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Last Time: L1-Regularization

 We discussed L1-regularization:

Pluy=4 o= 112+ Nl

— Also known as “LASSO” and “basis pursuit denoising”.
— Regularizes ‘W’ so we decrease our test error (like L2-regularization).
— Yields sparse ‘w’ so it selects features (like LO-regularization).

* Properties:
— It’s convex and fast to minimize (with “proximal-gradient” methods).
— Solution is not unique (sometimes people do L2- and L1-regularization).
— Usually includes “correct” variables but tends to yield false positives.



Ensemble Feature Selection

 We can also use ensemble methods for feature selection.

— Usually designed to reduce false positives or reduce false negatives.

* In this case of L1-regularization, we want to reduce false positives.

— Unlike LO-regularization, the non-zero w; are still “shrunk”.
* “Irrelevant” variables can be included before “relevant” W, reach best value.

* A bootstrap approach to reducing false positives:
— Apply the method to bootstrap samples of the training data.
— Only take the features selected in all bootstrap samples.



Ensemble Feature Selection
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* Example: bootstrapping plus L1-regularization (“BoLASSO”).
— Reduces false positives.
— It’s possible to show it recovers “correct” variables with weaker conditions.



(pause)



Motivation: Identifying Important E-mails

 How can we automatically identify ‘important’ e-mails?

| > Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
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* A binary classification problem (“important” vs. “not important”).
— Labels are approximated by whether you took an “action” based on mail.
— High-dimensional feature set (that we’ll discuss later).

 Gmail uses regression for this binary classification problem.



Binary Classification Using Regression?

e Can we apply linear models for binary classification?
— Set y, = +1 for one class (“important”).
— Set y, = -1 for the other class (“not important”).
* At training time, fit a linear regression model:
)A’s = W Xy wyXy e gy
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* The model will try to make w'x, = +1 for “important” e-mails,
and w'x. = -1 for “not important” e-mails.



Binary Classification Using Regression?

e Can we apply linear models for binary classification?
— Set y, = +1 for one class (“important”).
— Set y, = -1 for the other class (“not important”).

* Linear model gives real numbers like 0.9, -1.1, and so on.

* So to predict, we look at whether w'x; is closer to +1 or -1.
— If w'x. = 0.9, predict y, = +1.
— If wx, =-1.1, predict y, = -1.
— If w'x, = 0.1, predict y, = +1.
— If w'x. = -100, predict y, = -1.
— We write this operation (rounding to +1 or -1) as . = sign(w'x.).



Decision Boundary in 1D
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Decision Boundary in 1D
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 We can interpret ‘w’ as a hyperplane separating x into sets:
— Set where w'x; > 0 and set where w'x; < 0.



Decision Boundary in 2D

decision tree linear classifier

— The boundary is at y,=0.



Should we use least squares for classification?

* Consider training by minimizing squared error with y, that are +1 or -1:
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If we predict w'x, =+0.9 and y, = +1, error is small: (0.9 — 1)? = 0.01.
If we predict w'x. =-0.8 and y, = +1, error is bigger: (-0.8 — 1)? = 3.24.

If we predict w'x. = +100 and y, = +1, error is huge: (100 — 1)% = 9801.
— But it shouldn’t be, the prediction is correct.

Least squares penalized for being “too right”.
— +100 has the right sign, so the error should not be large.



Should we use least squares for classification?

e Least squares can behave weirdly when applied to classification:
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— Make sure you understand why the green line achieves 0 training error.



“0-1 Loss” Function: Minimizing Classification Errors

* Could we instead minimize number of classification errors?

— This is called the 0-1 loss function:
* You either get the classification wrong (1) or right (0).

— We can write using the LO-norm as | |J-vy/| |,.
* Unlike regression, in classification it’s reasonable that =y (it’s either +1 or -1).

* Important special case: “linearly separable” data.
— Classes can be “separated” by a hyper-plane.

— So a perfect linear classifier exists.




Perceptron Algorithm for Linearly-Separable Data

One of the first “learning” algorithms was the “perceptron” (1957).
— Searches for a ‘w’ such that sign(w'x,) =y, for all i.

Perceptron algorithm:
— Start with w® = 0.

— Go through examples in any order until you make a mistake predicting y;.
o Setwhl=wt+yx.
— Keep going through examples until you make no errors on training data.

If a perfect classifier exists, this algorithm finds one in finite number of steps.

Intuition:
— Consider a case where w'x, < 0 but y, = +1.
— In this case the updates “adds more of x; to w” so that w'x; is larger.

(Wﬁ')j)(.' = (Wt x)x = W%+ ™% = (ol prediction) + ”X-'I/z

— Ify,=-1, you would be subtracting the squared norm.



https://en.wikipedia.org/wiki/Perceptron

History [edit)
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The Mark | Perceptron machine was &
the first implementation of the
perceptron algorithm. The machine was
connected to a camera that used
20%x20 cadmium sulfide photocells to
produce a 400-pixel image. The main
visible feature is a patchboard that
allowed experimentation with different
combinations of input features. To the
right of that are arrays of
potentiometers that implemented the
adaptive weights ?%"?



Geometry of why we want the 0-1 loss
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Thoughts on the previous (and next) slide

* We are now plotting the loss vs. the predicted w'x.
— “Loss space”, which is different than parameter space or data space.

* We're plotting the individual loss for a particular training example.

— In the figure the label is y,= -1 (so loss is centered at -1).
* It will be centered at +1 when y; = +1.

— The objective in least squares regression is a sum of ‘n’ of these losses:
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* (The next slide is the same as the previous one)




Geometry of why we want the 0-1 loss
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Geometry of why we want the 0-1 loss
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Geometry of why we want the 0-1 loss
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0-1 Loss Function

e Unfortunately the 0-1 loss is non-convex in ‘w’.
— It’s easy to minimize if a perfect classifier exists (perceptron).
— Otherwise, finding the ‘W’ minimizing 0-1 loss is a hard problem.

— Gradient is zero everywhere: don’t even know “which way to go”.

— NOT the same type of problem we had with using the squared loss.
* We can minimize the squared error, but it might give a bad model for classification.

* Motivates convex approximations to 0-1 loss...



Degenerate Convex Approximation to 0-1 Loss

* Ify,=+1, we get the label right if w'x, > 0.
* Ify =-1, we get the label right if w'x, < 0, or equivalently —w'x. > 0.
* So “classifying ‘i’ correctly” is equivalent to having y.w'x > 0.

* One possible convex approximation to 0-1 loss:

— Minimize how much this constraint is violated.
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Hinge Loss: Convex Approximation to 0-1 Loss
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Degenerate Convex Approximation to 0-1 Loss

e Our convex approximation of the error for one example is:
T
max 0~ yiw % §
* We could train by minimizing sum over all examples:
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e But this has a degenerate solution:
— We have f(0) = 0, and this is the lowest possible value of ‘f’.

* There are two standard fixes: hinge loss and logistic loss.



Hinge Loss

We saw that we classify examples ‘i’ correctly if y,w'x, > 0.
— Our convex approximation is the amount this inequality is violated.

Consider replacing yw'x, > 0 with yw'x > 1.
(the “1” is arbitrary: we could make | |w| | bigger/smaller to use any positive constant)

The violation of this constraint is now given by:

7
Mo x {07 l "y,wxif
This is the called hinge loss.

— It’s convex: max(constant,linear).
— It’s not degenerate: w=0 now gives an error of 1 instead of O.



Hinge Loss: Convex Approximation to 0-1 Loss
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Hinge Loss: Convex Approximation to 0-1 Loss
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Hinge Loss

* Hinge loss for all ‘'n” training examples is given by:
n -
’F(W>: Z ma)(207 | ‘)/j WIX,;
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— Convex upper bound on 0-1 loss.
* If the hinge loss is 18.3, then number of training errors is at most 18.
* So minimizing hinge loss indirectly tries to minimize training error.
* Like perceptron, finds a perfect linear classifier if one exists.

e Support vector machine (SVM) is hinge loss with L2-regularization.
n
= T
107 2 max0, |~ yiw'x] + Zllull?
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— There exist specialized optimization algorithm for this problems.
— SVMis can also be viewed as “maximizing the margin” (later).



Summary

Ensemble feature selection reduces false positives or negatives.

Binary classification using regression:

— Encode using vy, in {-1,1}.

— Use sign(w'x;) as prediction.

— “Linear classifier” (a hyperplane splitting the space in half).

Least squares is a weird error for classification.

Perceptron algorithm: finds a perfect classifier (if one exists).
0-1 loss is the ideal loss, but is non-smooth and non-convex.

Hinge loss is a convex upper bound on 0-1 loss.
— SVMs add L2-regularization.

Next time: one of the best “out of the box” classifiers.



L1-Regularization as a Feature Selection Method

* Advantages:
— Deals with conditional independence (if linear).

— Sort of deals with collinearity:
* Picks at least one of “mom” and “mom?2”.

— Very fast with specialized algorithms.
* Disadvantages:

— Tends to give false positives (selects too many variables).
* Neither good nor bad:

— Does not take small effects.

— Says “gender” is relevant if we know “baby”.

— Good for prediction if we want fast training and don’t care about having
some irrelevant variables included.



“Elastic Net”: L2- and L1-Regularization
* To address non-uniqueness, some authors use L2- and L1-:
) ==yl + 2, 1P+ 2, )
2

e Called “elastic net” regularization.
— Solution is sparse and unique.
— Slightly better with feature dependence:

* Selects both “mom” and “mom?2”.

e Optimization is easier though still non-differentiable.



L1-Regularization Debiasing and Filtering

* To remove false positives, some authors add a debiasing step:
— Fit ‘w’ using L1-regularization.
— Grab the non-zero values of ‘w’ as the “relevant” variables.
— Re-fit relevant ‘w’ using least squares or L2-regularized least squares.

* Arelated use of L1-regularization is as a filtering method:
— Fit ‘w’ using L1-regularization.
— Grab the non-zero values of ‘w’ as the “relevant” variables.

— Run standard (slow) variable selection restricted to relevant variables.
* Forward selection, exhaustive search, stochastic local search, etc.



Non-Convex Regularizers

Regularizing |w;|* selects all features.
Regularizing |w;| selects fewer, but still has many false positives.
What if we regularize |w;|Y/2 instead? 2

Minimizing this objective would lead to fewer false positives.
— Less need for debiasing, but it’s not convex and hard to minimize.

There are many non-convex regularizers with similar properties.
— L1-regularization is (basically) the “most sparse” convex regularizer.



Can we just use least squares??

 What went wrong?

— “Good” errors vs. “bad” errors.
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Can we just use least squares??

 What went wrong?

— “Good” errors vs. “bad” errors.
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Online Classification with Perceptron

* Perceptron for online linear binary classification [Rosenblatt, 1957]
— Start with w, = 0.
— At time ‘t” we receive features x.
— We predict y, = sign(w,'x,).
— Ify, 2y, then set w,,, = w, + y.x..
* Otherwise, set w,,; = w,.

(Slides are old so above I’'m using subscripts of ‘t” instead of superscripts.)

* Perceptron mistake bound [Novikoff, 1962]:

— Assume data is linearly-separable with a “margin”: _

* There exists w* with | |w*||=1 such that sign(x,"'w*) = sign(y,) for all ‘t" and |x"w*| > v.>o
— Then the number of total mistakes is bounded.

* No requirement that data is IID.



Perceptron Mistake Bound

* Let’s normalize each x, so that | [x,| | = 1.
— Length doesn’t change label.

* Whenever we make a mistake, we have sign(y,) # sign(w,'x,) and
lwesr|* = lwe + ya ||
= [lwe||” + 2 yewf @ +1
N——

<0
we|® + 1

’(Ut_1|2+2

IA A IA

’LUt_2’ 2 + 3.

* So after 'k’ errors we have | |w,]| |2 < k.



Perceptron Mistake Bound

* Let’s consider a solution w*, so sign(y,) = sign(x,'w*).
— And let’s choose a w* with | |[w*|]| =1,
* Whenever we make a mistake, we have:

lwega ]l = [Jwea|[]Jws]|

T
2> Wiy Wy

= (wy + yt$t)Tw*

T T
= W; Wx + YTy Wy

= wlw, + |z w,]|
> wfw* + .
— Note: w,'w.« 2 0 by induction (starts at 0, then at least as big as old value plus y).
* So after 'k’ mistakes we have | |w,| | > yk.



Perceptron Mistake Bound

* So our two bounds are | |w,| | <sqrt(k) and | |w,|]| = yk.

* This gives vk < sgrt(k), or a maximum of 1/y? mistakes.
— Note that y > 0 by assumption and is upper-bounded by one by | | x| | < 1.

— After this ‘k’, under our assumptions
we’re guaranteed to have a perfect classifier.



