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Last Time: “Global” and “Local” Features

* Consider the following weird feature transformation for identifying important e-mails:

“CPSS” m “cpPsC” (any user) “340” (any user) “CPSC” (user?) “340” (user?)

0 User 1 <no “340”>
1 0 .—-—7 1 0 User 1 <no “340”>
1 1 - 1 1 User 2 User 2
0 0 0 0 <no “CPSC”> <no “340”>
1 1 1 1 User 3 User 3

* The categorical (user?) features get expanded out into ‘k’ binary features.
— Where ‘k’ is the number of users.
— All those features are set to O if the word was not used.

* “Any user” (“global”) features increase/decrease importance of word for every user.

* “User” (“local”) features increase/decrease importance of word for specific users.
— Lets us learn more about users where we have a lot of data



The Big Global/Local Feature Table for E-mails

* Each row is one e-mail (there are lots of rows):
] r /m,)offanf i
“pot /wlvbﬂLnnf

/]
H\/\Ad_ﬁ """" T Z |
I o\od\\\ \7§) ! loca “ Fem'hn@ g W£ 0,\|

Need +0 S’}o/‘e
the user TD and |5 of

Non~2eco Tentures,

‘Feu*“ﬂb " lOCo\' 'FQOJ\AI!) va wser /2
Share) l’)’ q, wyers ‘Fdf' wser M
SCT Yo 0 for all oTher users.



Predicting Importance of E-mail For New User

* Consider a new user:
— We start out with no information about them.
— So we use global features to predict what is important to a generic user.
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— Local features are initialized to zero.

* With more data, update global features and user’s local features:
— Local features make prediction personalized.
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* G-mail system: classification with logistic regression.
— Trained with a variant of stochastic gradient (later).



(pause)



Motivation: Automatic Brain Tumor Segmentation

* Task: segmentation tumors and normal tissue in multi-modal MRI data.
Input: Output:

* Applications:
— Radiation therapy target planning, quantifying treatment responses.
— Mining growth patterns, image-guided surgery.
* Challenges:
— Variety of tumor appearances, similarity to normal tissue.
— “You are never going to solve this problem.”



Naive Voxel-Level Classifier

* We could treat classifying a voxel as supervised learning:

xi= (¢ , 197 ) 246 ) %= fumour

\,\J‘

* We can formulate predicting y; given x; as supervised learning.
e Butit doesn’t work at all with these features.



Need to Summarize Local Context

* The individual voxel values are almost meaningless:

— This x; could lead to different y..

* Intensities not standardized.
* Non-trivial overlap in signal for different tissue types.
* “Partial volume” effects at boundaries of tissue types.



Need to Summarize Local Context

* We need to represent the spatial “context” of the voxel.

— Include all the values of neighbouring voxels as extra features?

* Variation on coupon collection problem: requires lots of data to find patterns.

— Measure neighbourhood summary statistics (mean, variance, histogram)?
* Variation on bag of words problem: loses spatial information present in voxels.

— Standard approach uses convolutions to represent neighbourhood.



Representing Neighbourhoods with Convolutions

e Consider a 1D dataset:

— Want to classify each
time intoy, in {1,2,3}.
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— Example: speech data.
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* Easy to distinguish class 2 from the other classes (x; are smaller).

* Harder to distinguish between class 1 and class 3 (similar x; range).
— But convolutions can represent that class 3 is in “spiky” region.



Representing Neighbourhoods with Convolutions

* Original features (left) and features from convolutions (right):
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* Easy to distinguish the 3 classes with these 2 features.



1D Convolution Example

e Consider our original “signal”:

 Foreach “time”: S
— Compute dot-product of signal at surrounding times with a “filter”.

W= L0916 Q1781 =744 Q9D 05467 Glivo -7 O ~(miL)

* This gives a new “signal”: N )
— Measures a property of “neighbourhood”. = 1\ |
— This particular filter shows a local - RV AN
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1D Convolution (notation is specific to this lecture)

* 1D convolution input:

— Signal ‘x” which is a vector length n’. )(:[0 11 23 § 9 UJ
* Indexed by i=1,2,...,n.

— Filter ‘w’ which is t flength 2m+1’; -
| w’ w |. is a vector of leng m WPLO -~ 2 ~ O]
* Indexed by i=-m,-m+1,...-2,0,1,2,...,m-1,m

wo W W, oW,

e Qutput is a vector of length ‘n” with elements:
m

& = Z W Xy

J==-m
— You can think of this as centering w at position 7/,
and taking a dot product of ‘w’ with that “part” x.



1D Convolution

1D convolution example:

— Signal: [O ; 3 S_ 3

— Filter: w=l0 ,‘ 9 x“w 7 2 g}
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1D Convolution

1D convolution example:

Le“s Compu'te 7"
_ Signal: — P 5
Signal: )(:[O I(T < j\?‘”ﬂ\/
— Filter: W:CO -~ 2 -~ O]

v, w, W, W w (i1 2 5%

v |
— Convolution: \\/—\/_\J
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()

- ° 7
Dot producti Wik, =~/




1D Convolution Examples

* Examples: let x=LO | | 2 3 &5 & I%:]
— “ldentity”
Coy=C0 | 0) 2=LO0 | | 2 36 %13

Ox,t1%t0x, Oxn+lnthx

Z:LI\QBQ_%B?]

0 xo% 0%+ )5

— “Translation”

_sw=L0 O I]



1D Convolution Examples

. Ex?lmplgs:” et x=LO 1 | 23 5 8 13]
— “Identity - —
o y=C0 | 0) L_W o
— “Local Average” Z:C? Yy 1% Q 3% 55 8% Pj

—sw=C% % ')



Boundary Issue

 What can we do about the “?” at the edges?
TE L0 1123 5 913) and il %) ton o7 % 15238 5585 7 ]

e Can assign values past the boundaries:

« “Zero”: x=00 0O [:O | 2 3 G 3 ’3j 0O 0O
« “Replicate”: X=0 O O[:O | 2 3 5 3 ,gj 313
. “Mirror”; %= A | | (:O \ | l 3 5 3 ’3j g g 5

e Orjustignore the “?” values and return a shorter vector:

=[% s 2 3% 6% %)



Formal Convolution Definition

We’ve defined the convolution as:

m
Z/ - ng\lt\/) Xiﬁ
In other classes you may see it defined as: 5,2
m
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For simplicity we’re skipping the “reverse” step,
and assuming ‘w’ and ‘x’ are sampled at discrete points (not functions).

But keep this mind if you read about convolutions elsewhere.



Convolutions: Big Picture

 How do you use convolutions to get features?
— Apply several different convolutions to your signal/image.
— Each convolution gives a different “signal/image” value at each location.

— Use theses different signal/image values to give features at each location.

Signal |

% feadwes for classifymg Fhis loration



Convolutions: Big Picture

* What can features coming from convolutions represent?

— Some filters give you an average value of the neighbourhood.

— Some filters approximate the “first derivative” in the neighbourhood.
* “Is there a change from low to high (or dark to bright)?”

— Some filters approximate the “second derivative” in the neighbourhood.
* “Is there a spike or is the signal speeding up?”

* Hope: we can characterize “what happens in a neighbourhood”,
with just a few numbers.



1D Convolution Examples

* Translation convolution shift signal:

— “What is my neighbour’s value?”

W:[tooooooocpj

-3.7

-3.7




1D Convolution Examples

* Averaging convolution (“is signal generally high in this region?”

— Less sensitive to noise (or spikes) than raw signal.
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1D Convolution Examples

-2
—L
* Gaussian convolution “blurs” signal: \/v,-fxexP( 1(,1)

— Compared to averaging it’s more smooth and maintains peaks better.
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1D Convolution Examples

* Sharpen convolution enhances peaks.

— An “average” that places negative weights on the surrounding pixels.

W:[-' 3 "J
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1D Convolution Examples

* Centered difference convolution approximates first derivative:

— Positive means change from low to high (negative means high to low).
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Digression: Derivatives and Integrals

 Numerical derivative approximations can be viewed as filters:
— Centered difference: [-1, O, 1] (derivativeCheck in findMin). = %

100

 Numerical integration approximations can be viewed as filters:

— “Simpson’s” rule: [1/6, 4/6, 1/6] (a bit like Gaussian filter). /
\

::I/ \

e Derivative filters add to O, integration filters add to 1,

— For constant function, derivative should be 0 and average = constant.



1D Convolution Examples

* Laplacian convolution approximates second derivative:

— “Sum to zero” filters “respond” if input vector looks like the filter
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Laplacian of Gaussian Filter

 Laplacian of Gaussian is a smoothed 2"d-derivative approximation:
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Taking Maximums of Convolutions

* Remember our motivation example: | dasl  |dus2

3
3.
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* Laplacian of Gaussian filters looks useful: IR N
I
— Class 1 and 3 usually often have different values. | N
AN b o T
* Close to zero for class 1, often far from zero forclass3. -+ /v ||, ”\’/ \\ ! [
Vel Al
* But class 3 values are still sometimes close to 0. IRt
|
\J

 What if we take maximum absolute value over 16 adjacent times?



Taking Maximums of Convolutions

* We often use maximum over several convolutions as features:

— On right is the maximum(abs(Laplacian of Gaussian)) at ‘i’ and its 16 NNs.

— We can solve the problem with just the 2 features below at each location.




Images and Higher-Order Convolution

* 2D convolution:

— Signal x’ is the pixel intensities in an ‘n’ by ‘n’ image.

— Filter ‘W’ is the pixel intensities in a ‘2m+1’ by 2m+1’ image.
* The 2D convolution is given by:

“Z[.;,):L] 2 Z WL.):;JZ]X[’,+JI;IZ sz
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* 3D and higher-order convolutions are defined similarly.
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Convolutions as Features

e Classic vision methods uses convolutions as features:
— Usually have different types/variances/orientations.
— Can take maxes across locations/orientations/scales.

* Notable convolutions:
— Gaussian (blurring/averaging).

— Laplace of Gaussian
(second-derivative).

— Gabor filters
(directional first- or higher-derivative).




Image Convolution Examples ;
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples

7 repeals
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples

GQ'oor Filter
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Image Convolution Examples

Ga‘oor Filter
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Image Convolution Examples
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Image Convolution Examples
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3D Convolution
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3D Convolution

Ganssian  Tilfer




3D Convolution
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3D Convolution




3D Convolution
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Filter Banks

* To characterize context, we used to use filter banks like “MR8”:

— 1 Gaussian filter, 1 Laplacian of Gaussian filter. =“
— 6 max(abs(Gabor)) filters: ~ P
* 3 scales of sine/cosine (maxed over 6 orientations). ==

ENNIE
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* Convolutional neural networks (Part 5) are replacing filter banks.



Summary

Convolutions are flexible class of signal/image transformations.

— Can approximate directional derivatives and integrals at different scales.
Max(convolutions) can yield features that make classification easy.
Filter banks:

— Make features for a vision problem by takin a bunch of convolutions.

Next time:
— A trick that lets you find gold and use the polynomial basis with d > 1.



Global and Local Features for Domain Adaptation

Suppose you want to solve a classification task,
where you have very little labeled data from your domain.

But you have access to a huge dataset with the same labels,
from a different domain.
Example:

— You want to label POS tags in medical articles, and pay a few $S$S to label
some.

— You have access the thousands of examples of Wall Street Journal POS
labels.

Domain adaptation: using data from different domain to help.



Global and Local Features for Domain Adaptation

e “Frustratingly easy domain adaptation”:

— Use “global” features across the domains, and “local” features for each
domain.

— “Global” features let you learn patterns that occur across domains.
* Leads to sensible predictions for new domains without any data.
— “Local” features let you learn patterns specific to each domain.
* Improves accuracy on particular domains where you have more data.
— For linear classifiers this would look like:
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Image Coordinates

e Should we use the image coordinates?
— E.g., the pixel is at location (124, 78) in the image.

e Considerations:
— |Is the interpretation different in different areas of the image?

— Are you using a linear model?
* Would “distance to center” be more logical?

— Do you have enough data to learn about all areas of the image?



Alignment-Based Features

* The position in the image is important in brain tumour application.

— But we didn’t have much data, so coordinates didn’t make sense.

 We aligned the images with a “template image”.
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Alignment-Based Features

* The position in the image is important in brain tumour application.

— But we didn’t have much data, so coordinates didn’t make sense.

 We aligned the images with a “template image”.
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Motivation: Automatic Brain Tumor Segmentation

* Final features for brain tumour segmentation:
— Gaussian convolution of original/template/priors/symmetry, Laplacian of Gaussian on original.

* All with 3 variances.
* Max(Gabor) with sine and cosine on orginal (3 variances).
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Motivation: Automatic Brain Tumour Segmentation

* Logistic regression and SVMs among best methods.
— When using these 72 features from last slide.
— If you used all features | came up with, it overfit.

* Possible solutions to overfitting:

— Forward selection was too slow.

 Just one image gives 8 million training examples.
— | did manual feature selection (“guess and check”).
— L2-regularization with all features also worked.

 But this is slow at test time.
* L1-regularization gives best of regularization and feature selection.



FFT implementation of convolution

e Convolutions can be implemented using fast Fourier transform:

— Take FFT of image and filter, multiply elementwise, and take inverse FFT.

* It has faster asymptotic running time but there are some catches:
— You need to be using periodic boundary conditions for the convolution.

— Constants matter: it may not be faster in practice.
* Especially compared to using GPUs to do the convolution in hardware.

— The gains are largest for larger filters (compared to the image size).



SIFT Features

e Scale-invariant feature transform (SIFT):
— Features used for object detection (“is particular object in the image”?)
— Designed to detect unique visual features of objects at multiple scales.
— Proven useful for a variety of object detection tasks.




