
CPSC	340:
Machine	Learning	and	Data	Mining

More	Linear	Classifiers
Fall	2020

Last	Time:	Classification	using	Regression	and	SVMs
• Binary	classification	using sign	of	linear	models:

• We	considered	different	training	“error”	functions:
– Squared	error:	(wTxi – yi)2.

• If	yi =	+1	and	wTxi =	+100,	then	squared	error	(wTxi – yi)2 is	huge.
– 0-1	classification	error:	(sign(wTxi)	=	yi)?

• Non-convex	and	hard	to	minimize in	terms	of	‘w’	(unless	optimal	error	is	0).
– Degenerate	convex	approximation	to	0-1	error:	max{0,-yiwTxi}.

• Has	a	degenerate	solution	of	0.
– Hinge	loss:	max{0,1-yiwTxi}.

• Convex	upper	bound	on	number	of	classification	errors.
• With	L2-regularization,	it’s	called	a	support	vector	machine	(SVM).

‘λ’	vs	‘C’	as	SVM	Hyper-Parameter
• We’ve	written	SVM	in	terms	of	regularization	parameter	‘λ’:

• Some	software	packages	instead	have	regularization	parameter	‘C’:

• In	our	notation,	this	corresponds	to	using	λ =	1/C.
– Equivalent	to	just	multiplying	f(w)	by	constant.
– Note	interpretation	of	‘C’	is	different:	high	regularization	for	small	‘C’.

• You	can	think	of	‘C’	as	“how	much	to	focus	on	the	classification	error”.

Logistic	Loss
• We	can	smooth	max	in	degenerate	loss	with log-sum-exp:

• Summing	over	all	examples	gives:

• This	is	the	“logistic	loss”	and	model	is	called	“logistic	regression”.
– It’s	not	degenerate:	w=0	now	gives	an	error	of	log(2)	instead	of	0.
– Convex	and	differentiable:	minimize	this	with	gradient	descent.
– You	should	also	add	regularization.
– We’ll	see	later	that	it	has	a	probabilistic	interpretation.

Convex	Approximations	to	0-1	Loss

Logistic	Regression	and	SVMs
• Logistic	regression	and	SVMs	are used	EVERYWHERE!
– Fast	training	and	testing.

• Training	on	huge	datasets	using	“stochastic”	gradient	descent	(next	week).
• Prediction	is	just	computing	wTxi.

– Weights	wj are	easy	to	understand.	
• It’s	how	much	wj changes	the	prediction	and	in	what	direction.

– We	can	often	get	a	good	test	error.
• With	low-dimensional	features	using	RBFs	and	regularization.	
• With	high-dimensional	features	and	regularization.

– Smoother	predictions	than	random	forests.

Comparison	of	“Black	Box”	Classifiers
• Fernandez-Delgado	et	al.	[2014]:
– “Do	we	Need	Hundreds	of	Classifiers	to	Solve	Real	World	Classification	
Problems?”

• Compared	179	classifiers	on	121	datasets.
• Random	forests	are	most	likely	to	be	the	best	classifier.
• Next	best	class	of	methods	was	SVMs	(L2-regularization,	RBFs).

• “Why	should	I	care	about	logistic	regression	if	I	know	about	deep	
learning?”

(pause)

Maximum-Margin	Perspective
• Consider	a	linearly-separable dataset.

Maximum-Margin	Perspective
• Consider	a	linearly-separable dataset.
– Perceptron	algorithm	finds	some classifier	with	zero	error.
– But	are	all	zero-error	classifiers	equally	good?

Maximum-Margin	Perspective
• Consider	a	linearly-separable	dataset.
– Maximum-margin classifier:	choose	the	farthest	from	both	classes.

Maximum-Margin	Perspective
• Consider	a	linearly-separable	dataset.
– Maximum-margin classifier:	choose	the	farthest	from	both	classes.

Maximum-Margin	Perspective
• Consider	a	linearly-separable	dataset.
– Maximum-margin classifier:	choose	the	farthest	from	both	classes.

Maximum-Margin	Perspective
• For linearly-separable	data:

• With	small-enough	λ >	0,	SVMs	find	the	maximum-margin	classifier.
– Need	λ small	enough	that	hinge	loss	is	0	in	solution.
– Origin	of	the	name:	the	“support	vectors”	are	the	points	closest	to	the	line	(see	bonus).

• Recent	result:	logistic	regression	also	finds	maximum-margin	classifier.
– With	λ=0	and	if	you	fit	it	with	gradient	descent	(not	true	for	many	other	optimizers).

(pause)

Previously:	Identifying	Important	E-mails
• Recall	problem	of	identifying	‘important’	e-mails:

• We	can	do	binary	classification	by	taking	sign	of	linear	model:

– Convex	loss	functions	(hinge/logistic	loss)	let	us	find	an	appropriate	‘w’.

• But	what	if	we	want	a	probabilistic	classifier?
– Want	a	model	of	p(yi =	“important”	|	xi)	for	use	in	decision	theory.

Predictions	vs.	Probabilities
• With	zi =	wTxi,	linear	classifiers	make	prediction	using	sign(zi):

• For	predictions,	“sign”	maps	from	wTxi to	the	elements	{-1,+1}.
– If	wTxi is	positive	we	predict	+1,	if	it’s	negative	we	predict	-1.

• For	probabilities,	we	want	to	map	from	wTxi to	the	range	[0,1].
– If	wTxi is	very	positive,	we	output	a	value	close	to	+1.
– If	wTxi is	very	negative,	we	output	a	value	close	to	0.
– If	wTxi is	close	to	0,	we	output	a	value	close	to	0.5.

• So	we	want	a	transformation	of	zi =	wTxi that	looks	like	this:

• The	most	common	choice	is	the	sigmoid	function:

• Values	of	h(zi)	match	what	we	want:

Sigmoid	Function

Probabilities	for	Linear	Classifiers	using	Sigmoid	
• Using	sigmoid	function,	we	output	probabilities	for	linear	models	using:

• By	rules	of	probability:

• We	then	use	these	for	“probability	that	e-mail	is	important”.
• This	may	seem	heuristic,	but	later	we’ll	see	that:

– minimizing	logistic	loss	does	“maximum	likelihood	estimation”	in	this	model.

(pause)

Multi-Class	Linear	Classification
• We’ve	been	considering	linear	models	for	binary	classification:

• E.g.,	is	there	a	cat	in	this	image	or	not?

https://www.youtube.com/watch?v=tntOCGkgt98

Multi-Class	Linear	Classification
• Today	we’ll	discuss	linear	models	for	multi-class	classification:

• For	example,	classify	image	as	“cat”,	“dog”,	or	“person”.
– This	was	natural	for	methods	of	Part	1	(decision	trees,	naïve	Bayes,	KNN).
– For	linear	models,	we	need	some	new	notation.

“One	vs	All”	Classification
• Suppose	you only	know	how	to	do	binary	classification:

– “One	vs	all” is	a	way	to	turn	a	binary	classifier	into	a	multi-class	method.

• Training phase:
– For	each	class	‘c’,	train	binary	classifier	to	predict	whether	example	is	a	‘c’.

• For	example,	train	a	“cat	detector”,	a	“dog	detector”,	and	a	“human	detector”.
• If	we	have	‘k’	classes,	this	gives	‘k’	binary	classifiers .

• Prediction phase:
– Apply	the	‘k’	binary	classifiers	to	get	a	“score”	for	each	class	‘c’.
– Predict	the	‘c’	with	the	highest	score.

“One	vs	All”	Linear Classification
• “One	vs	all”	logistic	regression	for	classifying	as	cat/dog/person.
– Train	a	separate	classifier	for	each	class.

• Classifier	1	tries	to	predict	+1	for	“cat”	images	and	-1	for	“dog”	and	“person”	images.
• Classifier	2	tries	to	predict	+1	for	“dog”	images	and	-1	for	“cat”	and	“person”	images.
• Classifier	3	tries	to	predict	+1	for	“person”	images	and	-1	for	“cat”	and	“dog”	images.

– This	gives	us	a	weight	vector	wc for	each	class	‘c’:
• Weights	wc try	to	predict	+1	for	class	‘c’	and	-1	for	all	others.
• We’ll	use	‘W’	as	a	matrix	with	the	wc as	rows:

“One	vs	All”	Linear Classification
• “One	vs	all”	logistic	regression	for	classifying	as	cat/dog/person.

– Prediction	on	example	xi given parameters	‘W’	:

– For	each	class	‘c’,	compute wc
Txi.

• Ideally,	we’ll	get	sign(wc
Txi)	=	+1	for	one	class	and	sign(wc

Txi)	=	-1	for	all	others.
• In	practice,	it	might	be	+1	for	multiple	classes	or	no	class.

– To	predict	class,	we	take	maximum	value	of	wc
Txi (“highest	score”).

• In	the	example	above,	predict	“human”	(0.9	is	higher	than	-0.8	and	-0.1).

Shape	of	Decision	Boundaries
• Recall	that	a	binary	linear	classifier	splits	space	using	a	hyper-plane:

• Divides	xi space	into	2	“half-spaces”.

Shape	of	Decision	Boundaries
• Multi-class	linear	classifier	is	intersection	of	these	“half-spaces”:
– This	divides	the	space	into	convex	regions	(like	k-means):

– Could	be	non-convex	with	change	of	basis.

Digression:	Multi-Label	Classification
• A	related	problem	is	multi-label	classification:

• Which	of	the	‘k’	objects	are	in	this	image?
– There	may	be	more	than	one	“correct”	class	label.
– Here	we	can	also	fit	‘k’	binary	classifiers.

• But	we	would	take	all	the	sign(wc
Txi)=+1	as	the	labels.

http://image-net.org/challenges/LSVRC/2013/

Multi-Class	Linear Classification	(MEMORIZE)
• Back	to	multi-class	classification where	we	have	1	“correct”	label:

• We’ll	use	‘				’	as	classifier	where	c=yi (row	of	correct	class	label).
– So	if	yi=2	then							=	w2.

“One	vs	All”	Multi-Class	Linear Classification
• Problem:	We	didn’t	train	the	wc so	that	the	largest	wc

Txi would	be					Txi.
– Each	classifier	is	just	trying	to	get	the	sign	right.

– Here	the	classifier	incorrectly	predicts	“dog”.
• “One	vs	All”	doesn’t	try	to	put	w2

Txi and	w3
Txi on	same	scale for	decisions	like	this.

• We	should	try	to	make	w3
Txi positive	and	w2

Txi negative	relative	to	each	other.	
• The	multi-class	hinge	losses	and	the	multi-class	logistic	loss	do	this.

https://laughingsquid.com/pug-mask-a-latex-mask-so-you-can-look-like-a-dog/

Multi-Class	SVMs
• Can	we	define	a	loss	that	encourages	largest	wc

Txi to	be					Txi?
– So	when	we	maximizing	over	wc

Txi,	we	choose	correct	label	yi.

• Recall	our	derivation	of	the	hinge	loss (SVMs):
– We	wanted	yiwTxi >	0	for	all	‘i’	to	classify	correctly.
– We	avoided	non-degeneracy	by	aiming	for	yiwTxi ≥	1.
– We	used	the	constraint	violation	as	our	loss:	max{0,1-yiwTxi}.

• We	can	derive	multi-class	SVMs	using	the	same	steps…

Multi-Class	SVMs
• Can	we	define	a	loss	that	encourages	largest	wc

Txi to	be					Txi?

• For	here,	there	are	two	ways	to	measure	constraint	violation:

Multi-Class	SVMs
• Can	we	define	a	loss	that	encourages	largest	wc

Txi to	be					Txi?

• For	each	training	example	‘i’:
– “Sum”	rule	penalizes	for	each	‘c’ that	violates	the	constraint.
– “Max”	rule	penalizes	for	one	‘c’	that	violates	the	constraint	the	most.

• “Sum”	gives	a	penalty	of	‘k-1’	for	W=0,	“max”	gives	a	penalty	of	‘1’.

• If	we	add	L2-regularization,	both	are	called	multi-class	SVMs:
– “Max”	rule	is	more	popular,	“sum”	rule	usually	works	better.
– Both	are	convex	upper	bounds	on	the	0-1	loss.

Summary
• Logistic	loss	uses	a	smooth	convex	approximation	to	the	0-1	loss.
• SVMs	and	logistic	regression	are	very	widely-used.
– A	lot	of	ML	consulting:	“find	good	features,	use	L2-regularized	logistic/SVM”.
– Under	certain	conditions,	can	be	viewed	as	“maximizing	the	margin”.	
– Both	are	just	linear classifiers	(a	hyperplane	dividing	into	two	halfspaces).

• Sigmoid	function	is	a	way	to	turn	linear	predictions	into	probabilities.
• One	vs	all	turns	a	binary	classifier	into	a	multi-class	classifier.
• Multi-class	SVMs	measure	violation	of	classification	constraints.

• Next	time:	what	makes	good	features?

Maximum-Margin	Classifier
• Consider	a	linearly-separable	dataset.
– Maximum-margin classifier:	choose	the	farthest	from	both	classes.

Maximum-Margin	Classifier
• Consider	a	linearly-separable	dataset.
– Maximum-margin classifier:	choose	the	farthest	from	both	classes.

Maximum-Margin	Classifier
• Consider	a	linearly-separable	dataset.
– Maximum-margin classifier:	choose	the	farthest	from	both	classes.

Support	Vector	Machines
• For	linearly-separable data,	SVM	minimizes:

– Subject	to	the	constraints	that:
(see	Wikipedia/textbooks)

• But	most	data	is	not	linearly	separable.
• For	non-separable	data,	try	to	minimize	violation	of	constraints:

Support	Vector	Machines
• Try	to	maximizing	margin	and	also	minimizing	constraint	violation:

• We	typically	control	margin/violation	trade-off	with	parameter	“λ”:

• This	is	the	standard	SVM	formulation	(L2-regularized	hinge).
– Some	formulations	use	λ =	1	and	multiply	hinge	by	‘C’	(equivalent).

Support	Vector	Machines	for	Non-Separable
• Non-separable case:

Support	Vector	Machines	for	Non-Separable
• Non-separable case:

Support	Vector	Machines	for	Non-Separable
• Non-separable case:

Support	Vector	Machines	for	Non-Separable
• Non-separable case:

Robustness	and	Convex	Approximations
• Because	the	hinge/logistic	grow	like	absolute	value	for	mistakes,	
they	tend	not	to	be	affected	by	a	small	number	of	outliers.

Robustness	and	Convex	Approximations
• Because	the	hinge/logistic	grow	like	absolute	value	for	mistakes,	
they	tend	not	to	be	affected	by	a	small	number	of	outliers.

• But	performance	degrades	if	we	have	many	outliers.

Non-Convex	0-1	Approximations
• There	exists	some	smooth non-convex	0-1	approximations.
– Robust	to	many/extreme	outliers.
– Still	NP-hard	to	minimize.
– But	can	use	gradient	descent.

• Finds	“local”	optimum.

“Robust”	Logistic	Regression
• A	recent	idea:	add	a	“fudge	factor”	vi for	each	example.

• If	wTxi gets	the	sign	wrong,	we	can	“correct”	the	mis-classification	
by	modifying	vi.
– This	makes	the	training	error	lower	but	doesn’t	directly	help	with	test	
data,	because	we	won’t	have	the	vi for	test	data.

– But	having	the	vi means	the	‘w’	parameters	don’t	need	to	focus	as	much	
on	outliers	(they	can	make	|vi|	big	if	sign(wTxi)	is	very	wrong).

“Robust”	Logistic	Regression
• A	recent	idea:	add	a	“fudge	factor”	vi for	each	example.

• If	wTxi gets	the	sign	wrong,	we	can	“correct”	the	mis-classification	
by	modifying	vi.

• A	problem	is	that	we	can	ignore	the	‘w’	and	get	a	tiny	training	error	
by	just	updating	the	vi variables.

• But	we	want	most	vi to	be	zero,	so	“robust	logistic	regression”	puts	
an	L1-regularizer	on	the	vi values:

• You	would	probably	also	want	to	regularize	the	‘w’	with	different	λ.

“All-Pairs”	and	ECOC	Classification
• Alternative	to	“one	vs.	all”	to	convert	binary	classifier	to	multi-class	is	
“all	pairs”.
– For	each	pair	of	labels	‘c’	and	‘d’,	fit	a	classifier	that	predicts	+1	for	examples	of	
class	‘c’	and	-1	for	examples	of	class	‘d’	(so	each	classifier	only	trains	on	examples	
from	two	classes).

– To	make	prediction,	take	a	vote	of	how	many	of	the	(k-1)	classifiers	for	class	‘c’	
predict	+1.

– Often	works	better	than	“one	vs.	all”,	but	not	so	fun	for	large	‘k’.
• A	variation	on	this	is	using	“error	correcting	output	codes”	from	
information	theory	(see	Math	342).
– Each	classifier	trains	to	predict	+1	for	some	of	the	classes	and	-1	for	others.
– You	setup	the	+1/-1	code	so	that	it	has	an	“error	correcting”	property.

• It	will	make	the	right	decision	even	if	some	of	the	classifiers	are	wrong.

Motivation:	Dog	Image	Classification
• Suppose	we’re	classifying	images	of	dogs	into	breeds:

• What	if	we	have	images	where	class	label	isn’t	obvious?
– Syberian husky	vs.	Inuit	dog?

https://www.slideshare.net/angjoo/dog-breed-classification-using-part-localization
https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements

Learning	with	Preferences
• Do	we	need	to	throw	out	images	where	label	is	ambiguous?
– We	don’t	have	the	yi.

– We	want	classifier	to	prefer	Syberian husky	over	bulldog,	Chihuahua,	etc.
• Even	though	we	don’t	know if	these	are	Syberian huskies	or	Inuit	dogs.

– Can	we	design	a	loss	that	enforces	preferences	rather	than	“true”	labels?
https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements

Learning	with	Pairwise	Preferences	(Ranking)
• Instead	of	yi,	we’re	given	list	of	(c1,c2)	preferences	for	each	‘i’:

• Multi-class	classification	is	special	case	of	choosing	(yi,c)	for	all	‘c’.

• By	following	the	earlier	steps,	we	can	get	objectives	for	this	setting:

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements

Learning	with	Pairwise	Preferences	(Ranking)
• Pairwise	preferences	for	computer	graphics:
– We	have	a	smoke	simulator,	with	several	parameters:

– Don’t	know	what	the	optimal	parameters	are,	but	we	can	ask	the	artist:
• “Which	one	looks	more	like	smoke”?

https://circle.ubc.ca/bitstream/handle/2429/30519/ubc_2011_spring_brochu_eric.pdf?sequence=3

Learning	with	Pairwise	Preferences	(Ranking)
• Pairwise	preferences	for	humour:
– New	Yorker	caption	contest:

– “Which	one	is	funnier”?

https://homes.cs.washington.edu/~jamieson/resources/next.pdf

