CPSC 340:
Machine Learning and Data Mining



Motivation: Automatic Brain Tumor Segmentation

* Task: segmentation tumors and normal tissue in multi-modal MRI data.
— We previously discussed using convolutions to engineer features.
Input: Output:

* Best performance was obtained with linear classifiers (SVMs/logistic).
— Provided you did feature selection or used regularization.



Support Vector Machines for Non-Separable

e Can we use linear models for data that is not close to separable?




Support Vector Machines for Non-Separable

e Can we use linear models for data that is not close to separable?

— It may be separable under change of basis (or closer to separable).
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Support Vector Machines for Non-Separable

e Can we use linear models for data that is not close to separable?

— It may be separable under change of basis (or closer to separable).
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Support Vector Machines for Non-Separable

e Can we use linear models for data that is not close to separable?

— It may be separable under change of basis (or closer to separable).
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Multi-Dimensional Polynomial Basis

* Recall fitting polynomials when we only have 1 feature:

A

* We can fit these models using a change of basis:

02 1 0.2 (0.2)7;
—|- = I -05 (-09%)
X 0“5 L L (N?
_ L( ) | 4 (L”l

e How can we do this when we have a lot of features?



Multi-Dimensional Polynomial Basis

* Polynomial basis for d=2 and p=2:
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* With d=4 and p=3, the polynomial basis would include:
— The x; squared and cubed: (x;)?, (x;)%, (xi3)%, (xia)% (Xi1)?, (xi2)?, (Xi3)?, (xi4)?.
— Two-term interactions: X;;X», Xi1Xiz, Xi1Xia, Xi2Xi3, XixXiz, Xi3Xig-
— Cubic interactions: X;;X,Xi3, Xi;XisXia, Xi1Xi3,Xig, Xi1Xi2Xi,
Xi12Xi, Xi12Xia, Xia2Xiz, XiaXis2, Xis?Xia, Xin2Xin, XisXiaZ, XinXiaZ,Xia2Xiq, Xi1Xia2, XisXin2, XiaXia?
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Kernel Trick

If we go to degree p=5, we’ll have O(d>) quintic terms:
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For large ‘d’ and ‘p’, storing a polynomial basis is intractable!
— ‘7’ has k=0(dP) columns, so it does not fit in memory.

Could try to search for a good subset of these.
— “Hierarchical forward selection” (bonus).

Alternating, you can use all of them with the “kernel trick”.
— For special case of L2-regularized linear models.



The “Other” Normal Equations

Recall the L2-regularized least squares objective with basis ‘7’
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(in practice you still solve the linear system, since inverse can be numerically unstable — see CPSC 302)

With some work (bonus), this can equivalently be written as:
T -
V= ZT (ZZ' +2I) y
\—

This is faster if n << k: n xn
— Cost is O(n%k + n3) instead of O(nk? + k3).
— But for the polynomial basis, this is still too slow since k = O(dP).



The “Other” Normal Equations

With the “other” normal equations we have = T(ZZ + //\I) /
Given test data X, predict § y by forming Z and then using:

y=Zv
"‘ZZ(ZZ +7II)
7 o

Notice that if you have K and K then you do not need Z and Z.

Key idea behind “kernel trick” for certain bases (like polynomials):
— We can efficiently compute K and K even though forming Z and Z is intractable.



Gram Matrix

* The matrix K =ZZ" is called the Gram matrix K.
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e K contains the dot products between all training examples.
— Similar to ‘Z’ in RBFs, but using dot product as “similarity” instead of distance.



Gram Matrix

 The matrix K = ZZ" has dot products between train and test examples:
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* Kernel function: k(x; x;) = 7'z,

— Computes dot product between in basis (z,'z;) using original features x; and x;.



Kernel Trick

—
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Kernel Trick
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Linear Regression vs. Kernel Regression
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Degenerate Example: “Linear Kerne

* Consider two examples x; and xj for a 2-dimensional dataset:
Xi= (x'u)xaz) Jl))‘)z)
* And our standard (“linear”) basis.
Z;= (sz)xi,z) ¢~ (Yi;)X,'2>
* In this case the inner product 2,'z; is k(x;, %) = x;"x;:
Z )(;75(3
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Example: Degree-2 Kernel

* Consider two examples x; and xj for a 2-dimensional dataset:
= )Xiz) )l))‘ﬁ)
* Now consider a particular degree-z basis:
— (.2 2 _ [y 2
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* |n this case the mner product z,'z; is k(x;,x;) = (x;"x;):
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Polynomial Kernel with Higher Degrees

* Let’s add a bias and linear terms to our degree-2 basis:
|
Zi= [l \szu ﬁxiz X;lz {2 % Xiq )(/‘22]
* In this case the inner product z;'z; is k(x;,x;) = (1 + x;'x;):
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Polynomial Kernel with Higher Degrees

* To get all degree-4 “monomials” | can use:

k(x- x) = (XivJ(S)q

())

E wvalenf fo wsing o 2. wit ! ;
, ; ‘ ] 5 2 2 3
1 " Wi WeiahhA Versions of X,‘,7Xi/ )(.'J)Xi/ X2 7)('"1'2) Xiz y--

* To also get lower-order terms use k(x;x;) = (1 + x;"x;)*
* The general degree-p polynomial kernel function:

k(6,60 = L+ %75

— Works for any number of features ‘d’.
— But cost of computing one k(x;,x;) is O(d) instead of O(dP) to compute zisz.
— Take-home message: | can compute dot-products without the features.



Kernel Trick with Polynomials

* Using polynomial basis of degree ‘p’ with the kernel trick:
— Compute K and K using:

P =
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— Make predictions using: kjm,'e
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* Training cost is only O(n?d + n3), despite using k=O(d®) features.
— We can form ‘K’ in O(n?d), and we need to “invert” an ‘n x n” matrix.

— Testing cost is only O(ndt), cost to form K.



Gaussian-RBF Kernel

e Most common kernel is the Gaussian RBF kernel:
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 Same formula and behaviour as RBF basis, but not equivalent:

— Before we used RBFs as a basis, now we’re using them as inner-product.

* Basis z; giving Gaussian RBF kernel is infinite-dimensional.

— If d=1 and o=1, it corresponds to using this basis (bonus slide):
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Motivation: Finding Gold

* Kernel methods first came from mining engineering (“Kriging”):
— Mining company wants to find gold.
— Drill holes, measure gold content.

— Build a kernel regression model (typically use RBF kernels).
Input Process Output
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Kernel Trick for Non-Vector Data

 Consider data that doesn’t look like this:

0.5377 0.3188 3.5784 +1

Y — 1.8339 —1.3077 2.7694 N !
~ |-2.2588 —0.4336 —1.3499|° YT |-1]|°

0.8622 0.3426 3.0349 +1

 Butinstead looks like this:

Do you want to go for a drink sometime? +1
J'achéte du pain tous les jours. —1

X = : Y =
Fais ce que tu veux. -1
There are inner products between sentences? +1

 We can interpret k(xi,xj) as a “similarity” between objects xi and ;.
— We don’t need features if we can compute “similarity” between objects.
— Kernel trick lets us fit regression models without explicit features.

n a4

— There are “string kernels”, “image kernels”, “graph kernels”, and so on.



Valid Kernels

What kernel functions k(x;,x;) can we use?

Kernel ‘k” must be an inner product in some space:

— There must exist a mapping from the x; to some z; such that k(x;x) = 7'z

It can be hard to show that a function satisfies this.

— Infinite-dimensional eigenfunction problem.

But like convex functions, there are some simple rules for
constructing “valid” kernels from other valid kernels (bonus slide).



Kernel Trick for Other Methods

Besides L2-regularized least squares, when can we use kernels?

— We can compute Euclidean distance with kernels:
T
Hzi - 2)'”2 — 2’_77_5 -2’2,.72) + Z\)' ZJ = l(()('-)x'.) - 2’((){)))6) + ’\/()9))3)

— All of our distance-based methods have kernel versions:
e Kernel k-nearest neighbours.
* Kernel clustering k-means (allows non-convex clusters)
* Kernel density-based clustering.
* Kernel hierarchical clustering.
* Kernel distance-based outlier detection.
e Kernel “Amazon Product Recommendation”.



Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:
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Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” (bonus slide) have shown that
any L2-regularized linear model can be kernelized:
L2-regularized robust regression.

L2-regularized brittle regression.

L2-regularized logistic regression.

L2-regularized hinge loss (SVMs).
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Logistic Regression with Kernels

Linear Logistic Regression Kernel-Linear Logistic Regression
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(pause)



Motivation: Big-N Problems
e Consider fitting a least squares model:
(=42 (W’

* Gradient methods are effective when ‘d’ is very large.
— O(nd) per iteration instead of O(nd? + d3) to solve as linear system.

* But what if number of training examples ‘n’ is very large?
— All Gmails, all products on Amazon, all homepages, all images, etc.



Gradient Descent vs. Stochastic Gradient

* Recall the gradient descent algorithm:

W= wh ~ ot TR

* For least squares, our gradient has the form:
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* So the cost of computing this gradient is linear in ‘n’.

— As ‘n’ gets large, gradient descent iterations become expensive.



Gradient Descent vs. Stochastic Gradient

* Common solution to this problem is stochastic gradient algorithm:

Wt‘”-:: Wt —~ okfvp’(wf?

e Uses the gradient of a randomly-chosen training example:
N7 = (T, —
‘F( (\N) = (W(Xsi | Zi;\)_.,("
e Cost of computing this one gradient is independent of ‘n’.

— lterations are ‘n’ times faster than gradient descent iterations.
— With 1 billion training examples, this iteration is 1 billion times faster.



Summary

* High-dimensional bases allows us to separate non-separable data.
* “Other” normal equations are faster when n < d.

e Kernel trick allows us to use high-dimensional bases efficiently.
— Write model to only depend on inner products between features vectors.
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e Kernels let us use similarity between objects, rather than features.
— Allows some exponential- or infinite-sized feature sets.
— Applies to distance-based and linear models with L2-regularization.

e Stochastic gradient methods let us use huge datasets.

* Next time:
— How do we train on all of Gmail?



Feature Selection Hierarchy

e Consider a linear models with higher-order terms,

A

* The number of higher-order terms may be too large.
— Can’t even compute them all.
— We need to somehow decide which terms we’ll even consider.

e Consider the following hierarchical constraint:
— You only allow w,, 20 if w, 0 and w, # 0.
— “Only consider feature interaction if you are using both features already.”



Hierarchical Forward Selection

Hierarchical Forward Selection:

— Usual forward selection, but consider interaction terms obeying hierarchy.
— Only consider w,, # 0 once w; # 0 and w, # 0.

— Only allow w,,; # 0 once wy, #0and w3 # 0 and w,; # 0.

— Only allow w,,,, # 0 once all threeway interactions are present.

Fig 9: Power set of the set {1,..., 4}: in blue, an authorized set of selected subsets.
In red, an example of a group used within the norm (a subset and all of its
descendants in the DAG).



Bonus Slide: Equivalent Form of Ridge Regression

Note that X and Y are the same on the left and right side, so we only need to show that
(XTX + XD 7'XT = XT(XXT 4217, (1)
A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is
(E-FH'G)y'FH '=E'F(H-GE 'F) ..

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write
the left side of (1) as

(XTXHAD)TIXT = W+ XTX) XY = A+ XTTX) 7 XT = A= XT (=D X) 7' XT = (A =-XT (=D X)'XT(-1)

Now apply the matrix inversion with £ = Al (so E~! = (%) I, F=X",H=—I (so H ' = —I too), and
G=X:

A
Now use that (1/a)A~" = (aA)~', to push the (—1/A) inside the sum as —A,

(M = X"(-D)X)'X"(-1) = -(%)IXT(—I - X (l) X7y,

L

T
~(IX"(~1-X (A

) XT) = XT + XXT)™ = XT(XXT 4+ A1)



Why is inner product a similarity?

* |t seems weird to think of the inner-product as a similarity.
e But consider this decomposition of squared Euclidean distance:

l _ A =0y +Ltv 112
‘,’_”X-,"X\')”Z =5 Wyl Xy X ~ a.“yg”
 If all training examples have the same norm, then minimizing Euclidean
distance is equivalent to maximizing inner product.
— So “high similarity” according to inner product is like “small Euclidean distance”.

— The only difference is that the inner product is biased by the norms of the
training examples.
— Some people explicitly normalize the x; by setting x, = (1/] | x| | )x;, so that inner
products act like the negation of Euclidean distances.
* E.g., Amazon product recommendation.



Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

2
T — X
k(zi,xj) = exp (— i = ;] ) :

o2
e What function ¢(x) would lead to this as the inner-product?
o To simplify, assume d =1 and 0 =1,
k(xi,x;) = exp(—x; + 2z;1; — .Ij)
= exp(—x7) exp(2z;z;) CXp(—:U?),

so we need ¢(z;) = exp(—z7)z; where z;2; = exp(2z;x;).
@ For this to work for all z; and z;, z; must be infinite-dimensional.
o If we use that

0, 2k gk gk
exp(2riz;) = Z ]:' L
k=0 '

then we obtain

o(z:) = oxp(—a) [1 [2a \JBa? \JBad -]



B question stop following

Why RBF-kernel not the same as RBF-basis?

| do not quite understand the two statements in red box? | think with k as defined that way, it is just the g(||z; — z;]|)
as we saw in the last lecture of RBF basis? Why they are not equivalent? What does "equivalent" here mean?

Also, why now "we are using them as inner product"? Is it because we now regard k(:ci, a:j) as the inner product of z;
and z;, which are some magical transformation of x; and x;? (Like k(x;,z;) = (1 + IL’;-FCBj)p is the inner product of z;
and z;, which are polynomial transformation of ; and x;)?

.}'&r Chenliang Zhou £ @ 8 months ago  Oh so is my following reasoning correct?:
Let Z and Z be as defined in lecture 22a.

In Gaussian RBF basis, § = Z(ZTZ + )1 ZTy = ZZT(ZZT + M) 'y.

In Gaussian RBF kernel, we have y = K(K + M)~y where where K and K are those 2

horrible matrices for Gaussian RBF kernels. Since they are the same formula, K = Z and K’ = Z, SO
§ = Z(Z+ )y

So Gaussian RBF basis and Gaussian RBF kernel are different because in general,

ZZT(ZZT + \I)"!(for G-RBF basis) # Z(Z + AI)~! (for G-RBF kernel).



Constructing Valid Kernels

o If ki(wi, ;) and ka(z;, ;) are valid kernels, then the following are valid kernels:

o ki(p(xi), d(x4)).
° ()’kl(Tz,T]) -+ ﬂkz(Tz,TJ) for v > 0 and ,B > 0.
-] kl(uLz,.LJ)kQ(Lz,uLJ)
o )k (xi, xj)P(x;).
-} CXp(kl(LCi,LCj)).
e Example: Gaussian-RBF kernel:

2
Ty — Iy
k(a:z-,xj):exp (_” (2 2]” )

g
12 %) |12
= exp (— ||x7,2|| ) exp 5 x?:vj exp (—M) .
o 07 N~ g
~ V - a>0 valid ~ V‘ -
(25(:131) \ -~ S ¢(x.7)

exp(valid)



Representer Theorem

Consider linear model differentiable with losses f; and L2-regularization,

n
. A
argmin »  fi(w"x;) + §||w||2-
wGIRd i—=1

Setting the gradient equal to zero we get
n
0= Z flwlz)z; + M.
i=1

So any solution w* can written as a linear combination of features z;,

n

w* = —§ > A z)e =z
1=1

i=1
— X7,

This is called a representer theorem (true under much more general conditions).



Kernel Trick for Other Methods

* Besides L2-regularized least squares, when can we use kernels?

— “Representer theorems” have shown that
any L2-regularized linear model can be kernelized.

— Linear models without regularization fit with gradient descent.
* If you starting at v=0 or with any other value in span of rows of ‘Z’.
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