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Last	Time:	Maximum	Likelihood	Estimation	(MLE)

• Maximum	likelihood	estimation	(MLE):
– Define	a	likelihood	function,	probability	of	data	given	parameters:	p(D	|	w).
– Choose	parameters	‘w’	to	maximize	the	likelihood.

• Gives	naïve	Bayes	“counting”	estimates	we	used.

• Typically	easier	to	equivalently	minimize	negative	log-likelihood	(NLL).

– This	will	turns	product	of	probability	over	IID	examples	into	sum	over	examples.



Minimizing	the	Negative	Log-Likelihood	(NLL)
• We	use	log-likelihood because	it	turns	multiplication	into	addition:

• More	generally:



Least	Squares	is	Gaussian	MLE	(Gory	Details)
• Let’s	assume	that	yi =	wTxi +	εi,	with	εi following	standard	normal:

• This	leads	to	a	Gaussian	likelihood	for	example	‘i’	of	the	form:

• Finding	MLE	(minimizing	NLL)	is	least	squares:



Digression:	“Generative”	vs.	“Discriminative”
• Notice,	that	we	maximized	conditional	likelihood	p(y	|	X,	w),	not	the	joint

likelihood	p(y,	X	|	w).
– We	did	MLE	“conditioned”	on	the	features	‘X’	being	fixed	(no	“likelihood	of	X”).
– This	is	called	a	“discriminative”	supervised	learning	model.
– A	“generative”	model	(like	naïve	Bayes)	would	optimize	p(y,	X	|	w).

• Discriminative probabilistic	models:
– Least	squares,	robust	regression,	logistic	regression.
– Can	use	complicated	features	because	you	don’t	model	‘X’.

• Example	of	generative probabilistic	models:
– Naïve	Bayes,	linear	discriminant	analysis	(makes	Gaussian	assumption).
– Often	need	strong	assumption	because	they	model	‘X’.

• “Folk”	belief:	generative	models	are	often	better	with	small	‘n’.



Loss	Functions	and	Maximum	Likelihood	Estimation

• So	least	squares	is	MLE	under	Gaussian	likelihood.

• With	a	Laplace	likelihood	you	would	get	absolute	error.

• Other	likelihoods	lead	to	different	errors	(“sigmoid”	->	logistic	loss).



“Heavy”	Tails	vs.	“Light”	Tails
• We	know	that	L1-norm	is	more	robust	than	L2-norm.
– What	does	this	mean	in	terms	of	probabilities?

– Gaussian	has	“light	tails”:	assumes	everything	is	close	to	mean.
– Laplace	has	“heavy	tails”:	assumes	some	data	is	far	from	mean.
– Student	‘t’	is	even	more	heavy-tailed/robust,	but	NLL	is	non-convex.

http://austinrochford.com/posts/2013-09-02-prior-distributions-for-bayesian-regression-using-pymc.html



• Recall	we	got	probabilities	from	binary	linear	models	with	sigmoid:
1. The	linear	model	wTxi gives	us	a	number	in	zi (-∞,	∞).
2. We’ll	map	zi=wTxi to	a	probability	with	the	sigmoid	function.

• We	can	show	that	MLE	with	this	model	gives	logistic	loss.

Sigmoid:	transforming	wTxi to	a	Probability



Sigmoid:	transforming	wTxi to	a	Probability
• We’ll	define	p(yi =	+1	|	zi)	=	h(zi),	where	‘h’	is	the	sigmoid	function.

• With	yi in	{-1,+1},	we	can	write	both	cases	as	p(yi |	zi)	=	h(yizi).
• So	we	convert	zi=wTxi into	“probability	of	yi”	using:

• MLE	with	this	likelihood	is	equivalent	to	minimizing	logistic	loss.



MLE	Interpretation	of	Logistic	Regression
• For	IID	regression	problems	the	conditional	NLL	can	be	written:

• Logistic	regression	assumes	sigmoid(wTxi)	conditional	likelihood:

• Plugging	in	the	sigmoid	likelihood,	the	NLL	is	the	logistic	loss:



MLE	Interpretation	of	Logistic	Regression
• We	just	derived	the	logistic	loss	from	the	perspective	of	MLE.
– Instead	of	“smooth	convex	approximation	of	0-1	loss”,	we	now	have	that
logistic	regression	is	doing	MLE	in	a	probabilistic	model.

– The	training	and	prediction	would	be	the	same	as	before.
• We	still	minimize	the	logistic	loss	in	terms	of	‘w’.

– But	MLE	justifies	sigmoid	for	“probability	that	e-mail	is	important”:



• Previously	we	talked	about	multi-class	classification:
– We	want						Txi to	be	the	most	positive among	‘k’	real	numbers	wc

Txi.

• We	have	‘k’	real	numbers	zc	=wc
Txi,	want	to	map	zc to	probabilities.

• Most	common	way	to	do	this	is	with	softmax function:

– Taking	exp(zc)	makes	it	non-negative,	denominator	makes	it	sum	to	1.
– So	this	gives	a	probability	for	each	of	the	‘k’	possible	values	of	‘c’.

• The	NLL	under	this	likelihood	is	the	softmax loss.

Multi-Class	Logistic	Regression



(pause)



Maximum	Likelihood	Estimation	and	Overfitting
• In	our	abstract	setting	with	data	D	the	MLE is:

• But	conceptually	MLE	is	a	bit	weird:
– “Find	the	‘w’	that	makes	‘D’	have	the	highest	probability	given	‘w’.”

• And	MLE	often	leads	to	overfitting:	
– Data	could	be	very	likely	for	some	very	unlikely	‘w’.
– For	example,	a	complex	model	that	overfits by	memorizing	the	data.

• What	we	really	want:
– “Find	the	‘w’	that	has	the	highest	probability	given	the	data	D.”



Maximum	a	Posteriori	(MAP)	Estimation
• Maximum	a	posteriori	(MAP)	estimate	maximizes	the	reverse	probability:

– This	is	what	we	want:	the	probability	of	‘w’	given	our	data.

• MLE	and	MAP	are	connected	by	Bayes	rule:

• So	MAP	maximizes	the	likelihood p(D|w)	times	the	prior p(w):
– Prior	is	our	“belief”	that	‘w’	is	correct	before	seeing	data.
– Prior	can	reflect	that	complex	models	are	likely	to	overfit.



MAP	Estimation	and	Regularization
• From	Bayes	rule,	the	MAP	estimate	with	IID	examples	Di is:

• By	again	taking	the	negative	of	the	logarithm	as	before	we	get:

• So	we	can	view	the	negative	log-prior	as	a	regularizer:
– Many	regularizers are	equivalent	to	negative	log-priors.



L2-Regularization	and	MAP	Estimation
• We	obtain	L2-regularization	under	an	independent	Gaussian	assumption:

• This	implies	that:

• So	we	have	that:

• With	this	prior,	the	MAP	estimate	with	IID	training	examples	would	be



MAP	Estimation	and	Regularization
• MAP	estimation	gives	link	between	probabilities	and	loss	functions.

– Gaussian	likelihood	(σ =	1)	+	Gaussian	prior	gives	L2-regularized	least	squares.

– Laplace	likelihood	(σ =	1)	+	Gaussian	prior	give	L2-regularized	robust	regression:

– As	‘n’	goes	to	infinity,	effect	of	prior/regularizer goes	to	zero.
– Unlike	with	MLE,	the	choice	of	σ changes	the	MAP	solution	for	these	models.
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Summarizing	the	past	few	slides

• Many	of	our	loss	functions	and	regularizers have	probabilistic	interpretations.
– Laplace	likelihood	leads	to	absolute	error.
– Laplace	prior	leads	to	L1-regularization.

• The	choice	of	likelihood corresponds	to	the	choice	of	loss.
– Our	assumptions	about	how	the	yi-values	can	come	from	the	xi and	‘w’.

• The	choice	of	prior corresponds	to	the	choice	of	regularizer.
– Our	assumptions	about	which	‘w’	values	are	plausible.



Regularizing	Other	Models
• We	can	view	priors	in	other	models	as	regularizers.

• Remember	the	problem	with	MLE	for	naïve	Bayes:
• The	MLE	of	p(‘lactase’	=	1|	‘spam’)	is:	count(spam,lactase)/count(spam).
• But	this	caused	problems	if	count(spam,lactase)	=	0.

• Our	solution	was	Laplace	smoothing:
– Add	“+1”	to	our	estimates:	(count(spam,lactase)+1)/(counts(spam)+2).
– This	corresponds	to	a	“Beta”	prior	so	Laplace	smoothing	is	a	regularizer.



(pause)



Why	do	we	care	about	MLE	and	MAP?
• Unified	way	of	thinking	about	many	of	our	tricks?

– Probabilistic	interpretation	of	logistic	loss.
– Laplace	smoothing	and	L2-regularization	are	doing	the	same	thing.

• Remember	our	two	ways	to	reduce	overfitting	in	complicated	models:
– Model	averaging	(ensemble	methods).
– Regularization (linear	models).

• “Fully”-Bayesian methods	(CPSC	540)	combine	both of	these.
– Average	over	all	models,	weighted	by	posterior	(including	regularizer).
– Can	use	extremely-complicated	models	without	overfitting.



Losses	for	Other	Discrete	Labels
• MLE/MAP	gives	loss	for	classification	with	basic	labels:

– Least	squares	and	absolute	loss	for	regression.
– Logistic	regression	for	binary	labels	{“spam”,	“not	spam”}.
– Softmax regression	for	multi-class	{“spam”,	“not	spam”,	“important”}.

• But	MLE/MAP	lead	to	losses	with	other	discrete	labels	(bonus):
– Ordinal:	{1	star,	2	stars,	3	stars,	4	stars,	5	stars}.
– Counts:	602	‘likes’.
– Survival	rate:	60%	of	patients	were	still	alive	after	3	years.
– Unbalanced	classes:	99.9%	of	examples	are	classified	as	+1.

• Define	likelihood	of	labels,	and	use	NLL	as	the	loss	function.

• We	can	also	use	ratios	of	probabilities	to	define	more	losses	(bonus):
– Binary	SVMs,	multi-class	SVMs,	and	“pairwise	preferences”	(ranking)	models.



End	of	Part	3:	Key	Concepts
• Linear	models	predict	based	on	linear	combination(s)	of	features:

• We	model	non-linear	effects	using	a	change	of	basis:
– Replace	d-dimensional	xi with	k-dimensional	zi and	use	vTzi.
– Examples	include	polynomial	basis	and	(non-parametric)	RBFs.

• Regression is	supervised	learning	with	continuous	labels.
– Logical	error	measure	for	regression	is	squared	error:

– Can	be	solved	as	a	system	of	linear	equations.



End	of	Part	3:	Key	Concepts
• Gradient	descent	finds	local	minimum	of	smooth	objectives.
– Converges	to	a	global	optimum	for	convex	functions.
– Can	use	smooth	approximations	(Huber,	log-sum-exp)

• Stochastic	gradient	methods	allow	huge/infinite	‘n’.
– Though	very	sensitive	to	the	step-size.

• Kernels let	us	use	similarity	between	examples,	instead	of	features.
– Lets	us	use	some	exponential- or	infinite-dimensional	features.

• Feature	selection	is	a	messy	topic.
– Classic	method	is	forward	selection	based	on	L0-norm.
– L1-regularization	simultaneously	regularizes	and	selects	features.



End	of	Part	3:	Key	Concepts
• We	can	reduce	over-fitting	by	using	regularization:

• Squared	error	is	not	always	right	measure:
– Absolute	error	is	less	sensitive	to	outliers.
– Logistic	loss	and	hinge	loss	are	better	for	binary	yi.
– Softmax loss	is	better	for	multi-class	yi.

• MLE/MAP perspective:
– We	can	view	loss	as	log-likelihood	and	regularizer as	log-prior.
– Allows	us	to	define	losses	based	on	probabilities.



The	Story	So	Far…
• Part	1:	Supervised	Learning.
– Methods	based	on	counting	and	distances.

• Part	2:	Unsupervised	Learning.
– Methods	based	on	counting	and	distances.

• Part	3:	Supervised	Learning	(just	finished).
– Methods	based	on	linear	models	and	gradient	descent.

• Part	4:	Unsupervised	Learning	(next	time).
– Methods	based	on	linear	models	and	gradient	descent.



Summary
• Maximum	likelihood	estimate	viewpoint	of	common	models.
– Objective	functions	are	equivalent	to	maximizing	p(y,	X	|	w)	or	p(y	|	X,	w).

• MAP	estimation	directly	models	p(w	|	X,	y).
– Gives	probabilistic	interpretation	to	regularization.

• Losses	for	weird	scenarios	are	possible	using	MLE/MAP:
– Ordinal	labels,	count	labels,	censored	labels,	unbalanced	labels.

• Next	time:	
– What	‘parts’	are	your	personality	made	of?



Discussion:	Least	Squares	and	Gaussian	Assumption
• Classic	justifications	for	the	Gaussian	assumption underlying	least	squares:

– Your	noise	might	really	be	Gaussian.	(It	probably	isn't,	but	maybe	it's	a	good	enough	
approximation.)

– The	central	limit	theorem	(CLT)	from	probability	theory.	(If	you	add	up	enough	IID	
random	variables,	the	estimate	of	their	mean	converges	to	a	Gaussian	distribution.)		

• I	think	the	CLT	justification	is	wrong	as	we've	never	assumed	that	the	xij are	IID	across	‘j’	
values.	We	only	assumed	that	the	examples	xi are	IID	across	‘i’	values,	so	the	CLT	implies	
that	our	estimate	of	‘w’	would	be	a	Gaussian	distribution	under	different	samplings	of	
the	data,	but	this	says	nothing	about	the	distribution	of	yi given	wTxi.

• On	the	other	hand,	there	are	reasons	*not*	to	use	a	Gaussian	assumption,	like	it's	
sensitivity	to	outliers.	This	was	(apparently)	what	lead	Laplace	to	propose	the	Laplace	
distribution	as	a	more	robust	model	of	the	noise.

• The	"student	t"	distribution	(published	anonymously	by	Gosset while	working	at	the	
Guiness beer	company)	is	even	more	robust,	but	doesn't	lead	to	a	convex	objective.



Binary	vs.	Multi-Class	Logistic
• How	does	multi-class	logistic	generalize	the	binary	logistic	model?
• We	can	re-parameterize	softmax in	terms	of	(k-1)	values	of	zc:

– This	is	due	to	the	“sum	to	1”	property	(one	of	the	zc values	is	redundant).
– So	if	k=2,	we	don’t	need	a	z2 and	only	need	a	single	‘z’.
– Further,	when	k=2	the	probabilities	can	be	written	as:

– Renaming	‘2’	as	‘-1’,	we	get	the binary	logistic	regression probabilities.



Ordinal	Labels
• Ordinal	data:	categorical	data	where	the	order	matters:
– Rating	hotels	as	{‘1	star’,	‘2	stars’,	‘3	stars’,	‘4	stars’,	‘5	stars’}.
– Softmax would	ignore	order.

• Can	use	‘ordinal	logistic	regression’.



Count	Labels
• Count	data:	predict	the	number	of	times	something	happens.
– For	example,	yi =	“602”	Facebook	likes.

• Softmax requires	finite	number	of	possible	labels.
• We	probably	don’t	want	separate	parameter	for	‘654’	and	‘655’.
• Poisson	regression:	use	probability	from	Poisson	count	distribution.
– Many	variations	exist,	a	lot	of	people	think	this	isn’t	the	best	likelihood.



Censored	Survival	Analysis	(Cox	Partial	Likelihood)
• Censored	survival	analysis:

– Target	yi is		last	time	at	which	we	know	person	is	alive.
• But	some	people	are	still	alive	(so	they	have	the	same	yi values).
• The	yi values	(time	at	which	they	die)	are	“censored”.

– We	use	vi=0	is	they	are	still	alive	and	otherwise	we	set	vi =	1.

• Cox	partial	likelihood	assumes	“instantaneous”	rate	of	dying	depends	on	
xi but	not	on	total	time	they’ve	been	alive	(not	that	realistic).	Leads	to	
likelihood	of	the	“censored”	data	of	the	form:

• There	are	many	extensions	and	alternative	likelihoods.



Other	Parsimonious	Parameterizations
• Sigmoid	isn’t	the	way	to	model	a	binary	p(yi |	xi,	w):
– Probit (uses	CDF	of	normal	distribution,	very	similar	to	logistic).
– Noisy-Or	(simpler	to	specify	probabilities	by	hand).
– Extreme-value	loss	(good	with	class	imbalance).
– Cauchit,	Gosset,	and	many	others	exist…



Unbalanced	Training	Sets
• Consider	the	case	of	binary	classification	where	your	training	set	has	
99%	class	-1	and	only	1%	class	+1.
– This	is	called	an	“unbalanced”	training	set

• Question:	is	this	a	problem?
• Answer:	it	depends!

– If	these	proportions	are	representative	of	the	test	set	proportions,	and	you	care	
about	both	types	of	errors	equally,	then	“no”	it’s	not	a	problem.
• You	can	get	99%	accuracy	by	just	always	predicting	-1,	so	ML	can	only	help	with	the	1%.

– But	it’s	a	problem	if	the	test	set	is	not	like	the	training	set	(e.g.	your	data	
collection	process	was	biased	because	it	was	easier	to	get	-1’s)

– It’s	also	a	problem	if	you	care	more	about	one	type	of	error,	e.g.	if	mislabeling	a	
+1	as	a	-1	is	much	more	of	a	problem	than	the	opposite
• For	example	if	+1	represents	“tumor”	and	-1	is	“no	tumor”		

36



Unbalanced	Training	Sets
• This	issue	comes	up	a	lot	in	practice!
• How	to	fix	the	problem	of	unbalanced	training	sets?
– Common	strategy	is	to	build	a	“weighted”	model:

• Put	higher	weight	on	the	training	examples	with	yi=+1.

• This	is	equivalent	to	replicating	those	examples	in	the	training	set.
• You	could	also	subsample	the	majority	class	to	make	things	more	balanced.
• Boostrap:	create	a	dataset	of	size	‘n’	where	n/2	are	sampled	from	+1,	n/2	from	-1.

– Another	approach	is	to	try	to	make	“fake”	data	to	fill	in	minority	class.
– Another	option	is	to	change	to	an	asymmetric	loss	function	(next	slides)
that	penalizes	one	type	of	error	more	than	the	other.

– Some	discussion	of	different	methods	here. 37



Unbalanced	Data	and	Extreme-Value	Loss
• Consider	binary	case	where:
– One	class	overwhelms	the	other	class (‘unbalanced’	data).
– Really	important	to	find	the	minority	class (e.g.,	minority	class	is	tumor).



Unbalanced	Data	and	Extreme-Value	Loss
• Extreme-value distribution:



Unbalanced	Data	and	Extreme-Value	Loss
• Extreme-value distribution:



Loss	Functions	from	Probability	Ratios
• We’ve	seen	that	loss	functions	can	come	from	probabilities:
– Gaussian	=>	squared	loss,	Laplace	=>	absolute	loss,	sigmoid	=>	logistic.

• Most	other	loss	functions	can	be	derived	from	probability	ratios.
– Example:	sigmoid	=>	hinge.
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Loss	Functions	from	Probability	Ratios
• General	approach	for	defining	losses	using	probability	ratios:

1. Define	constraint	based	on	probability	ratios.
2. Minimize	violation	of	logarithm	of	constraint.

• Example:	softmax =>	multi-class	SVMs.



Supervised	Ranking	with	Pairwise	Preferences
• Ranking	with	pairwise	preferences:
– We	aren’t	given	any	explicit	yi values.
– Instead	we’re	given	list	of	objects	(i,j)	where	yi >	yj.


