CPSC 340:
Machine Learning and Data Mining

Linear Classifiers
Fall 2020

Last Time: L1-Regularization

 We discussed L1-regularization:

Pluy=4 o= 112+ Nl

— Also known as “LASSO” and “basis pursuit denoising”.
— Regularizes ‘W’ so we decrease our test error (like L2-regularization).
— Yields sparse ‘w’ so it selects features (like LO-regularization).

* Properties:
— It’s convex and fast to minimize (with “proximal-gradient” methods).
— Solution is not unique (sometimes people do L2- and L1-regularization).
— Usually includes “correct” variables but tends to yield false positives.

Ensemble Feature Selection

 We can also use ensemble methods for feature selection.

— Usually designed to reduce false positives or reduce false negatives.

* In this case of L1-regularization, we want to reduce false positives.

— Unlike LO-regularization, the non-zero w; are still “shrunk”.
* “Irrelevant” variables can be included before “relevant” W, reach best value.

* A bootstrap approach to reducing false positives:
— Apply the method to bootstrap samples of the training data.
— Only take the features selected in all bootstrap samples.

Ensemble Feature Selection
— — FeqM Stlechr —_ Sf {/) '27 3)5} 7} \

X,
X /Ji oy P st — 57 TS0 539,57
\/}Xm 5 Feahw e — SW: {2)3)5‘)7);37/'

_/V\-/ _/y\/
m Run Tenture selech” ’I’d section
Sopm lrf. on each Sample. i
r ’— f of selected Fetuts

* Example: bootstrapping plus L1-regularization (“BoLASSO”).
— Reduces false positives.
— It’s possible to show it recovers “correct” variables with weaker conditions.

(pause)

Motivation: Identifying Important E-mails

 How can we automatically identify ‘important’ e-mails?

| > Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) lists Intro to Computer Science 10:20 am
Inbox (3) -)
» Issam Laradji Inbox Convergence rates forcu & 9:49 am
Starred
@ » sameh, Mark, sameh (3) Inbox Graduation Project Dema = 8:01 am
i‘jf:_ﬂ?:\ » Mark .. sara, Sara (11) Label propagation = 757 am

* A binary classification problem (“important” vs. “not important”).
— Labels are approximated by whether you took an “action” based on mail.
— High-dimensional feature set (that we’ll discuss later).

 Gmail uses regression for this binary classification problem.

Binary Classification Using Regression?

e Can we apply linear models for binary classification?
— Set y, = +1 for one class (“important”).
— Set y, = -1 for the other class (“not important”).
* At training time, fit a linear regression model:
)A’s = W Xy wyXy e gy

T
= WY

* The model will try to make w'x, = +1 for “important” e-mails,
and w'x. = -1 for “not important” e-mails.

Binary Classification Using Regression?

e Can we apply linear models for binary classification?
— Set y, = +1 for one class (“important”).
— Set y, = -1 for the other class (“not important”).

* Linear model gives real numbers like 0.9, -1.1, and so on.

* So to predict, we look at whether w'x; is closer to +1 or -1.
— If w'x. = 0.9, predict y, = +1.
— If wx, =-1.1, predict y, = -1.
— If w'x, = 0.1, predict y, = +1.
— If w'x. = -100, predict y, = -1.
— We write this operation (rounding to +1 or -1) as . = sign(w'x.).

Decision Boundary in 1D

X,

P

X X ¥ % x ¥ ="t

l)rleqr f(c,rvessla/?
Matlel

9’WM

Decision Boundary in 1D
Y,

/Oo\r I/'Orech’w” funcion

Z\/
l)rleqr r (:,Nssiao

nnoJe,
N 1
Yim WX
 We can interpret ‘w’ as a hyperplane separating x into sets:
— Set where w'x; > 0 and set where w'x; < 0.

Decision Boundary in 2D

decision tree linear classifier

— The boundary is at y,=0.

Should we use least squares for classification?

* Consider training by minimizing squared error with y, that are +1 or -1:

(w) - ',' - “Z +1
*‘ P4 ”XW) . 4.’,
Az
If we predict w'x, =+0.9 and y, = +1, error is small: (0.9 — 1)? = 0.01.
If we predict w'x. =-0.8 and y, = +1, error is bigger: (-0.8 — 1)? = 3.24.

If we predict w'x. = +100 and y, = +1, error is huge: (100 — 1)% = 9801.
— But it shouldn’t be, the prediction is correct.

Least squares penalized for being “too right”.
— +100 has the right sign, so the error should not be large.

Should we use least squares for classification?

e Least squares can behave weirdly when applied to classification:

(mf ’?nm) + ,': \

0

Th‘t) s fke /;nenr rcqﬂ‘ﬁm MOflcl Wwe Wan"
[/ (a f)errec'f cfassificr)

—HhMD wé
sce "vicodin®

(Sram) ~ |

 Why? Squared

. XX X X x x ¥y [x T X x ¥

error of\green line is huge!

— Make sure you understand why the green line achieves 0 training error.

“0-1 Loss” Function: Minimizing Classification Errors

* Could we instead minimize number of classification errors?

— This is called the 0-1 loss function:
* You either get the classification wrong (1) or right (0).

— We can write using the LO-norm as | |J-vy/| |,.
* Unlike regression, in classification it’s reasonable that =y (it’s either +1 or -1).

* Important special case: “linearly separable” data.
— Classes can be “separated” by a hyper-plane.

— So a perfect linear classifier exists.

Perceptron Algorithm for Linearly-Separable Data

One of the first “learning” algorithms was the “perceptron” (1957).
— Searches for a ‘w’ such that sign(w'x,) =y, for all i.

Perceptron algorithm:
— Start with w® = 0.

— Go through examples in any order until you make a mistake predicting y;.
o Setwhl=wt+yx.
— Keep going through examples until you make no errors on training data.

If a perfect classifier exists, this algorithm finds one in finite number of steps.

Intuition:
— Consider a case where w'x, < 0 but y, = +1.
— In this case the updates “adds more of x; to w” so that w'x; is larger.

(Wﬁ')j)(.' = (Wt x)x = W%+ ™% = (ol prediction) + ”X-'I/z

— Ify,=-1, you would be subtracting the squared norm.

https://en.wikipedia.org/wiki/Perceptron

History [edit)

S ———Tt. e

The Mark | Perceptron machine was &
the first implementation of the
perceptron algorithm. The machine was
connected to a camera that used
20%x20 cadmium sulfide photocells to
produce a 400-pixel image. The main
visible feature is a patchboard that
allowed experimentation with different
combinations of input features. To the
right of that are arrays of
potentiometers that implemented the
adaptive weights ?%"?

Geometry of why we want the 0-1 loss

(W' .~‘7*>1
/
@L&) ‘)ev\o‘ht‘/
for beiny
"foo r’:glﬂu‘

' Brror“ or "lossn ‘)(\ar frealld}m] w’lx,-

&L when trye Jabel Vi 1S -/

Pr.(_cl 1(,1 n

v

yO\A Should f__‘ﬂl
penalize for f\.h‘in, wix, heve.

WTX i

u),

—~—~

l«qw‘n7 w'¥i here i ﬁg‘.

Thoughts on the previous (and next) slide

* We are now plotting the loss vs. the predicted w'x.
— “Loss space”, which is different than parameter space or data space.

* We're plotting the individual loss for a particular training example.

— In the figure the label is y,= -1 (so loss is centered at -1).
* It will be centered at +1 when y; = +1.

— The objective in least squares regression is a sum of ‘n’ of these losses:

UV VSV A

* (The next slide is the same as the previous one)

Geometry of why we want the 0-1 loss

(W' .~‘7*>1
/
@L&) ‘)ev\o‘ht‘/
for beiny
"foo r’:glﬂu‘

' Brror“ or "lossn ‘)(\ar frealld}m] w’lx,-

&L when trye Jabel Vi 1S -/

Pr.(_cl 1(,1 n

v

yO\A Should f__‘ﬂl
penalize for f\.h‘in, wix, heve.

WTX i

u),

—~—~

l«qw‘n7 w'¥i here i ﬁg‘.

Geometry of why we want the 0-1 loss

' Brror“ or "IUSS“ ‘)(\ar freolld}m] w’lx,-

L /
/(wjxi'f) L when 7‘73 labe Vi is =l
@L&) ‘)ev\o‘ht‘/
For th?
"foo r’:g ht'
Prediclion
e ~ WTXi
7 Y‘EJ\ —~~ —
you Should f_‘_‘ﬂl O 1'-0\vin7 w7Xi here IS Q—J_

penalize for f\.h‘in, wix, heve.

Geometry of why we want the 0-1 loss

(W' .~‘7*71
/
@ ‘)er\aht‘/
for beiny
"foo rkgl\'f"

S

v

yO\A Should f_l(ﬂl

penalize For f\.ﬁins wa; heye.

L

"Eeroe" or "loss’ For ff“l"d"“] W7>‘i

when 7‘7! |abe Vi s —.

What we wanl is
[‘“\a //0" /oSS':

Prediclion

0

\

WTX i

_/

—~"
qu‘n7 w'¥i here i L_n‘.

0-1 Loss Function

e Unfortunately the 0-1 loss is non-convex in ‘w’.
— It’s easy to minimize if a perfect classifier exists (perceptron).
— Otherwise, finding the ‘W’ minimizing 0-1 loss is a hard problem.

— Gradient is zero everywhere: don’t even know “which way to go”.

— NOT the same type of problem we had with using the squared loss.
* We can minimize the squared error, but it might give a bad model for classification.

* Motivates convex approximations to 0-1 loss...

Degenerate Convex Approximation to 0-1 Loss

* Ify,=+1, we get the label right if w'x, > 0.
* Ify =-1, we get the label right if w'x, < 0, or equivalently —w'x. > 0.
* So “classifying ‘i’ correctly” is equivalent to having y.w'x > 0.

* One possible convex approximation to 0-1 loss:

— Minimize how much this constraint is violated.

I¢f Y VV7_>(; 720 then \you gle an ‘erroc’ of () _
TF),iwl)(-l <0 Then you s«e‘} an "ercor of —ng’X,'

‘~—$ Sg 1’116 //CffOr‘l 'S 9 I'Vf’lﬂ lo\/ YV]C'X §0) - \/i WTX,g
___\/___/

Max t Coms Toul 3 l;ww} =7 (ovwv €y

Hinge Loss: Convex Approximation to 0-1 Loss

"Erroe" or loss' for J)reolkd}m] W7x;

L ~
(w"xrya) £ when trye Jabel Vi is =

/ Pfuhd"t”‘
- T

w X

A ————————

We ' .
Fecewe q h'ﬂq error

'FOf ﬂeﬁ[ny 5,’9,\(“/7)(;) "

24

f(?o ,~,"9 Wt lt

Degenerate Convex Approximation to 0-1 Loss

e Our convex approximation of the error for one example is:
T
max 0~ yiw % §
* We could train by minimizing sum over all examples:

¥w>~ Zw\ax /W)(z

e But this has a degenerate solution:
— We have f(0) = 0, and this is the lowest possible value of ‘f’.

* There are two standard fixes: hinge loss and logistic loss.

Hinge Loss

We saw that we classify examples ‘i’ correctly if y,w'x, > 0.
— Our convex approximation is the amount this inequality is violated.

Consider replacing yw'x, > 0 with yw'x > 1.
(the “1” is arbitrary: we could make | |w| | bigger/smaller to use any positive constant)

The violation of this constraint is now given by:

7
Mo x {07 l "y,wxif
This is the called hinge loss.

— It’s convex: max(constant,linear).
— It’s not degenerate: w=0 now gives an error of 1 instead of O.

Hinge Loss: Convex Approximation to 0-1 Loss

PFO‘?(’('h?s QF 1Le l\]n)e [0552

’. Has eror of O it WTX,-é-l
(no ?@M’f‘/ _a"\'.«l be)/or\cl This rolmf)
;z, Has a loss of | if W7k,~ =0

(V"“’chb 0- Iosj 0\" c(ecifian bow‘Ja/

"Eeroe" or "loss’ For ff“l"d”“] W7>‘.‘
when true Jabel Vi s —.

L

|
”"\W’t ‘ '055

Prediclion

/)~

g. _TS Cwb(qy\l ',(IU}C"
to d-1 loss.

w X

27

Hinge Loss: Convex Approximation to 0-1 Loss

"Erroe" or loss' for J)reolkd;m] W7x;

4 when true |abel Vi s .

EVt’/\/-/_hM? is /

mirrpred if Vi =+

Prediclion
w X

.

Cor\v{)(on([&
q'wayz aéove 0-l /o;J 28

O

Hinge Loss

* Hinge loss for all ‘'n” training examples is given by:
n -
’F(W>: Z ma)(207 | ‘)/j WIX,;
j=

— Convex upper bound on 0-1 loss.
* If the hinge loss is 18.3, then number of training errors is at most 18.
* So minimizing hinge loss indirectly tries to minimize training error.
* Like perceptron, finds a perfect linear classifier if one exists.

e Support vector machine (SVM) is hinge loss with L2-regularization.
n
= T
107 2 max0, |~ yiw'x] + Zllull?
j=

— There exist specialized optimization algorithm for this problems.
— SVMis can also be viewed as “maximizing the margin” (later).

Summary

Ensemble feature selection reduces false positives or negatives.

Binary classification using regression:

— Encode using vy, in {-1,1}.

— Use sign(w'x;) as prediction.

— “Linear classifier” (a hyperplane splitting the space in half).

Least squares is a weird error for classification.

Perceptron algorithm: finds a perfect classifier (if one exists).
0-1 loss is the ideal loss, but is non-smooth and non-convex.

Hinge loss is a convex upper bound on 0-1 loss.
— SVMs add L2-regularization.

Next time: one of the best “out of the box” classifiers.

L1-Regularization as a Feature Selection Method

* Advantages:
— Deals with conditional independence (if linear).

— Sort of deals with collinearity:
* Picks at least one of “mom” and “mom?2”.

— Very fast with specialized algorithms.
* Disadvantages:

— Tends to give false positives (selects too many variables).
* Neither good nor bad:

— Does not take small effects.

— Says “gender” is relevant if we know “baby”.

— Good for prediction if we want fast training and don’t care about having
some irrelevant variables included.

“Elastic Net”: L2- and L1-Regularization
* To address non-uniqueness, some authors use L2- and L1-:
) ==yl + 2, 1P+ 2,)
2

e Called “elastic net” regularization.
— Solution is sparse and unique.
— Slightly better with feature dependence:

* Selects both “mom” and “mom?2”.

e Optimization is easier though still non-differentiable.

L1-Regularization Debiasing and Filtering

* To remove false positives, some authors add a debiasing step:
— Fit ‘w’ using L1-regularization.
— Grab the non-zero values of ‘w’ as the “relevant” variables.
— Re-fit relevant ‘w’ using least squares or L2-regularized least squares.

* Arelated use of L1-regularization is as a filtering method:
— Fit ‘w’ using L1-regularization.
— Grab the non-zero values of ‘w’ as the “relevant” variables.

— Run standard (slow) variable selection restricted to relevant variables.
* Forward selection, exhaustive search, stochastic local search, etc.

Non-Convex Regularizers

Regularizing |w;|* selects all features.
Regularizing |w;| selects fewer, but still has many false positives.
What if we regularize |w;|Y/2 instead? 2

Minimizing this objective would lead to fewer false positives.
— Less need for debiasing, but it’s not convex and hard to minimize.

There are many non-convex regularizers with similar properties.
— L1-regularization is (basically) the “most sparse” convex regularizer.

Can we just use least squares??

 What went wrong?

— “Good” errors vs. “bad” errors.

(f\o+ ’f«m) + ,QT,M

0
(5faM) ~ |4

Tl'\l) 3 'H\c Iinenr ycz,rtssiun MOfltl Wwe Wan"
(a fverrec" classiﬁer}

v

Htme we

Sce "vicodin"

1«)! X X !
qood\ " errors: Ny
moclel S ba’mj) BaJ errvrs szlr/
’;emmliz {:o('(e(l';(‘“/\j IS beinq f?l‘alidt’c‘ ‘F;(
W rony C((ASS. f{:‘hqu c\wr_e-('/ class,

Can we just use least squares??

 What went wrong?

— “Good” errors vs. “bad” errors.

[
(r\of ’?-nm) + ,
0

(5ram) ~ |-

P~

Tl'\'t) s fkc linenr reqression Moclcl Wwe Wan"
(a ferrec'* c,assiﬂra’er}

~Y(w>: % (W' ')’I')Z

U

What haf)’om.s if
yi i"" om:/
w 'y = -/000?

Htme we
sce "yicodin®

’Igm/ ! errors of

‘h\c ‘Qﬁl.:fgi_.(

’ineur C Iassnl;éf

are HYGE

Online Classification with Perceptron

* Perceptron for online linear binary classification [Rosenblatt, 1957]
— Start with w, = 0.
— At time ‘t” we receive features x.
— We predict y, = sign(w,'x,).
— Ify, 2y, then set w,,, = w, + y.x..
* Otherwise, set w,,; = w,.

(Slides are old so above I’'m using subscripts of ‘t” instead of superscripts.)

* Perceptron mistake bound [Novikoff, 1962]:

— Assume data is linearly-separable with a “margin”: _

* There exists w* with | |w*||=1 such that sign(x,"'w*) = sign(y,) for all ‘t" and |x"w*| > v.>o
— Then the number of total mistakes is bounded.

* No requirement that data is IID.

Perceptron Mistake Bound

* Let’s normalize each x, so that | [x,| | = 1.
— Length doesn’t change label.

* Whenever we make a mistake, we have sign(y,) # sign(w,'x,) and
lwesr|* = lwe + ya ||
= [lwe||” + 2 yewf @ +1
N——

<0
we|® + 1

’(Ut_1|2+2

IA A IA

’LUt_2’ 2 + 3.

* So after 'k’ errors we have | |w,]| |2 < k.

Perceptron Mistake Bound

* Let’s consider a solution w*, so sign(y,) = sign(x,'w*).
— And let’s choose a w* with | |[w*|]| =1,
* Whenever we make a mistake, we have:

lwega]l = [Jwea|[]Jws]|

T
2> Wiy Wy

= (wy + yt$t)Tw*

T T
= W; Wx + YTy Wy

= wlw, + |z w,]|
> wfw* + .
— Note: w,'w.« 2 0 by induction (starts at 0, then at least as big as old value plus y).
* So after 'k’ mistakes we have | |w,| | > yk.

Perceptron Mistake Bound

* So our two bounds are | |w,| | <sqrt(k) and | |w,|]| = yk.

* This gives vk < sgrt(k), or a maximum of 1/y? mistakes.
— Note that y > 0 by assumption and is upper-bounded by one by | | x| | < 1.

— After this ‘k’, under our assumptions
we’re guaranteed to have a perfect classifier.

