CPSC 340:
Machine Learning and Data Mining

Principal Component Analysis
Fall 2020

Last Time: MAP Estimation

MAP estimation maximizes posterior

‘)(wl)(,7) X ID l X W7 ("")
{)oﬁenor |, ”AMJ F“W

Likelihood measures probability of labels ‘y’ given parameters ‘w’.

Prior measures probability of parameters ‘w’ before we see data.

For IID training data and independent priors, equivalent to using:

.F(W) = ‘é '03(‘0()/.' ’x,-,w)) — é)03 (P(WJ»

So log-likelihood is an error function, and log-prior is a regularizer.
— Squared error comes from Gaussian likelihood.
— L2-regularization comes from Gaussian prior.

Motivation: Human vs. Machine Perception

* Huge difference between what we see and what computer sees:

What we see: What the computer “sees”:

* But maybe images shouldn’t be written as combinations of pixels.
— Can we learn a better representation?
— In other words, can we learn good features?

Motivation: Pixels vs. Parts

* Can view 28x28 image as weighted sum of “single pixel on” images:

3: e + + (4 L0 |+

— We have one image/feature for each pixel.

— The weights specify “how much of this pixel is in the image”.
* A weight of zero means that pixel is white, a weight of 1 means it’s black.

* This is non-intuitive, isn’t a “3” made of small number of “parts”?

3:;"'+;J+|_+/+|
! -

— Now the weights are “how much of this part is in the image”.

Motivation: Pixels vs. Parts

* We could represent other digits as different combinations of “parts”:

3 = | - + 4 +| emy | i +| +0 [+0

5 = "™l #)4] - g | 0 ¢ |
L

. L

* Consider replacing images x. by the weights z. of the different parts:

— The 784-dimensional x; for the “5” image is replaced by 7 numbers: z=[101 110 1].
— Features like this could make learning much easier.

Part 4: Latent-Factor Models

* The “part weights” are a change of basis from x, to some z..

— But in high dimensions, it can be hard to find a good basis.

* Part 4 is about learning the basis from the data.

X q La "Pm'f‘radof /_\) Z

MoAd

e Why?
— Supervised learning: we could use “part weights” as our features.
— Outlier detection: it might be an outlier if isn’t a combination of usual parts.
— Dimension reduction: compress data into limited number of “part weights”.
— Visualization: if we have only 2 “part weights”, we can view data as a scatterplot.
— Interpretation: we can try and figure out what the “parts” represent.

Previously: Vector Quantization

* Recall using k-means for vector quantization:
— Run k-means to find a set of “means” w..
— This gives a cluster y. for each object .

* This can be viewed as a (really bad) latent-factor model.

Vector Quantization (VQ) as Latent-Factor Model

* When d=3, we could write x; exactly as:

Xi= [x”} — 2 H[U} +Z,l); J 5[;?:] (Thb (s lilce .’/one pixel on"
rw{ ’ ",»/4 e I‘ef)fes entalion of HV\q?rJ)

— In this “pointless” latent-factor model we have z, = [x;; x;, X;3].

* If x;is in cluster 2, VQ approximates x; by mean w, of cluster 2:
X & w, = Ow + lw, + Ow * Oy,

* So in this example we would have z, = [0 1 0 0].
— The “parts” are the means from k-means.
— VQ only uses one part (the “part” from the cluster).

Vector Quantization vs. PCA

* Viewing vector quantization as a latent-factor model:

(90 -737
X = =109 ~-7.0

S 13713
3.8 204

2.9 ZQCJ

e Suppose we’re doing supervised learning,
and the colours are the true labels ‘y’:

iy

vector /\’ Z:

qmal\’/i;m"'llun

l'\ i "
oy ek i,y |

— Classification would be really easy
with this “k-means basis” Z’.

Vector Quantization vs. PCA

* Viewing vector quantization as a latent-factor model:

(90 -737 (o100
)(: _’[(ﬁ - ©0 m vector /\’Z: 0 | 00
137 19.3 qmar\‘/izu‘fﬂm 0010
204 . 0ool0
3.3 — | 000

* Butit only uses 1 part, it’s just memorizing ‘k’ points in x; space.

— What we want is combinations of parts.

* PCAis a generalization that allows continuous ‘z;": 02 (]
03 |
— It can have more than 1 non-zero. Z= e __157

— It can use fractional weights and negative weights. o dl-'

Principal Component Analysis (PCA) Applications

* Principal component analysis (PCA) has been invented many times:

PCA was invented in 1901 by Karl Pearson,m as an analogue of the principal axis theorem in
mechanics; it was later independently developed (and named) by Harold Hotelling in the
1930s. Depending on the field of application, it is also named the discrete Kosambi-
Karhunen—Loéve transform (KLT) in signal processing, the Hotelling transform in multivariate
quality control, proper orthogonal decomposition (POD) in mechanical engineering, singular
value decomposition (SVD) of X (Golub and Van Loan, 1983), eigenvalue decomposition
(EVD) of X"X in linear algebra, factor analysis (for a discussion of the differences between
PCA and factor analysis see Ch. 7 of [3]), Eckart-Young theorem (Harman, 1960), or Schmidt

standard deviation of 3 in roughly the
(0.878, 0.478) direction and of 1 in th
orthogonal direction. The vectors
shown are the eigenvectors of the
covariance matrix scaled by the squa
root of the corresponding eigenvalue,
and shifted so their tails are at the
mean.

—Mirsky theorem in psychometrics, empirical orthogonal functions (EOF) in meteorological science, empirical eigenfunction

decomposition (Sirovich, 1987), empirical component analysis (Lorenz, 1956), quasiharmonic modes (Brooks et al., 1988), spectral

decomposition in noise and vibration, and empirical modal analysis in structural dynamics.

PCA Notation (MEMORIZE)

PCA takes in a matrix X’ and an input ‘k’, and outputs two matrices:

"‘ZF\ _ _,_f—\,‘{‘_—_
£: WZ:’T-]%"‘ W w‘ 9« = [v\'/‘u}} IJ‘]{/«
.—JIZH'T_ V\N"‘/_‘ I l l

K f d
For row ‘¢’ of W, we use the notation w..

— Each w_ is a “part” (also called a “factor” or “principal component”).
For row ‘i’ of Z, we use the notation z..
— Each z; is a set of “part weights” (or “factor loadings” or “features”).

For column ‘j’ of W, we use the notation wi.

— Index ‘j’ of all the ‘k” “parts” (value of pixel ‘j’ in all the different parts).

PCA Notation (MEMORIZE)

* PCA takes in a matrix ‘X’ and an input ‘k’, and outputs two matrices:

—2l— [—w,—
zz[wz;-]g“ we[= ;,{ - [V'V'Jf-u-ld 0
.—/Izn'T_ V\N"‘/_‘ I l l
L——ﬁ/\/ \\/\/-\/

K 3
e With this notation, we can write our approximation of one x; as:

N ~

Xij= ZiWy +ZizWAJ“L"‘+2‘wWKJ 22"’""6) —-(w)Z \<w)E 7
— K-means: “take index ‘j” of closest mean”. (/VCW /1/0T [Lw
— PCA: “z, gives weights for index ‘j’ of all means”.

<».,,z>
* We can write approximation of the vector x; as: Q <w»'> =W uz
’ |

Jxl <w,?,-7 dx k kx)

Different views (MEMORIZE)

PCA approximates each x; by the inner product < wl, z. >

PCA approximates each x; by the matrix-vector product W'z

PCA approximates matrix ‘X’ by the matrix-matrix product ZW.
nxd pxk kxd

X *2ZW

— PCA is also called a “matrix factorization” model.
— Both Z’ and ‘W’ are variables.

This can be viewed as a “change of basis” from x; to z, values.
— The “basis vectors” are the rows of W, the w_.
— The “coordinates” in the new basis of each x; are the z..

PCA Applications

* Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z.

e If k << d, then compresses data.

» Often better approximation than vector quantization.

X ~

-

L

w/

—

)

af

-

L

|
2
3
4

5
(
,
7

PCA Applications

Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z.
e If k << d, then compresses data.

» Often better approximation than vector quantization.

2395’><g7 ¢)
96510R I |
69 Rbly Ay
8 111020 24 2 32

(0 1520 3530 3 4

1219 29% 36 © g
iy A2 WU

16 24 3240 4§ 54 69 _|

~

~

|
2
3
1
5
¢
7
g ~

L

W
12345 ¢ 78]

Compresses 64 eloments

of X' dont M eleworfs
A wnd !

PCA Applications

* Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z.
e If k << d, then compresses data.
» Often better approximation than vector quantization.

NS
~ \ =
£00 r 01— , c R
- So0-100 —— 5 C naml o %

~2A50K numbers X

PCA Applications

* Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z.
e If k << d, then compresses data.
» Often better approximation than vector quantization.

* Applications of PCA:

PCA Applications

— Outlier detection: if PCA gives poor approximation of x;, could be ‘outlier’.

* Though due to squared error PCA is sensitive to outliers.

=24

¥

2y

2y

ar4ly

+Zis1

i

it

L 3

PCA Applications

* Applications of PCA:

— Partial least squares: uses PCA features as basis for linear model.

COMPM?‘@ Cl/)fro)’)mqj’}"’ X ~ ZW

Nov we 2 ag ‘Fea’wes in o linear model:
)’, =v' Z;
lih . _ J L/IOWPF'OhMGM,'or\a‘ ‘}LGV\ Ofiaiwa,]Peqllwxe) S0 le” Mfﬁﬁ,ﬁ)
Yar ereIsion

We'lymlf \/l {rnmn!
(/W\J-((Tkls (J\m\{
lom)

PCA Applications

* Applications of PCA:

— Data visualization: plot z, with k = 2 to visualize high-dimensional objects.

T T I T

French
Spanish
Slovak
German
| Belgium
Czech
UK
Hungaran &
Polish
- Romanian v
Norway ¥
Sweden ©
Russian ¢
CEU ©

B0 % X +

Component 2 (0.08% variance)

Component 1 (0.21% variance)

2i

PCA Applications

* Applications of PCA:

— Data visualization: plot z, with k = 2 to visualize high-dimensional objects.

e Can augment other visualizations: A B

Cluster group

S. Munsier S1
Connacht GNP

N. Leinster/Ulster

S. Leinster/Munster SLM

N. Wales
S. Wales S

NI/Gumbria’S. Scotiand | {
N. Scotland NSC {

E
{
{

Cumbria CUM

N. East England NEE -
Yorkshire YOR {

Cormwall {
Cheshire CHE -
Border Wales BWA

Devon
W. Central England

%ﬂﬂ%iﬂr@%

S. East England SEE{

PCA Applications

* Applications of PCA:

— Data interpretation: we can try to assign meaning to latent factors w.
e Hidden “factors” that influence all the variables.

Trait Description

Being curious, original, intellectual, creative, and open to

Openness ?
P new ideas.

Being organized, systematic, punctual, achievement-

Conscientiousness oriented, and dependable.

Being outgoing, talkative, sociable, and enjoying

Extraversion social situations.

Being affable, tolerant, sensitive, trusting, kind,

Agreeableness N Ly

Neuroticism Being anxious, irritable, temperamental, and moody.

"Most Personality Quizzes Are Junk Science. | Found One That Isn't."

What is PCA actually doing?

When should PCA work well?

Today | just want to show geometry,
we’ll talk about implementation next time.

Doom Overhead Map and Latent-Factor Models

Ill

* Original “Doom” video game included an “overhead map” feature:

3 * o 4
14 -~ v ']
AMMOT | HEALTH ‘[ﬂﬁns &

* This map can be viewed as a latent-factor model of player location.

Overhead Map and Latent-Factor Models

Actual player location at time ‘i’ can be described by 3 coordinates:
X' | Xu <& ')X'\ teo/ofihv\‘f

) < [X‘.z ~— “7)\ (oa\rdlant

Xis)& "2" Coordinalp

The overhead map approximates these 3 coordinates with only 2:

2 — ”x'l (ooful""f’l"é’
"

Z.I - an — " \/ C aorl)lhﬁfe

Our k=2 latent factors are the following:

Wi 9 ¢

: n) O
So our approximation of x. is: — E%] + Z,;,[:)]

Overhead Map and Latent-Factor Models

* The “overhead map” approximation just ignores the “height”.

& T— .

/ /
. /v, _
/ s | ibe /Xy P/ﬁhf ’
J v X , \ [—
V $ y / /Pf OJ() (‘fi(?ﬂ onlo }/
S X_ e ~ ’ h‘e f)(""(’ e
*Ix

— This is a good approximation if the world is flat.
e Even if the character jumps, the first two features will approximate location.

— But it’s a poor approximation if heights are different.

Overhead Map and Latent-Factor Models

e Consider these crazy goats trying to get some salt:

— lgnoring height gives poor approximation of goat location.

* But the “goat space” is basically a two-dimensional plane.

— Better k=2 approximation: define ‘W’ so that combinations give the plane.

PCA with d=2 and k =1

Le as+ S(uart)

!

We're

Pr‘ic/\cipq, Componen+ oma’ysis Ip,c‘;,cfm?z

&
minimjy ¢
verticul Squared

_— 7 Reaturer

Xi

dista nce

")

We on_‘z Care

abowt PNJ ic'//ft) ¥

\/Ve assumé
mean v (],

PCA $inds lme "W
Mminmizi ﬂlwmul Aif+a“f€

m both é’»m.engionS.

PCA with d=2 and k =1

Pr‘imq{m, com,;onen’* 0‘"“’}/535

Xi

YO\A can Thnl of
‘W' as r0‘/q‘lin7 dota.

=

PCA finds lne "W

minmizi fclwmul Aif+a“f€
m both &’»m.engionS.

PCA with d=2 and k =1

Pr‘imqu, comPonen+ 0"‘“'}/535

Xi

YOU\ can Thinl’ oF
‘W' as rtﬂq‘liny dota.

X \'L/ AN l '/PV“’J"t(,T
O'\+o I'lﬁe
* X x FJe—FH— Z,‘
/[__Z, Cah Lz: im)ler‘/,m‘/“fJ as (‘}W"\{,J a 2(1 Jq}mse?l' P(A ‘Finds IMC /W

Posi‘hon a'on¢ 1he fine,
J e —

mihmizi ﬂlwmul Aif+a“(€
m both é’»m.engionS.

inte a 4 o\qi‘ascf)

PCA with d=2 and k =1

EXamr,ef heic)h’f/w;?w of Childee

S sy o ORI 2O — 2
A 7 Ld 4 ;
(

J
La'/wﬁ‘ 'raqlar (omu Lf

\/iPWJ as meagure of Size

PCA with d=3 and k=2.

* With d=3, PCA (k=1) finds line minimizing squared distance to x..

e With d=3, PCA (k=2) finds plane minimizing squared distance to x

original data space

component space

AT 1
© g T X
c 4t £ rH
@ = 00
0 m_l—i_
1=8
=] L?u‘:l‘—“_'
=z
2!

Summary

e Latent-factor models:
— Try to learn basis Z from training examples X.
— Usually, the z, are “part weights” for “parts” w,.
— Useful for dimensionality reduction, visualization, factor discovery, etc.

* Principal component analysis:

— Writes each training examples as linear combination of parts.
* We learn both the “parts” ‘W’ and the “features” Z.

— We can view ‘W’ as best lower-dimensional hyper-plane.
— We can view ‘Z’ as the coordinates in the lower-dimensional hyper-plane.

e Next time: PCA in 4 lines of code.

