	vector	quantization:
– Run	k-means	to	find	a	set	of	“means”	wc.
– This	gives	a	cluster	𝑦"i for	each	object	‘i’.
– Replace	features	xi by	mean	of	cluster:

• This	can	be	viewed	as	a	(really	bad)	latent-factor	model.	



Vector	Quantization	(VQ)	as	Latent-Factor	Model

• When	d=3,	we	could	write	xi exactly	as:

– In	this	“pointless”	latent-factor	model	we	have	zi =	[xi1 xi2 xi3].

• If	xi is	in	cluster	2,	VQ	approximates	xi by	mean	w2 of	cluster	2:

• So	in	this	example	we	would	have	zi =	[0 1 0 0].
– The	“parts”	are	the	means	from	k-means.
– VQ	only	uses	one	part (the	“part”	from	the	cluster).



Vector	Quantization	vs.	PCA
• Viewing	vector	quantization	as	a	latent-factor	model:

• Suppose	we’re	doing	supervised	learning,
and	the	colours	are	the	true	labels	‘y’:
– Classification	would	be	really	easy
with	this	“k-means	basis”	‘Z’.



Vector	Quantization	vs.	PCA
• Viewing	vector	quantization	as	a	latent-factor	model:

• But	it	only	uses	1	part,	it’s	just	memorizing	‘k’	points	in	xi space.
– What	we	want	is	combinations	of	parts.

• PCA	is	a	generalization	that	allows	continuous	‘zi’:
– It	can	have	more	than	1	non-zero.
– It	can	use	fractional	weights	and	negative	weights.



Principal	Component	Analysis	(PCA)	Applications

• Principal	component	analysis	(PCA)	has	been	invented	many	times:

https://en.wikipedia.org/wiki/Principal_component_analysis



PCA	Notation	(MEMORIZE)
• PCA takes	in	a	matrix	‘X’	and	an	input	‘k’,	and	outputs	two	matrices:

• For	row	‘c’	of	W,	we	use	the	notation	wc.
– Each	wc is	a	“part”	(also	called	a	“factor”	or	“principal	component”).

• For	row	‘i’	of	Z,	we	use	the	notation	zi.
– Each	zi is	a	set	of	“part	weights”	(or	“factor	loadings”	or	“features”).

• For	column	‘j’	of	W,	we	use	the	notation	wj.
– Index	‘j’	of	all	the	‘k’	“parts”	(value	of	pixel	‘j’	in	all	the	different	parts).



PCA	Notation	(MEMORIZE)
• PCA	takes	in	a	matrix	‘X’	and	an	input	‘k’,	and	outputs	two	matrices:

• With	this	notation,	we	can	write	our	approximation	of	one	xij as:

– K-means:	“take	index	‘j’	of	closest	mean”.	
– PCA:	“zi gives	weights	for	index	‘j’	of	all	means”.

• We	can	write	approximation	of		the	vector	xi as:



Different	views	(MEMORIZE)
• PCA	approximates	each	xij by	the	inner	product	<	wj,	zi >.
• PCA	approximates	each	xi by	the	matrix-vector	product	WTzi.
• PCA	approximates	matrix	‘X’	by	the	matrix-matrix	product	ZW.

– PCA	is	also	called	a	“matrix	factorization”	model.	
– Both	‘Z’	and	‘W’	are	variables.

• This	can	be	viewed	as	a	“change	of	basis”	from	xi to	zi values.
– The	“basis	vectors”	are	the	rows	of	W,	the	wc.
– The	“coordinates”	in	the	new	basis	of	each	xi are	the	zi.



• Applications	of	PCA:
– Dimensionality	reduction:	replace	‘X’	with	lower-dimensional	‘Z’.

• If	k	<<	d,	then	compresses	data.
• Often	better	approximation	than	vector	quantization.

PCA	Applications



• Applications	of	PCA:
– Dimensionality	reduction:	replace	‘X’	with	lower-dimensional	‘Z’.

• If	k	<<	d,	then	compresses	data.
• Often	better	approximation	than	vector	quantization.

PCA	Applications



• Applications	of	PCA:
– Dimensionality	reduction:	replace	‘X’	with	lower-dimensional	‘Z’.

• If	k	<<	d,	then	compresses	data.
• Often	better	approximation	than	vector	quantization.

PCA	Applications

https://monsterlegacy.net/2013/03/04/rancor-star-wars/



• Applications	of	PCA:
– Dimensionality	reduction:	replace	‘X’	with	lower-dimensional	‘Z’.

• If	k	<<	d,	then	compresses	data.
• Often	better	approximation	than	vector	quantization.

PCA	Applications

https://monsterlegacy.net/2013/03/04/rancor-star-wars/



• Applications	of	PCA:
– Outlier	detection:	if	PCA	gives	poor	approximation	of	xi,	could	be	‘outlier’.

• Though	due	to	squared	error	PCA	is	sensitive	to	outliers.

PCA	Applications



• Applications	of	PCA:
– Partial	least	squares:	uses	PCA	features	as	basis	for	linear	model.

PCA	Applications



• Applications	of	PCA:
– Data	visualization:	plot	zi with	k	=	2	to	visualize	high-dimensional	objects.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html

PCA	Applications



• Applications	of	PCA:
– Data	visualization:	plot	zi with	k	=	2	to	visualize	high-dimensional	objects.

• Can	augment	other	visualizations:

https://www.sciencedaily.com/releases/2018/01/180125140943.htm

PCA	Applications



• Applications	of	PCA:
– Data	interpretation:	we	can	try	to	assign	meaning	to	latent	factors	wc.

• Hidden	“factors”	that	influence	all	the	variables.

https://new.edu/resources/big-5-personality-traits

PCA	Applications

"Most	Personality	Quizzes	Are	Junk	Science.	I	Found	One	That	Isn't."



What	is	PCA	actually	doing?

When	should	PCA	work	well?

Today	I	just	want	to	show	geometry,
we’ll	talk	about	implementation	next	time.



Doom	Overhead	Map	and	Latent-Factor	Models

• Original	“Doom”	video	game	included	an	“overhead	map”	feature:

• This	map	can	be	viewed	as	a	latent-factor	model	of	player	location.
https://en.wikipedia.org/wiki/Doom_(1993_video_game)
https://forum.minetest.net/viewtopic.php?f=5&t=9666



Overhead	Map	and	Latent-Factor	Models
• Actual	player	location	at	time	‘i’	can	be	described	by	3	coordinates:

• The	overhead	map	approximates	these	3	coordinates	with	only	2:

• Our	k=2	latent	factors	are	the	following:

• So	our	approximation	of	xi is:



Overhead	Map	and	Latent-Factor	Models
• The	“overhead	map”	approximation	just	ignores	the	“height”.

– This	is	a	good	approximation	if	the	world	is	flat.
• Even	if	the	character	jumps,	the	first	two	features	will	approximate	location.

– But	it’s	a	poor	approximation	if	heights	are	different.



Overhead	Map	and	Latent-Factor	Models
• Consider	these	crazy	goats	trying	to	get	some	salt:
– Ignoring	height	gives	poor	approximation	of	goat	location.

• But	the	“goat	space”	is	basically	a	two-dimensional	plane.
– Better	k=2	approximation:	define	‘W’	so	that	combinations	give	the	plane.www.momtastic.com/webecoist/2010/11/07/some-fine-dam-climbing-goats-scaling-steep-vertical-wall

https://www.quora.com/What-is-a-simplified-explanation-and-proof-of-the-Johnson-Lindenstrauss-lemma



PCA	with	d=2	and	k	=1



PCA	with	d=2	and	k	=1



PCA	with	d=2	and	k	=1



PCA	with	d=2	and	k	=1



PCA	with	d=3	and	k=2.
• With	d=3,	PCA	(k=1)	finds	line	minimizing	squared	distance	to	xi.
• With	d=3,	PCA	(k=2)	finds	plane	minimizing	squared	distance	to	xi.

http://www.nlpca.org/fig_pca_principal_component_analysis.png



Summary
• Latent-factor	models:
– Try	to	learn	basis	Z	from	training	examples	X.
– Usually,	the	zi are	“part	weights”	for	“parts”	wc.
– Useful	for	dimensionality	reduction,	visualization,	factor	discovery,	etc.

• Principal	component	analysis:	
– Writes	each	training	examples	as	linear	combination	of	parts.

• We	learn	both	the	“parts”	‘W’	and	the	“features”	Z.
– We	can	view	‘W’	as	best	lower-dimensional	hyper-plane.
– We	can	view	‘Z’	as	the	coordinates	in	the	lower-dimensional	hyper-plane.

• Next	time:	PCA	in	4	lines	of	code.


