
CPSC	340:
Machine	Learning	and	Data	Mining

Convolutions
Fall	2020



Last	Time:	“Global”	and	“Local”	Features
• Consider	the	following	weird	feature	transformation	for	identifying	important	e-mails:

• The	categorical	(user?)	features	get	expanded	out	into	‘k’	binary	features.
– Where	‘k’	is	the	number	of	users.
– All	those	features	are	set	to	0	if	the	word	was	not	used.

• “Any	user”	(“global”)	features	increase/decrease	importance	of	word	for	every	user.
• “User”	(“local”)	features	increase/decrease	importance	of	word	for	specific	users.

– Lets	us	learn	more	about	users	where	we	have	a	lot	of	data

“CPSC”	(any user) “340”	(any	user) “CPSC”	(user?) “340”	(user?)

1 0 User 1 <no	“340”>

1 0 User 1 <no	“340”>

1 1 User 2 User	2

0 0 <no	“CPSC”> <no	“340”>

1 1 User 3 User 3

“CPSS” “340”

1 0

1 0

1 1

0 0

1 1



The	Big	Global/Local	Feature	Table	for	E-mails
• Each	row	is	one	e-mail	(there	are	lots	of	rows):



Predicting	Importance	of	E-mail	For	New	User
• Consider	a	new	user:

– We	start	out	with	no	information	about	them.
– So	we	use	global features	to	predict	what	is	important	to	a	generic	user.

– Local	features	are	initialized	to	zero.
• With	more	data,	update	global features	and	user’s	local	features:

– Local features	make prediction	personalized.

– What	is	important	to	this user?
• G-mail	system:	classification	with	logistic	regression.

– Trained	with	a	variant	of	stochastic	gradient	(later).



(pause)



Motivation:	Automatic	Brain	Tumor	Segmentation
• Task:	segmentation	tumors	and	normal	tissue	in	multi-modal	MRI	data.

• Applications:
– Radiation	therapy	target	planning,	quantifying	treatment	responses.
– Mining	growth	patterns,	image-guided	surgery.

• Challenges:
– Variety	of	tumor	appearances,	similarity	to	normal	tissue.
– “You	are	never	going	to	solve	this	problem.”

Input: Output:



Naïve	Voxel-Level	Classifier
• We	could	treat	classifying	a	voxel	as	supervised	learning:

• We	can	formulate	predicting	yi given	xi as	supervised	learning.
• But	it	doesn’t	work at	all	with	these	features.



Need	to	Summarize	Local	Context
• The	individual	voxel	values	are	almost	meaningless:
– This	xi could	lead	to	different	yi.

• Intensities	not	standardized.
• Non-trivial	overlap	in	signal	for	different	tissue	types.
• “Partial	volume”	effects	at	boundaries	of	tissue	types.



Need	to	Summarize	Local	Context
• We	need	to	represent	the	spatial	“context”	of	the	voxel.

– Include	all	the	values	of	neighbouring voxels	as	extra	features?
• Variation	on	coupon	collection	problem:	requires	lots	of	data	to	find	patterns.

– Measure	neighbourhood summary	statistics	(mean,	variance,	histogram)?
• Variation	on	bag	of	words	problem:	loses	spatial	information	present	in	voxels.

– Standard	approach	uses	convolutions to	represent	neighbourhood.



Representing	Neighbourhoods	with	Convolutions

• Consider	a	1D	dataset:
– Want	to	classify	each
time	into	yi in	{1,2,3}.

– Example:	speech	data.

• Easy	to	distinguish	class	2	from	the	other	classes	(xi are	smaller).
• Harder	to	distinguish	between	class	1	and	class	3	(similar	xi range).
– But	convolutions	can	represent	that	class	3	is	in	“spiky”	region.



Representing	Neighbourhoods	with	Convolutions

• Original	features	(left)	and	features	from	convolutions (right):

• Easy	to	distinguish	the	3	classes	with	these	2	features.



1D	Convolution	Example
• Consider	our	original	“signal”:

• For	each	“time”:
– Compute	dot-product	of	signal	at	surrounding	times	with	a	“filter”.

• This	gives	a	new	“signal”:
– Measures	a	property	of	“neighbourhood”.
– This	particular	filter	shows	a	local	
“how	spiky	”	value.



1D	Convolution	(notation	is	specific	to	this	lecture)

• 1D	convolution input:
– Signal ‘x’	which	is	a	vector	length	‘n’.

• Indexed	by	i=1,2,…,n.
– Filter ‘w’	which	is	a	vector	of	length	‘2m+1’:

• Indexed	by	i=-m,-m+1,…-2,0,1,2,…,m-1,m

• Output	is	a	vector	of	length	‘n’	with	elements:

– You	can	think	of	this	as	centering	w	at	position	‘i’,
and taking	a	dot	product	of	‘w’	with	that	“part”	xi.	



1D	Convolution
• 1D	convolution example:
– Signal:

– Filter:

– Convolution:



1D	Convolution
• 1D	convolution example:
– Signal:

– Filter:

– Convolution:



1D	Convolution	Examples
• Examples:	
– “Identity”

– “Translation”



1D	Convolution	Examples
• Examples:	
– “Identity”

– “Local	Average”



Boundary	Issue
• What	can	we	do	about	the	“?”	at	the	edges?

• Can	assign	values	past	the	boundaries:
• “Zero”:

• “Replicate”:

• “Mirror”:

• Or	just	ignore	the	“?”	values	and	return	a	shorter	vector:



Formal	Convolution	Definition
• We’ve	defined	the	convolution	as:

• In	other	classes	you	may	see	it	defined	as:

• For	simplicity	we’re	skipping	the	“reverse”	step,
and	assuming	‘w’	and	‘x’	are	sampled	at	discrete	points	(not	functions).

• But	keep	this	mind	if	you	read	about	convolutions	elsewhere.



Convolutions:	Big	Picture
• How	do	you	use	convolutions	to	get	features?
– Apply	several	different	convolutions	to	your	signal/image.
– Each	convolution	gives	a	different	“signal/image”	value	at	each	location.
– Use	theses	different	signal/image	values	to	give	features	at	each	location.



Convolutions:	Big	Picture
• What	can	features	coming	from	convolutions	represent?
– Some	filters	give	you	an	average	value	of	the	neighbourhood.

– Some	filters	approximate	the	“first	derivative”	in	the	neighbourhood.
• “Is	there	a	change	from	low	to	high	(or	dark	to	bright)?”

– Some	filters	approximate	the	“second	derivative”	in	the	neighbourhood.
• “Is	there	a	spike	or	is	the	signal	speeding	up?”

• Hope:	we	can	characterize	“what	happens	in	a	neighbourhood”,
with	just	a	few	numbers.



1D	Convolution	Examples
• Translation convolution	shift	signal:
– “What	is	my	neighbour’s	value?”



1D	Convolution	Examples
• Averaging	convolution	(“is	signal	generally	high	in	this	region?”
– Less	sensitive	to	noise (or	spikes)	than	raw	signal.



1D	Convolution	Examples
• Gaussian	convolution	“blurs”	signal:
– Compared	to	averaging	it’s	more	smooth	and	maintains	peaks	better.



1D	Convolution	Examples
• Sharpen convolution	enhances	peaks.
– An	“average”	that	places	negative	weights	on	the	surrounding	pixels.



1D	Convolution	Examples
• Centered	difference	convolution	approximates	first	derivative:
– Positive	means	change	from	low	to	high	(negative	means	high	to	low).



Digression:	Derivatives	and	Integrals
• Numerical	derivative	approximations	can	be	viewed	as	filters:
– Centered	difference:	[-1,	0,	1]	(derivativeCheck in	findMin).

• Numerical	integration	approximations can	be	viewed	as	filters:
– “Simpson’s”	rule:	[1/6,	4/6,	1/6]	(a	bit	like	Gaussian	filter).

• Derivative	filters	add	to	0,	integration	filters	add	to	1,	
– For	constant	function,	derivative	should	be	0	and	average	=	constant.

27



1D	Convolution	Examples
• Laplacian	convolution	approximates	second	derivative:
– “Sum	to	zero”	filters	“respond”	if	input	vector	looks	like	the	filter



Laplacian	of	Gaussian	Filter
• Laplacian	of	Gaussian	is	a	smoothed	2nd-derivative	approximation:



• Remember	our	motivation	example:

• Laplacian	of	Gaussian	filters	looks	useful:
– Class	1	and	3	usually	often	have	different	values.

• Close	to	zero	for	class	1,	often	far	from	zero	for	class	3.
• But	class	3	values	are	still	sometimes	close	to	0.

• What	if	we	take	maximum	absolute	value	over	16	adjacent	times?

Taking	Maximums	of	Convolutions



Taking	Maximums	of	Convolutions
• We	often	use	maximum	over	several	convolutions	as	features:
– On	right	is	the	maximum(abs(Laplacian	of	Gaussian))	at	‘i’	and	its	16	NNs.
– We	can	solve	the	problem	with	just	the	2	features	below	at	each	location.



Images	and	Higher-Order	Convolution
• 2D	convolution:
– Signal ‘x’	is	the	pixel	intensities	in	an	‘n’	by	‘n’	image.
– Filter ‘w’	is	the	pixel	intensities	in	a	‘2m+1’	by	‘2m+1’	image.

• The	2D	convolution	is	given	by:

• 3D	and	higher-order	convolutions	are	defined	similarly.

https://github.com/vdumoulin/conv_arithmetic



Convolutions	as	Features
• Classic	vision	methods	uses	convolutions	as	features:
– Usually	have	different	types/variances/orientations.
– Can	take	maxes	across	locations/orientations/scales.

• Notable	convolutions:
– Gaussian (blurring/averaging).
– Laplace	of	Gaussian
(second-derivative).

– Gabor	filters
(directional	first- or	higher-derivative).



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples

http://setosa.io/ev/image-kernels



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples



Image	Convolution	Examples



3D	Convolution



3D	Convolution



3D	Convolution



3D	Convolution



3D	Convolution



Filter	Banks
• To	characterize	context,	we	used	to	use	filter	banks like	“MR8”:
– 1	Gaussian	filter,	1	Laplacian	of	Gaussian	filter.
– 6	max(abs(Gabor))	filters:

• 3	scales	of	sine/cosine	(maxed	over	6	orientations).

• Convolutional	neural	networks	(Part	5)	are	replacing	filter	banks.
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html



Summary
• Convolutions are	flexible	class	of	signal/image	transformations.
– Can	approximate	directional	derivatives	and	integrals	at	different	scales.

• Max(convolutions)	can	yield	features	that	make	classification	easy.
• Filter	banks:
– Make	features	for	a	vision	problem	by	takin	a	bunch	of	convolutions.

• Next	time:
– A	trick	that	lets	you	find	gold	and	use	the	polynomial	basis	with	d	>	1.



Global	and	Local	Features	for	Domain	Adaptation

• Suppose	you	want	to	solve	a	classification	task,
where	you	have	very	little	labeled	data	from	your	domain.

• But	you	have	access	to	a	huge	dataset	with	the	same	labels,
from	a	different	domain.

• Example:
– You	want	to	label	POS	tags	in	medical	articles,	and	pay	a	few	$$$	to	label	
some.

– You	have	access	the	thousands	of	examples	of	Wall	Street	Journal	POS	
labels.

• Domain	adaptation:	using	data	from	different	domain	to	help.



Global	and	Local	Features	for	Domain	Adaptation

• “Frustratingly	easy	domain	adaptation”:
– Use	“global”	features	across	the	domains,	and	“local”	features	for	each	
domain.

– “Global”	features	let	you	learn	patterns	that	occur	across	domains.
• Leads	to	sensible	predictions	for	new	domains	without	any	data.

– “Local”	features	let	you	learn	patterns	specific	to	each	domain.
• Improves	accuracy	on	particular	domains	where	you	have	more	data.

– For	linear	classifiers	this	would	look	like:



Image	Coordinates
• Should	we	use	the	image	coordinates?
– E.g.,	the	pixel	is	at	location	(124,	78)	in	the	image.

• Considerations:
– Is	the	interpretation	different	in	different	areas	of	the	image?
– Are	you	using	a	linear	model?

• Would	“distance	to	center”	be	more	logical?
– Do	you	have	enough	data	to	learn	about	all	areas	of	the	image?



Alignment-Based	Features
• The	position	in	the	image	is	important	in	brain	tumour application.
– But	we	didn’t	have	much	data,	so	coordinates	didn’t	make	sense.

• We	aligned	the	images	with	a	“template	image”.



Alignment-Based	Features
• The	position	in	the	image	is	important	in	brain	tumour application.
– But	we	didn’t	have	much	data,	so	coordinates	didn’t	make	sense.

• We	aligned	the	images	with	a	“template	image”.
– Allowed	“alignment-based”	features:



Motivation:	Automatic	Brain	Tumor	Segmentation
• Final	features	for	brain	tumour segmentation:

– Gaussian	convolution	of	original/template/priors/symmetry,	Laplacian	of	Gaussian	on	original.
• All	with	3	variances.
• Max(Gabor)	with	sine	and	cosine		on	orginal (3	variances).



Motivation:	Automatic	Brain	Tumour Segmentation

• Logistic	regression and	SVMs among	best	methods.
– When	using	these	72	features	from	last	slide.
– If	you	used	all	features	I	came	up	with,	it	overfit.

• Possible	solutions	to	overfitting:
– Forward	selection	was	too	slow.

• Just	one	image	gives	8	million	training	examples.

– I	did	manual	feature	selection (“guess	and	check”).
– L2-regularization	with	all	features also	worked.

• But	this	is	slow	at	test	time.
• L1-regularization gives	best	of	regularization	and	feature	selection.



FFT	implementation	of	convolution
• Convolutions	can	be	implemented	using	fast	Fourier	transform:
– Take	FFT	of	image	and	filter,	multiply	elementwise,	and	take	inverse	FFT.

• It	has	faster	asymptotic	running	time	but	there	are	some	catches:
– You	need	to	be	using	periodic	boundary	conditions	for	the	convolution.
– Constants	matter:	it	may	not	be	faster	in	practice.

• Especially	compared	to	using	GPUs	to	do	the	convolution	in	hardware.

– The	gains	are	largest	for	larger	filters	(compared	to	the	image	size).

65



SIFT	Features
• Scale-invariant	feature	transform	(SIFT):
– Features	used	for	object	detection	(“is	particular	object	in	the	image”?)
– Designed	to	detect	unique	visual	features	of	objects	at	multiple	scales.
– Proven	useful	for	a	variety	of	object	detection	tasks.

http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html


