
CPSC	340:
Machine	Learning	and	Data	Mining

Stochastic	Gradient
Fall	2020



Last	Time:	Stochastic	Gradient
• Stochastic	gradient	minimizes	average	of	smooth	functions:

– Function	fi(w) is	error	on	example	‘i’.
• For	example,	with	squared	error	we	would	have:	fi(w)	=	½(wTxi – yi)2.

• Iterations	perform	gradient	descent	on	one	random	example	‘i’:

– Cheap	iterations	even	when	‘n’	is	large.
– With	1	billion	training	examples,	this	iteration	is	1	billion	times	faster.



Motivation:	Big-N	Problems
• Consider	fitting	a	least	squares	model:

• Gradient	methods	are	effective	when	‘d’	is	very	large.
– O(nd)	per	iteration	instead	of	O(nd2 +	d3)	to	solve	as	linear	system.

• But	what	if	number	of	training	examples	‘n’	is	very	large?
– All	Gmails,	all	products	on	Amazon,	all	homepages,	all	images,	etc.



Gradient	Descent	vs.	Stochastic	Gradient
• Recall	the	gradient	descent	algorithm:

• For	least	squares,	our	gradient	has	the	form:

• So	the	cost	of	computing	this	gradient	is	linear	in	‘n’.
– As	‘n’	gets	large,	gradient	descent	iterations	become	expensive.



Gradient	Descent	vs.	Stochastic	Gradient
• Common	solution	to	this	problem	is	stochastic	gradient	algorithm:

• Uses	the	gradient	of	a	randomly-chosen	training	example:

• Cost	of	computing	this	one	gradient	is	independent	of	‘n’.
– Iterations	are	‘n’	times	faster	than	gradient	descent	iterations.
– With	1	billion	training	examples,	this	iteration	is	1	billion	times	faster.



Stochastic	Gradient	(SG)
• Stochastic	gradient	is	an	iterative	optimization	algorithm:
– We	start	with	some	initial	guess,	w0.
– Generate	new	guess	by	moving	in	the	negative	gradient	direction:

• For	a random	training	example	‘i’.

– Repeat	to	successively	refine	the	guess:

• For	a	random	training	example	‘i’.



Problem	where	we	can	use	Stochastic	Gradient
• Stochastic	gradient	applies	when	minimizing	averages:

• Basically,	all	our	regression	losses	except	“brittle”	regression.
– Recall:	multiplying	by	positive	constant	doesn’t	change	location	of	optimal	‘w’.



Why	Does	Stochastic	Gradient	Work	/	Not	Work?

• Main	problem	with	stochastic	gradient:
– Gradient	of	random	example	might	point	in	the	wrong	direction.

• Does	this	have	any	hope	of	working?
– The	expected	direction	is	the	full	gradient.

– The	algorithm	is	going	in	the	right	direction	on	average.



Gradient	Descent	vs.	Stochastic	Gradient	(SG)
• Gradient	descent:

• Stochastic	gradient:



Gradient	Descent	in	Action



Stochastic	Gradient	in	Action



Stochastic	Gradient	in	Action



Stochastic	Gradient	in	Action



Stochastic	Gradient	in	Action



Stochastic	Gradient	in	Action



Effect	of	‘w’	Location	on	Progress

• We’ll	still	make	good	progress	if	most	gradients	points	in	right	direction.



Variance	of	the	Random	Gradients
• The	“confusion”	is	captured	by	a	kind	of	variance	of	the	gradients:

• If	the	variance	is	0,	every	step	goes	in	the	right	direction.
– We’re	outside	of	the	region	of	confusion.

• If	the	variance	is	small,	most	steps	point	in	the	direction.
– We’re	just	inside	region	of	confusion.

• If	the	variance	is	large,	many	steps	will	point	in	the	wrong	direction.
– Middle	of	region	of	confusion,	where	w* lives.



Effect	of	the	Step-Size
• We	can	reduce	the	effect	of	the	variance	with	the	step	size.
– Variance	slows	progress	by	amount	proportional	to	square	of	step-size.
– So	as	the	step	size	gets	smaller,	the	variance	has	less	of	an	effect.

• For	a	fixed	step-size,	SG	makes	progress	until	variance	is	too	big.

• This	leads	to	two	“phases”	when	we	use	a	constant	step-size:
1. Rapid	progress	when	we	are	far		from	the	solution.
2. Erratic	behaviour	confined	to	a	“ball”	around	solution.

(Radius	of	ball	is	proportional	to	the	step-size.)



Stochastic	Gradient	with	Constant	Step	Size



Stochastic	Gradient	with	Constant	Step	Size



Stochastic	Gradient	with	Constant	Step	Size



Stochastic	Gradient	with	Constant	Step	Size



Stochastic	Gradient	with	Decreasing	Step	Sizes
• To	get	convergence,	we	need	a	decreasing	step	size.

– Shrinks	size	of	ball	to	zero	so	we	converge	to	w*.
• But	it	can’t	shrink	too	quickly:

– Otherwise,	we	don’t	move	fast	enough	to	reach	the	ball.
• Stochastic	gradient	converges	to	a	stationary	point	if:

– Ratio	of	sum	of	squared	step-sizes	over	sum	of	step-sizes	converges	to	0.

– This	choice	also	works	for	non-smooth	functions	like	SVMs.
• Function	must	be	continuous	and	not	“too	crazy”	(we’re	still	figuring	it	out	for	non-convex).



Stochastic	Gradient	with	Decreasing	Step	Sizes
• For	convergence	step-sizes	need	to	satisfy:	

• Classic	solution	is	to	use	a	step-size	sequence	like		αt =	O(1/t).

– E.g.,	αt =	.001/t.
• Unfortunately,	this	often works	badly	in	practice:

– Steps	get	really	small	really	fast.
– Some	authors	add	extra	parameters	like	αt =	γ/(𝛽t +	Δ),	which	helps	a	bit.
– One	of	the	only	cases	where	this	works	well:	binary	SVMs	with	αt =	1/λt.



Stochastic	Gradient	with	Decreasing	Step	Sizes
• How	do	we	pick	step-sizes	satisfying

• Better	solution	is	to	use	a	step-size	sequence	like		αt =	O(1/√𝑡).

– E.g.,	use	αt =	.001/√t
– Both	sequences	diverge,	but	denominator	diverges	faster.

• This	approach	(roughly)	optimizes	rate	that	it	goes	to	zero.
– Better	worst-case	theoretical	properties	(and	more	robust	to	step-size).
– Often	better	in	practice	too.



Stochastic	Gradient	with	Constant	Step	Sizes?
• Alternately,	could	we	just	use	a	constant	step-size.
– E.g.,	use	αt =	.001	for	all	‘t’.

• This	will	not	converge	to	a	stationary	point	in	general.
– However,	do	we	need	it	to	converge?

• What	if	you	only	care	about	the	first	2-3	digits	of	the	test	error?
– Who	cares	if	you	aren’t	able	to	get	10	digits	of	optimization	accuracy?

• There	is	a	step-size	small	enough	to	achieve	any	fixed	accuracy.
– Just	need	radius	of	“ball”	to	be	small	enough.



Mini-batches:	Using	more	than	1	example
• Does	it	make	sense	to	use	more	than	1	random	example?
– Yes,	you	can	use	a	“mini-batch”	Bt of	examples.

– Radius	of	ball is	inversely	proportional	to	the	mini-batch	size.
• If	you	double	the	batch	size,	you	half	the	radius	of	the	ball.

– Big	gains	for	going	from	1	to	2,	less	big	gains	from	going	from	100	to	101.

• You	can	use	a	bigger	step	size	as	the	batch	size	increases (“linear	scaling”	rule).
– Gets	you	to	the	ball	faster	(though	diverges	if	step-size	gets	too	big).

– Useful	for	vectorizing/parallelizing	code.
• Evaluate	one	gradient	on	each	core.



Polyak-Ruppert Iterate	Averaging
• Another	practical/theoretical	trick	is	averaging	of	the	iterations.

1. Run	the	stochastic	gradient	algorithm	with	αt =	O(1/√t)	or	αt constant.
2. Take	some	weighted	average	of	the	wt values.

• Average	does	not	affect	the	algorithm,	it’s	just	“watching”.
• Surprising	result	shown	by	Polyak and	by	Ruppert in	the	1980s:
– Asymptotically	converges	as	fast	as	stochastic	Newton’s	method.



Stochastic	Gradient	with	Averaging



A	Practical	Strategy	for	Deciding	When	to	Stop
• In	gradient	descent,	we	can	stop	when	gradient	is	close	to	zero.

• In	stochastic	gradient:
– Individual	gradients	don’t	necessarily	go	to	zero.
– We	can’t	see	full	gradient,	so	we	don’t	know	when	to	stop.

• Practical	trick:
– Every	‘k’	iterations	(for	some	large	‘k’),	measure	validation	set	error.
– Stop	if	the	validation	set	error	“isn’t	improving”.

• We	don’t	check	the	gradient,	since	it	takes	a	lot	longer	for	the	gradient	to	get	small.
• This	“early	stopping”	can	also	reduce	overfitting.



Gradient	Descent	vs.	Stochastic	Gradient

• 2012:	methods	with	cost	of	stochastic	gradient,	progress	of	full	gradient.
– Key	idea:	if	‘n’	is	finite,	you	can	use	a	memory	instead	of	having	αt go	to	zero.
– First	was	stochastic	average	gradient	(SAG),	“low-memory”	version	is	SVRG.

full	gradientlo
g(
	f(
w

t )	
–
f(w

* )
	)



https://www.ubyssey.ca/science/schmidt-sloan-fellowship/



Machine	Learning	with	“n	=	∞”
• Here	are	some	scenarios	where	you	effectively	have	“n	=	∞”:
– A	dataset	that	is	so	large	we	cannot	even	go	through	it	once (Gmail).
– A	function	you	want	to	minimize	that	you	can’t	measure	without	noise.
– You	want	to	encourage	invariance	with	a	continuous	set	of	transformation:

• You	consider	infinite	number	of	translations/rotations	instead	of	a	fixed	number.

– Learning	from	simulators	with	random	numbers	(physics/chem/bio):

http://kinefold.curie.fr/cgi-bin/form.pl
https://sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php



Stochastic	Gradient	with	Infinite	Data
• Previous	slide	gives	examples	with	infinite	sequence	of	IID	samples.

• How	can	you	practically	train	on	infinite-sized	datasets?

• Approach	1	(exact	optimization	on	finite	‘n’):
– Grab	‘n’	data	points,	for	some	really	large	‘n’.
– Fit	a	regularized	model	on	this	fixed	dataset	(“empirical	risk	minimization”).

• Approach	2	(stochastic	gradient	for	‘n’	iterations):
– Run	stochastic	gradient	iteration	for	‘n’	iterations.
– Each	iteration	considers	a	new	example,	never	re-visiting	any	example.



Stochastic	Gradient	with	Infinite	Data
• Approach	2	works	because	of	an	amazing	property	of	stochastic	
gradient:
– The	classic	convergence	analysis	does	not	rely	on	‘n’	being	finite.

• Further	Approach	2	only	looks	at	a	data	point	once:
– Each	example	is	an	unbiased	approximation	of	test	data.

• So	Approach	2	is	doing	stochastic	gradient	on	test	error:
– It	cannot	overfit.

• Up	to	a	constant,	Approach	1	and	2	have	same	test	error	bound.
– This	is	sometimes	used	to	justify	SG	as	the	“ultimate”	learning	algorithm.

• “Optimal	test	error	by	computing	gradient	of	each	example	once!”
– In	practice,	Approach	1	usually	gives	lower	test	error.

• The	constant	factor	matters!



Summary
• Step-size	in	stochastic	gradient	is	a	huge	pain:
– Needs	to	go	to	zero	to	get	convergence,	but	classic	O(1/t)	steps	are	bad.
– O(1/√𝑡) works	better,	but	still	pretty	slow.
– Constant	step-size	is	fast,	but	only	up	to	a	certain	point.

• SGD	practical	issues:	mini-batching,	averaging,	termination.
• SAG and	other	methods	fix	SG	convergence	for	finite	datasets.
• Infinite	datasets	can	be	used	with	SG	and	do	not	overfit.

• Next	time:	
– An	algorithm	that	has	been	dominating	Kaggle ML	competitions.



A	Practical	Strategy	For	Choosing	the	Step-Size
• All	these	step-sizes	have	a	constant	factor	in	the	“O”	notation.
– E.g.,

• We	don’t	know	how	to	set	step	size	as	we	go	in	the	stochastic	case.
– And	choosing	wrong	γ can	destroy	performance.

• Common	practical	trick:
– Take	a	small	amount	of	data	(maybe	5%	of	the	original	data).
– Do	a binary	search	for	γ that	most	improves	objective	on	this	subset.


