CPSC 340:
Machine Learning and Data Mining

Previously: Ensemble Methods

classifiers N N _
* Ensemble metheds are classifiers that have classifiers as input.

— Also called “meta-learning”.

* They have the best names:
— Averaging.
— Boosting.
— Bootstrapping.
— Bagging.
— Cascading.
— Random Forests.
— Stacking.

* Ensemble methods often have higher accuracy than input classifiers.

Ensemble Methods

e Remember the fundamental trade-off:

1. E,.,: How small you can make the training error.
VS.

2. Egpprox: HOW well training error approximates the test error.

 Goal of ensemble methods is that meta-classifier:
— Does much better on one of these than individual classifiers.
— Doesn’t do too much worse on the other.

* This suggests two types of ensemble methods:

1. Averaging: improves approximation error of classifiers with high E, .

2. Boosting: improves training error of classifiers with high E

train®

AdaBoost: Classic Boosting Algorithm

* A classic boosting algorithm for binary classification is AdaBoost.

 AdaBoost assumes we have a “base” binary classifier that:
— Is simple enough that it doesn’t overfit much.
— Can obtain >50% weighted accuracy on any dataset.

N \f_\lf Champly 71
Z Vi J..[)/’\" - 713 Clagg £,

| = | /t | COrre Off
we»yk‘rs (‘S\AW\ o [)

/

 Example: decision stumps or low-depth decision trees.
— Easy to modify stumps/trees to use weighted accuracy as score.

AdaBoost: Classic Boosting Algorithm

e Overview of AdaBoost:

Fit a classifier on the training data.

Give a higher weight to examples that the classifier got wrong.
Fit a classifier on the weighted training data.

Go back to 2.

Weight gets exponentially larger each time you are wrong.

el S

* Final prediction: weighted vote of individual classifier predictions.
— Trees with higher (weighted) accuracy get higher weight.

* See Wikipedia for precise definitions of weights.
— Comes from “exponential loss” (a convex approximation to 0-1 loss).

AdaBoost with Decision Stumps in Action

* 2D example of AdaBoost with decision stumps (W|th accuracy score):

File Edit View Insert Tools Des ktdeowHIp

D de A RROPDEL-S 0E D

Decision Stump 1

2 Ensemble (Error = 0.112000)

— Size of training example on right is proportional to training weight.

AdaBoost with Decision Stumps

e 2D example of AdaBoost with decision stumps (with accuracy score):
— 100% training accuracy. :

— Ensemble of 50 decision stumps. 15
* Fit sequentially, not independently. 1

* Are decision stumps a good base classifier?
— They tend not to overfit.
— Easy to get >50% weighted accuracy.

0
-05
-1

1.5

* Base classifiers that don’t work:
— Deep decision trees (no errors to “boost”).
— Decision stumps with infogain (doesn’t guarantee >50% weighted accuracy).
— Weighted logistic regression (doesn’t guarantee >50% weighted accuracy).

-2
-2 -1.5 -1 -0.5 0 0.5 1 15 2

AdaBoost Discussion

» AdaBoost with shallow decision trees gives fast/accurate classifiers.
— Classically viewed as one of the best “off the shelf” classifiers.
— Procedure originally came from ideas in learning theory.

* Many attempts to extend theory beyond binary case.

— Led to “gradient boosting”, which is like “gradient descent with trees”.

* Modern boosting methods:

— Look like AdaBoost, but don’t necessarily have it as a special case.

XGBoost: Modern Boosting Algorithm

* Boosting has seen a recent resurgence, partially due to XGBoost:
— A boosting implementation that allows huge datasets.
— Has been part of many recent winners of Kaggle competitions.

* As base classifier, XGBoost uses regularized regression trees.

Regression Trees

Regression trees used in XGBoost:
— Each split is based on 1 feature.

— Each leaf gives a real-valued prediction.
Taput: age, oCcC u’oqfian, cify,... How peny howrs do they I)/«v)(Ghimes por J«-/.)

24 o

g :> YoWn X'ou{l @

/\

g@@g

P(()d't('“()h WL m C“([‘ loal ?Q’ ’ 3 0.8

— Above, we would predict “2.5 hours” for a 14-year-old who owns an Xbox.

Regression Trees

age <1

 How can we fit a regression tree? . -
own XLM!] @
1.3 0.8

e Simple approach:

— Predict: at each leaf, predict mean of the training y, assigned to the leaf.
* Weight w, at leaf ‘L’ is set to mean(y;) among y; at the leaf node.

— Train: set the w, values by m|n|m|2|ng the squared error,

“f(‘“ﬁm, > f /,)

)"'
— Same speed as fitting decision trees from Week 2.
* Use mean instead of mode, and use squared error instead of accuracy/infogain.

— Use greedy strategy for growing tree, as in Part 1.

Boosted Regression Trees: Prediction

* Consider an ensemble of regression trees.
— For an example ‘i, they each make a continuous prediction:

Do Do L
/{f\b /\,,f\b /Qf A0

Ve -0 ,.——01 OI yix= = 0.0)
* In XGBoost, final prediction is sum of ind|V|duaI predictions:
n 4 A
) 7" Yat et ty,
= ()2 409+ 01 ¢ -+ (-0.00)

* Notice we aren’t using the mean as we would with random forests.
— In boosting, each tree is not individually trying to predict the true y, value (we assume they underfit).
— Instead, each new tree tries to “fix” the prediction made by the old trees, so that sum s y..

Boosted Regression Trees: Training

* Consider the following “gradient tree boosting” procedure:
— Tree[1] = fit(X,y).
— Yy =Tree[1].predict(X).
— Tree[2] =fit(X,y - V).
— ¥ =9 + Tree[2].predict(X).
— Tree[3] =fit(X,y - ¥).
— y =9 + Tree[3].predict(X).
— Tree[4] =fit(X,y - ¥).
— ¥ =9 + Tree[4].predict(X).
* Each tree is trying to predict residuals (.-y;) of current prediction.
— “True label is 0.9, old prediction is 0.8, so | can improve y, by predicting 0.1.”

Gradient Tree Boosting in Action

. I fu 1 , GJ—L9

zor resded
here

LA _1lee
A

Sl

ﬁmmg

A N\ o podichn %
i Final prodiclin s Sum o s, '\ree;\ which {its dhis dafa e"ﬂ‘-ﬂY

Gradient Tree Boosting in Action

File Edit View Insert Tools Desktop
Degde | @ 08| & E
Regression Stump 1
400 eg T P
by
300 f
[. i Y
Saestdey
200 - 'o‘ .'-..’ -
WTEIN
e
100 | ™
gl
0 b
100+ ?
o
-200
-300 *
-10 5 0 5 10

-300 : * *
-10 5 0 5 10

Window Help

400Ensemble (Error = 4014.596549)

kY
300 | N
"
. P
* "\'!).j
200 | i W
VST
.‘0
100 | ™~
™
0t .

-100 |

-200

Regularized Regression Trees

* Procedure monotonically decreases the training error.

— As long as not all w =0, each tree decreases training error.

* It can overfit if trees are too deep or you have too many trees.
— To restrict depth, add LO-regularization (i.e. stop splitting if w_= 0).

()= 2 (=0 5 Al

* “Only split if you decrease squared error by A,.”
— To further fight overfitting, XGBoost also adds L2-regularization of ‘w’.
N
— — 2 2
o) = 2 (= + A, + 200

XGBoost Discussion

Instead of pruning trees if score doesn’t improve, grows full trees.
— And then prunes parts that don’t improve score with LO-regularizer added.

Cost of fitting trees in XGBoost is same as usual decision tree cost.
— XGBoost includes a lot of tricks to make this efficient.
— But can’t be done in parallel like random forest (since fitting sequentially).

In XGBoost, it’s the residuals that act like the “weights” in AdaBoost.
— Focuses on decreasing error in examples with large residuals.

How do you maintain efficiency if not using squared error?
— For non-quadratic losses like logistic, there is no closed-form solution.

— Approximates non-quadratic losses with second-order Taylor expansion.
* Maintains least squares efficiency for other losses (by approximating with quadratic).

(pause)

Motivation for Learning about MLE and MAP

* Next topic: maximum likelihood estimation (MLE) and MAP estimation.
— Crucial to understanding advanced methods, notation can be difficult at first.

 Why are we learning about these?
— Justifies the naive Bayes “counting” estimates for probabilities.
— Shows the connection between least squares and the normal distribution.
— Makes connection between “robust regression” and “heavy tailed” probabilities.
— Shows that regularization and Laplace smoothing are doing the same thing.
— Justifies using sigmoid function to get probabilities in logistic regression.

— Gives a way to write complicated ML problems as optimization problems.
* How do you define a loss for “number of Facebook likes” or “1-5 star rating”?

— Crucial to understanding advanced methods.

But first: “argmin” and “argmax”

 We've repeatedly used the min and max functions:
min § 320 Mot § gos ()3 <]

— Minimum (or maximum) value achieved by a function.

* A related set of functions are the argmin and argmax:

— The set of parameter values achieving the minimum (or maximum).
min{ (w-1Y§=0 oeguin gy P4 BTG+ 4T (X7)

"in IV 1 -
0(9\” E(W)) }") qlgcvv\qyi\(og(w);: 0) 2?{,) q?’;

But first: “argmin” and “argmax”

* The last slide is a little sloppy for the following reason:
— There may be multiple values achieving the min and/or max.
— So the argmin and argmax return sets.

l/Sf-T (o,“)“i - ’
Qirami W =4 11¢” hing The ¢}, ,, \
"1’\'}"5("\' =913 I eaf N
sefs are equivalont®

O\raxnxé (0¢ (w)gsi,‘_;“”f,“lﬁ) 0 ALY, .. ;

argmax 31 <\ =
s Py B = 1, | =y, 5
— And we shouldn’t say a variable “is” the argmax; rather “is in” the argmax.

X € arpurfcas (2 AT KT aing 51y P + 30T

The Likelihood Function

Suppose we have a dataset ‘D’ with parameters ‘w’.

For example:
— We flip a coin three times and obtain D={"heads”, “heads”, “tails”}.
— The parameter ‘W’ is the probability that this coin lands “heads”.

We define the likelihood as a probability mass function p(D | w).
— “Probability of seeing/generating this data, given the parameters”.
— If ‘D’ is continuous it would be a probability “density” function.

If this is a “fair” coin (meaning it lands “heads” with probability 0.5):

— The likelihood is p(HHT | w=0.5) = (1/2)(1/2)(1/2) = 0.125.

— If w =0 (“always lands tails”), then p(HHT | w = 0) = 0 (data is less likely for this ‘w’).
— If w=0.75, then p(HHT | w=0.75) =(3/4)(3/4)(1/4) = 0.14 (data is more likely).

Maximum Likelihood Estimation (MLE)

* We can plot the likelihood p(HHT | w) as a function of ‘w’:

A05

>
L

* Notice:
— Data has probability O if w=0 or w=1 (since we have ‘H’ and ‘T’ in data).
— Data doesn’t have highest probability at 0.5 (we have more ‘H’ than ‘T’).
— This is a probability distribution over ‘D’, not ‘w’ (area isn’t 1).
 Maximum likelihood estimation (MLE):

— Choose parameters that maximize the likelihood: W € aramo\f EL P)w)g
* In this example, MLE is 2/3.

MLE for Binary Variables (General Case)

* Consider a binary feature: (@

X

l
l
\
0
O

e Using ‘W’ as “probability of 1”7, the maximum likelihood estimate is:
\,/\\, = __OJC__Q/‘QZ
H: O‘F QXC\MVIQS

* This is the “estimate” for the probabilities we used in naive Bayes.

— The conditional probabilities we used in naive Bayes are also MLEs.
* The derivation is tedious, but if you’re interested we put it here.

(pause)

Maximum Likelihood Estimation (MLE)

 Maximum likelihood estimation (MLE) for fitting probabilistic models.
— We have a dataset D.
— We want to pick parameters ‘w’.
— We define the likelihood as a probability mass/density function p(D | w).

— We choose the model W that maximizes the likelihood:

\j\v € arsxw Sl F(D)w)g

* Appealing “consistency” properties as n goes to infinity (take STAT 4XX).

— “This is a reasonable thing to do for large data sets”.

Least Squares is Gaussian MLE

* It turns out that most objectives have an MLE interpretation:

— For example, consider minimizing the squared error:
Fla)= HlIx -y |12

— This gives MLE of a linear model with 1ID noise from a normal distribution:
=T 4
y,- =wx T &
where each & s sampled inJ(fenJmf/y Fom stardard Norwal

* “Gaussian” is another name for the “normal” distribution.

— Remember that least squares solution is called the “normal equations”.

Least Squares is Gaussian MLE

* It turns out that most objectives have an MLE interpretation:

— For example, consider minimizing the squared error:

7
/ @
7O
o\\ Q,,,l)
004: N erro/$
) 0.8 ’ £

o.m‘ r'd ‘\i;‘oj/nm: Ei

0
LPﬁS{ S(I‘MNS

Gssvwmey Cr10rs comé

from Gaussian

Minimizing the Negative Log-Likelihood (NLL)

* To compute maximize likelihood estimate (MLE), usually we equivalently
minimize the negative “log-likelihood” (NLL):
* “Log-likelihood” is short for “logarithm of the likelihood”.

€ argnr (D) Z 2vgzin = by (0L
~ 7

'/ \
. Cow val n1
e Why are these equivalent? """

— Logarithm is strictly monotonic: if a > B, then log(a) > log(B).
e So location of maximum doesn’t change if we take logarithm.

— Changing sign flips max to min.

* See Max and Argmax notes if this seems strange.

Summary

Boosting: ensemble methods that improve training error.

XGBoost: modern boosting method based on regression trees.
— Each tree modifies the prediction made by the previous trees.
— LO- and L2-regularization used to reduce overfitting.

Maximum likelihood estimate:

— Maximizing likelihood p(D | w) of data ‘D’ given parameters ‘w’.

Next time:

— How does regularization and Laplace smoothing fit it?

