CPSC 340: Machine Learning and Data Mining

Boosting Fall 2020

Previously: Ensemble Methods

classifiers

- Ensemble methods are classifiers that have classifiers as input.
 - Also called "meta-learning".
- They have the best names:
 - Averaging.
 - Boosting.
 - Bootstrapping.
 - Bagging.
 - Cascading.
 - Random Forests.
 - Stacking.
- Ensemble methods often have higher accuracy than input classifiers.

Ensemble Methods

- Remember the fundamental trade-off:
 - 1. E_{train}: How small you can make the training error.

VS.

- 2. E_{approx}: How well training error approximates the test error.
- Goal of ensemble methods is that meta-classifier:
 - Does much better on one of these than individual classifiers.
 - Doesn't do too much worse on the other.
- This suggests two types of ensemble methods:
 - 1. Averaging: improves approximation error of classifiers with high E_{approx}.
 - 2. Boosting: improves training error of classifiers with high E_{train}.

AdaBoost: Classic Boosting Algorithm

- A classic boosting algorithm for binary classification is AdaBoost.
- AdaBoost assumes we have a "base" binary classifier that:
 - Is simple enough that it doesn't overfit much.
 - Can obtain >50% weighted accuracy on any dataset.

$$\sum_{i=1}^{N} V_i I [\hat{y}_i = \hat{y}_i]^{is} example i dassifiedCorrectly$$

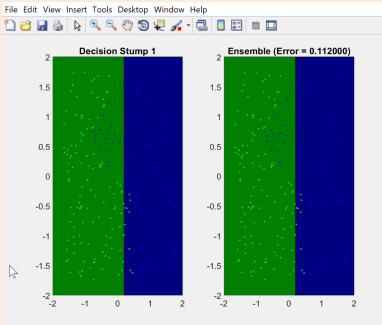
- Example: decision stumps or low-depth decision trees.
 - Easy to modify stumps/trees to use weighted accuracy as score.

AdaBoost: Classic Boosting Algorithm

- Overview of AdaBoost:
 - 1. Fit a classifier on the training data.
 - 2. Give a higher weight to examples that the classifier got wrong.
 - 3. Fit a classifier on the weighted training data.
 - 4. Go back to 2.
 - Weight gets exponentially larger each time you are wrong.
- Final prediction: weighted vote of individual classifier predictions.
 - Trees with higher (weighted) accuracy get higher weight.
- See <u>Wikipedia</u> for precise definitions of weights.
 - Comes from "exponential loss" (a convex approximation to 0-1 loss).

AdaBoost with Decision Stumps in Action

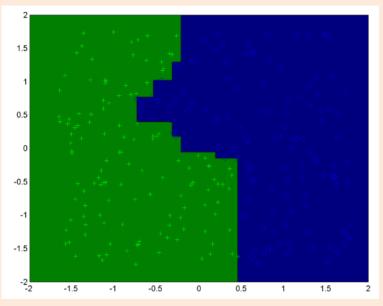
• 2D example of AdaBoost with decision stumps (with accuracy score):



- Size of training example on right is proportional to training weight.

AdaBoost with Decision Stumps

- 2D example of AdaBoost with decision stumps (with accuracy score):
 - 100% training accuracy.
 - Ensemble of 50 decision stumps.
 - Fit sequentially, not independently.
- Are decision stumps a good base classifier?
 - They tend not to overfit.
 - Easy to get >50% weighted accuracy.
- Base classifiers that don't work:
 - Deep decision trees (no errors to "boost").
 - Decision stumps with infogain (doesn't guarantee >50% weighted accuracy).
 - Weighted logistic regression (doesn't guarantee >50% weighted accuracy).



AdaBoost Discussion

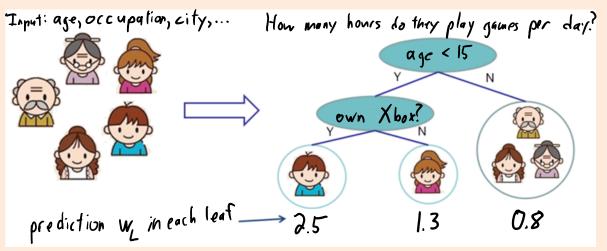
- AdaBoost with shallow decision trees gives fast/accurate classifiers.
 - Classically viewed as one of the best "off the shelf" classifiers.
 - Procedure originally came from ideas in learning theory.
- Many attempts to extend theory beyond binary case.
 Led to "gradient boosting", which is like "gradient descent with trees".
- Modern boosting methods:
 - Look like AdaBoost, but don't necessarily have it as a special case.

XGBoost: Modern Boosting Algorithm

- Boosting has seen a recent resurgence, partially due to XGBoost:
 - A boosting implementation that allows huge datasets.
 - Has been part of many recent winners of Kaggle competitions.
- As base classifier, XGBoost uses regularized regression trees.

Regression Trees

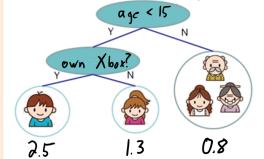
- Regression trees used in XGBoost:
 - Each split is based on 1 feature.
 - Each leaf gives a real-valued prediction.



- Above, we would predict "2.5 hours" for a 14-year-old who owns an Xbox.

Regression Trees

• How can we fit a regression tree?



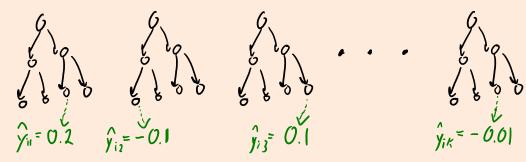
- Simple approach:
 - Predict: at each leaf, predict mean of the training y_i assigned to the leaf.
 - Weight w_L at leaf 'L' is set to mean(y_i) among y_i at the leaf node.
 - Train: set the w_L values by minimizing the squared error,

$$f(w_{1}, w_{2}, \dots) = \sum_{i=1}^{n} (w_{L_{i}} - y_{i})^{2}$$

- Same speed as fitting decision trees from Week 2.
 - Use mean instead of mode, and use squared error instead of accuracy/infogain.
- Use greedy strategy for growing tree, as in Part 1.

Boosted Regression Trees: Prediction

- Consider an ensemble of regression trees.
 - For an example 'i', they each make a continuous prediction:



• In XGBoost, final prediction is sum of individual predictions:

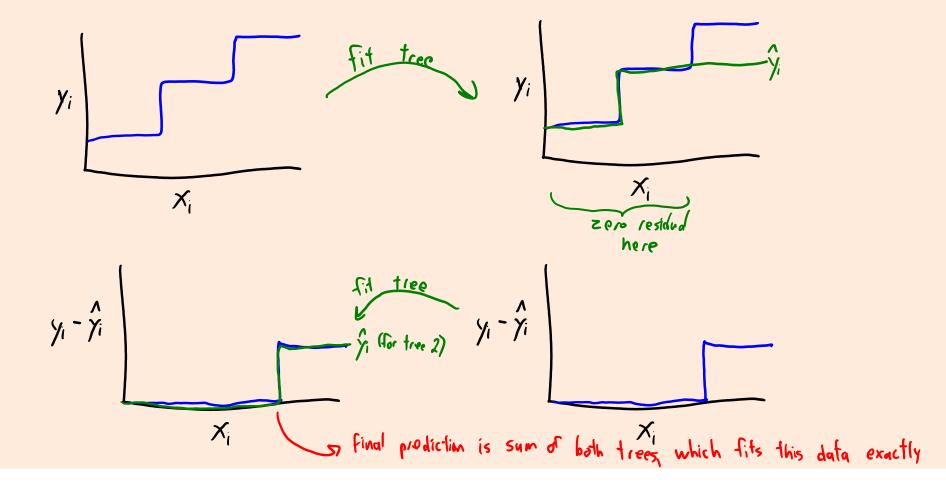
$$\hat{y}_{i} = \hat{y}_{11} + \hat{y}_{i2} + \hat{y}_{i3} + \cdots + \hat{y}_{i4}$$
$$= (0.2 + (-0.1) + 0.1 + \cdots + (-0.01)$$

- Notice we aren't using the mean as we would with random forests.
 - In boosting, each tree is not individually trying to predict the true y_i value (we assume they underfit).
 - Instead, each new tree tries to "fix" the prediction made by the old trees, so that sum is y_i.

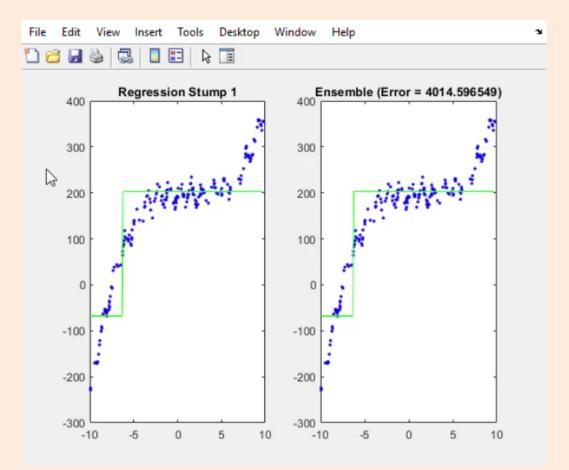
Boosted Regression Trees: Training

- Consider the following "gradient tree boosting" procedure:
 - Tree[1] = fit(X,y).
 - $-\hat{y} = \text{Tree}[1].\text{predict}(X).$
 - Tree[2] = fit(X,y \hat{y}).
 - $-\hat{y} = \hat{y} + \text{Tree}[2].\text{predict}(X).$
 - Tree[3] = fit(X,y \hat{y}).
 - $-\hat{y} = \hat{y} + \text{Tree}[3].\text{predict}(X).$
 - Tree[4] = fit(X,y \hat{y}).
 - $-\hat{y} = \hat{y} + \text{Tree}[4].\text{predict}(X).$
 - ...
- Each tree is trying to predict residuals (\hat{y}_i -y_i) of current prediction.
 - "True label is 0.9, old prediction is 0.8, so I can improve \hat{y}_i by predicting 0.1."

Gradient Tree Boosting in Action



Gradient Tree Boosting in Action



Regularized Regression Trees

- Procedure monotonically decreases the training error.
 - As long as not all $w_L=0$, each tree decreases training error.
- It can overfit if trees are too deep or you have too many trees.
 - To restrict depth, add LO-regularization (i.e. stop splitting if $w_L = 0$).

$$f(w_{1}, w_{2}, ...) = \sum_{i=1}^{n} (w_{L_{i}} - r_{i})^{2} + \lambda_{0} \|w\|_{0}$$

- "Only split if you decrease squared error by λ_0 ."
- To further fight overfitting, XGBoost also adds L2-regularization of 'w'.

$$f(w_{1}, w_{2}, ...) = \sum_{i=1}^{n} (w_{L_{i}} - r_{i})^{2} + \lambda_{0} ||w||_{0} + \lambda_{2} ||w||^{2}$$

XGBoost Discussion

- Instead of pruning trees if score doesn't improve, grows full trees.
 - And then prunes parts that don't improve score with L0-regularizer added.
- Cost of fitting trees in XGBoost is same as usual decision tree cost.
 - XGBoost includes a lot of tricks to make this efficient.
 - But can't be done in parallel like random forest (since fitting sequentially).
- In XGBoost, it's the residuals that act like the "weights" in AdaBoost.
 - Focuses on decreasing error in examples with large residuals.
- How do you maintain efficiency if not using squared error?
 - For non-quadratic losses like logistic, there is no closed-form solution.
 - Approximates non-quadratic losses with second-order Taylor expansion.
 - Maintains least squares efficiency for other losses (by approximating with quadratic).

(pause)

Motivation for Learning about MLE and MAP

- Next topic: maximum likelihood estimation (MLE) and MAP estimation.

 — Crucial to understanding advanced methods, notation can be difficult at first.
- Why are we learning about these?
 - Justifies the naïve Bayes "counting" estimates for probabilities.
 - Shows the connection between least squares and the normal distribution.
 - Makes connection between "robust regression" and "heavy tailed" probabilities.
 - Shows that regularization and Laplace smoothing are doing the same thing.
 - Justifies using sigmoid function to get probabilities in logistic regression.
 - Gives a way to write complicated ML problems as optimization problems.
 - How do you define a loss for "number of Facebook likes" or "1-5 star rating"?
 - Crucial to understanding advanced methods.

But first: "argmin" and "argmax"

• We've repeatedly used the min and max functions:

$$\min_{w} \{w^2\} = 0 \qquad \max_{w} \{\cos(w)\} = 1$$

- Minimum (or maximum) value achieved by a function.

• A related set of functions are the argmin and argmax:

个

- The set of parameter values achieving the minimum (or maximum).

$$\min_{v} \{ (w-1)^{2} \} = 0$$

$$\arg_{v} \min_{v} \{ (w-1)^{2} \} = 0$$

$$\arg_{v} \min_{v} \{ (w-1)^{2} \} = 0$$

$$\arg_{v} \max_{v} \{ (0 \le (w) \} = 0, 2^{2} i, 4^{2} j...$$

$$\operatorname{reg}_{v} \max_{v} \{ (0 \le (w) \} = 0, 2^{2} i, 4^{2} j...$$

But first: "argmin" and "argmax"

- The last slide is a little sloppy for the following reason:
 - There may be multiple values achieving the min and/or max.
 - So the argmin and argmax return sets.

argmin
$$\{(w-1)\}$$
 = $\{1\}$ "set containing the element 1 "
argmax $\{(os(w)\}\}$ = $\{\dots, -4\pi, -2\pi, 0, 2\pi, 4\pi, \dots\}$
argmax $\{\frac{1}{2}\|\|X_w-y\|^2\}$ = $\{w \mid X^TX_w = X^Ty\}$

- And we shouldn't say a variable "is" the argmax; rather "is in" the argmax.

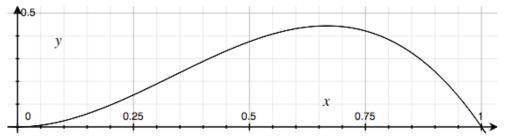
$$\int \mathcal{T} \in \operatorname{argmax}_{\{cos(w)\}} \qquad (\chi^{T}\chi + \chi^{T}\gamma'(\chi^{T}\gamma) \in \operatorname{argmin}_{\{cos(w)\}} + \frac{1}{2} ||\chi_{w} - \gamma||^{2} + \frac{1}{2} ||\chi_{w}||^{2} \}$$

The Likelihood Function

- Suppose we have a dataset 'D' with parameters 'w'.
- For example:
 - We flip a coin three times and obtain D={"heads", "heads", "tails"}.
 - The parameter 'w' is the probability that this coin lands "heads".
- We define the likelihood as a probability mass function p(D | w).
 - "Probability of seeing/generating this data, given the parameters".
 - If 'D' is continuous it would be a probability "density" function.
- If this is a "fair" coin (meaning it lands "heads" with probability 0.5):
 - The likelihood is p(HHT | w=0.5) = (1/2)(1/2)(1/2) = 0.125.
 - If w = 0 ("always lands tails"), then p(HHT | w = 0) = 0 (data is less likely for this 'w').
 - If w = 0.75, then $p(HHT | w = 0.75) = (3/4)(3/4)(1/4) \approx 0.14$ (data is more likely).

Maximum Likelihood Estimation (MLE)

• We can plot the likelihood p(HHT | w) as a function of 'w':



- Notice:
 - Data has probability 0 if w=0 or w=1 (since we have 'H' and 'T' in data).
 - Data doesn't have highest probability at 0.5 (we have more 'H' than 'T').
 - This is a probability distribution over 'D', not 'w' (area isn't 1).
- Maximum likelihood estimation (MLE):
 - Choose parameters that maximize the likelihood: $\sqrt[n]{} \in \operatorname{argmax} \{p(0)w\}$
 - In this example, MLE is 2/3.

MLE for Binary Variables (General Case)

- - Using 'w' as "probability of 1", the maximum likelihood estimate is:

$$\widetilde{W} = \frac{\# \text{ of Ones}}{\# \text{ of examples}}$$

- This is the "estimate" for the probabilities we used in naïve Bayes.
 - The conditional probabilities we used in naïve Bayes are also MLEs.
 - The derivation is tedious, but if you're interested we put it <u>here</u>.

(pause)

Maximum Likelihood Estimation (MLE)

- Maximum likelihood estimation (MLE) for fitting probabilistic models.
 - We have a dataset D.
 - We want to pick parameters 'w'.
 - We define the likelihood as a probability mass/density function p(D | w).
 - We choose the model \widehat{w} that maximizes the likelihood:

- Appealing "consistency" properties as n goes to infinity (take STAT 4XX).
 - "This is a reasonable thing to do for large data sets".

Least Squares is Gaussian MLE

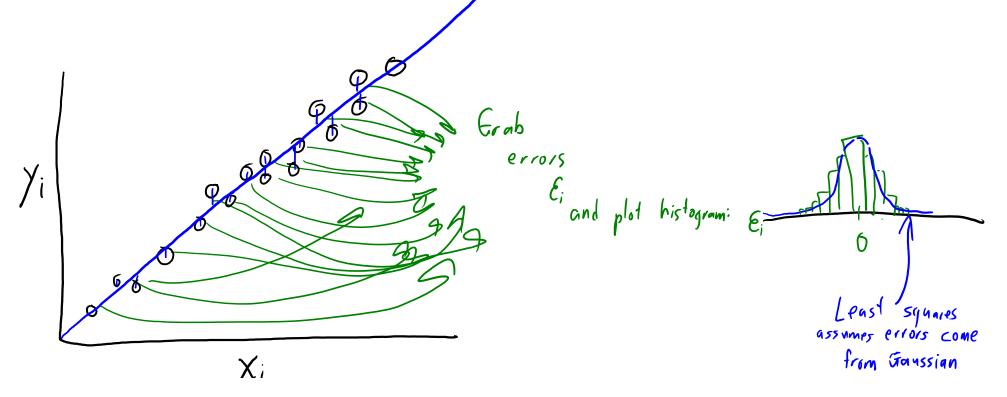
- It turns out that most objectives have an MLE interpretation:
 - For example, consider minimizing the squared error:

$$f(w) = \frac{1}{2} ||\chi_w - \gamma||^2$$

- "Gaussian" is another name for the "normal" distribution.
- Remember that least squares solution is called the "normal equations".

Least Squares is Gaussian MLE

- It turns out that most objectives have an MLE interpretation:
 - For example, consider minimizing the squared error:



Minimizing the Negative Log-Likelihood (NLL)

- To compute maximize likelihood estimate (MLE), usually we equivalently minimize the negative "log-likelihood" (NLL):
 - "Log-likelihood" is short for "logarithm of the likelihood".

$$\hat{w} \in \operatorname{argmax}_{W} \{p(D|w)\} \equiv \operatorname{argmin}_{W} \{p(D|w)\}\}$$

- Why are these equivalent? "equivalent?
 - Logarithm is strictly monotonic: if $\alpha > \beta$, then $\log(\alpha) > \log(\beta)$.
 - So location of maximum doesn't change if we take logarithm.
 - Changing sign flips max to min.
- See Max and Argmax notes if this seems strange.

Summary

- **Boosting**: ensemble methods that improve training error.
- XGBoost: modern boosting method based on regression trees.
 - Each tree modifies the prediction made by the previous trees.
 - LO- and L2-regularization used to reduce overfitting.
- Maximum likelihood estimate:
 - Maximizing likelihood p(D | w) of data 'D' given parameters 'w'.
- Next time:
 - How does regularization and Laplace smoothing fit it?