
CPSC	340:
Machine	Learning	and	Data	Mining

Linear	Classifiers
Fall	2020

Last	Time:	L1-Regularization
• We	discussed	L1-regularization:

– Also	known	as	“LASSO”	and	“basis	pursuit	denoising”.
– Regularizes	‘w’	so	we	decrease	our	test	error	(like	L2-regularization).
– Yields	sparse	‘w’ so	it	selects	features	(like	L0-regularization).

• Properties:
– It’s	convex	and	fast to	minimize	(with	“proximal-gradient”	methods).
– Solution	is	not	unique (sometimes	people	do	L2- and	L1-regularization).
– Usually	includes	“correct”	variables	but	tends	to	yield	false	positives.

Ensemble	Feature	Selection
• We	can	also	use	ensemble	methods	for	feature	selection.
– Usually	designed	to	reduce	false	positives	or	reduce false	negatives.

• In	this	case	of	L1-regularization,	we	want	to	reduce	false	positives.
– Unlike	L0-regularization,	the	non-zero	wj are	still	“shrunk”.

• “Irrelevant”	variables	can	be	included	before	“relevant”	wj reach	best	value.

• A	bootstrap approach	to	reducing	false	positives:
– Apply	the	method	to	bootstrap	samples	of	the	training	data.
– Only	take	the	features	selected	in	all	bootstrap	samples.

Ensemble	Feature	Selection

• Example:	bootstrapping	plus	L1-regularization	(“BoLASSO”).
– Reduces	false	positives.
– It’s	possible	to	show	it	recovers	“correct”	variables	with	weaker	conditions.

(pause)

Motivation:	Identifying	Important	E-mails
• How	can	we	automatically	identify	‘important’	e-mails?

• A	binary	classification problem	(“important”	vs.	“not	important”).
– Labels	are	approximated	by	whether	you	took	an	“action”	based	on	mail.
– High-dimensional	feature	set	(that	we’ll	discuss	later).

• Gmail	uses	regression	for	this	binary	classification	problem.

Binary	Classification	Using	Regression?
• Can	we	apply	linear	models	for	binary	classification?
– Set	yi =	+1	for	one	class (“important”).
– Set	yi =	-1	for	the	other	class	(“not	important”).

• At	training	time,	fit	a	linear	regression	model:

• The	model	will	try	to	make	wTxi =	+1	for	“important”	e-mails,
and	wTxi =	-1	for	“not	important”	e-mails.

Binary	Classification	Using	Regression?
• Can	we	apply	linear	models	for	binary	classification?
– Set	yi =	+1	for	one	class (“important”).
– Set	yi =	-1	for	the	other	class	(“not	important”).

• Linear	model	gives	real	numbers	like	0.9,	-1.1,	and	so	on.
• So	to	predict,	we	look	at	whether	wTxi is	closer	to	+1	or	-1.
– If	wTxi =	0.9,	predict	𝑦"i =	+1.
– If	wTxi =	-1.1,	predict	𝑦"i =	-1.
– If	wTxi =	0.1,	predict	𝑦"i =	+1.
– If	wTxi =	-100,	predict	𝑦"i =	-1.
– We	write	this	operation	(rounding	to	+1	or	-1)	as	𝑦"i =	sign(wTxi).

Decision	Boundary	in	1D

• We	can	interpret	‘w’	as	a	hyperplane	separating	x	into	sets:
– Set	where	wTxi >	0	and	set	where	wTxi <	0.

Decision	Boundary	in	1D

Decision	Boundary	in	2D

decision	tree KNN									 linear	classifier

• Linear	classifier	would	be	a	𝑦"i=	wTxi function	coming	out	of	screen:
– The	boundary	is	at	𝑦"i=0.

Should	we	use	least	squares	for	classification?
• Consider	training	by	minimizing	squared	error	with	yi that	are	+1	or	-1:

• If	we	predict	wTxi =	+0.9	and	yi =	+1,	error	is	small:	(0.9	– 1)2 =	0.01.
• If	we	predict	wTxi =	-0.8	and	yi =	+1,	error	is	bigger:	(-0.8	– 1)2 =	3.24.
• If	we	predict	wTxi =	+100	and	yi =	+1,	error	is	huge:	(100	– 1)2 =	9801.

– But	it	shouldn’t	be,	the	prediction	is	correct.

• Least	squares	penalized	for	being	“too	right”.
– +100	has	the	right	sign,	so	the	error	should	not	be	large.

Should	we	use	least	squares	for	classification?
• Least	squares	can	behave	weirdly	when	applied	to	classification:

• Why?	Squared	error	of	green	line	is	huge!
– Make	sure	you	understand	why	the	green	line	achieves	0	training	error.

“0-1	Loss”	Function:	Minimizing	Classification	Errors

• Could	we	instead	minimize	number	of	classification	errors?
– This	is	called	the	0-1	loss	function:	

• You	either	get	the	classification	wrong	(1)	or	right	(0).
– We	can	write	using	the	L0-norm	as	||𝑦"– y||0.

• Unlike	regression,	in	classification	it’s	reasonable	that	𝑦"𝑖=	yi (it’s	either	+1	or	-1).

• Important	special	case:	“linearly	separable”	data.
– Classes	can	be	“separated”	by	a	hyper-plane.
– So	a	perfect	linear	classifier	exists.

Perceptron	Algorithm	for	Linearly-Separable	Data
• One	of	the	first	“learning”	algorithms	was	the	“perceptron”	(1957).

– Searches	for	a	‘w’	such	that	sign(wTxi)	=	yi for	all	i.

• Perceptron algorithm:
– Start	with	w0 =	0.
– Go	through	examples	in	any	order	until	you	make	a	mistake	predicting	yi.

• Set	wt+1 =	wt +	yixi.
– Keep	going	through	examples	until	you	make	no	errors	on	training	data.

• If	a	perfect	classifier	exists,	this	algorithm	finds	one	in	finite	number	of	steps.

• Intuition:
– Consider	a	case	where	wTxi <	0	but	yi =	+1.
– In	this	case	the	updates	“adds	more	of	xi to	w”	so	that	wTxi is	larger.

– If	yi =	-1,	you	would	be	subtracting	the	squared	norm.

https://en.wikipedia.org/wiki/Perceptron

Geometry	of	why	we	want	the	0-1	loss

Thoughts	on	the	previous	(and	next)	slide
• We	are	now	plotting	the	loss	vs.	the	predicted	w⊤xi.
– “Loss	space”,	which	is	different	than	parameter	space	or	data	space.

• We're	plotting	the	individual	loss	for	a	particular	training	example.
– In	the	figure	the label	is	yi =	−1	(so	loss	is	centered	at	-1).	

• It	will	be	centered	at	+1	when	yi =	+1.

– The	objective	in	least	squares	regression	is	a	sum	of	‘n’	of	these	losses:

• (The	next	slide	is	the	same	as	the	previous	one)

Geometry	of	why	we	want	the	0-1	loss

Geometry	of	why	we	want	the	0-1	loss

Geometry	of	why	we	want	the	0-1	loss

0-1	Loss	Function
• Unfortunately	the	0-1	loss	is	non-convex	in	‘w’.
– It’s	easy	to	minimize	if	a	perfect	classifier	exists	(perceptron).
– Otherwise,	finding	the	‘w’	minimizing	0-1	loss	is	a	hard	problem.

– Gradient	is	zero	everywhere:	don’t	even	know	“which	way	to	go”.

– NOT	the	same	type	of	problem	we	had	with	using	the	squared	loss.
• We	can	minimize	the	squared	error,	but	it	might	give	a	bad	model	for	classification.

• Motivates	convex	approximations	to	0-1	loss…

Degenerate	Convex	Approximation	to	0-1	Loss
• If	yi =	+1,	we	get	the	label	right	if	wTxi >	0.
• If	yi =	-1,	we	get	the	label	right	if	wTxi <	0,	or	equivalently	–wTxi >	0.
• So	“classifying	‘i’	correctly”	is	equivalent	to	having	yiwTxi >	0.

• One	possible	convex	approximation	to	0-1	loss:
– Minimize	how	much	this	constraint	is	violated.

Hinge	Loss:	Convex	Approximation	to	0-1	Loss

24

Degenerate	Convex	Approximation	to	0-1	Loss
• Our	convex	approximation	of	the	error	for	one	example	is:

• We	could	train	by	minimizing	sum	over	all	examples:

• But	this	has	a	degenerate	solution:
– We	have	f(0)	=	0,	and	this	is	the	lowest	possible	value	of	‘f’.

• There	are	two	standard	fixes:	hinge	loss	and	logistic	loss.

Hinge	Loss
• We	saw	that	we	classify	examples	‘i’	correctly	if	yiwTxi >	0.

– Our	convex	approximation	is	the	amount	this	inequality	is	violated.

• Consider replacing	yiwTxi >	0	with	yiwTxi ≥	1.
(the	“1”	is	arbitrary:	we	could	make	||w||	bigger/smaller	to	use	any	positive	constant)

• The	violation	of	this	constraint	is	now	given	by:

• This	is	the	called	hinge	loss.
– It’s	convex:	max(constant,linear).
– It’s	not	degenerate:	w=0	now	gives	an	error	of	1	instead	of	0.

Hinge	Loss:	Convex	Approximation	to	0-1	Loss

27

Hinge	Loss:	Convex	Approximation	to	0-1	Loss

28

Hinge	Loss
• Hinge	loss for	all	‘n’	training	examples	is	given	by:

– Convex	upper	bound	on	0-1	loss.
• If	the	hinge	loss	is	18.3,	then	number	of	training	errors	is	at	most	18.
• So	minimizing	hinge	loss	indirectly	tries	to	minimize	training	error.
• Like	perceptron,	finds	a	perfect	linear	classifier	if	one	exists.

• Support	vector	machine	(SVM)	is	hinge	loss	with	L2-regularization.

– There	exist	specialized	optimization	algorithm	for	this	problems.
– SVMs	can	also	be	viewed	as	“maximizing	the	margin”	(later).

Summary
• Ensemble	feature	selection	reduces	false	positives	or	negatives.
• Binary	classification	using	regression:

– Encode	using	yi in	{-1,1}.
– Use sign(wTxi)	as	prediction.
– “Linear	classifier”	(a	hyperplane	splitting	the	space	in	half).

• Least	squares	is	a	weird	error	for	classification.
• Perceptron	algorithm:	finds	a	perfect	classifier	(if	one	exists).
• 0-1	loss	is	the	ideal	loss,	but	is	non-smooth	and	non-convex.
• Hinge	loss is	a	convex	upper	bound	on	0-1	loss.

– SVMs	add	L2-regularization.

• Next	time:	one	of	the	best	“out	of	the	box”	classifiers. 30

L1-Regularization	as	a	Feature	Selection	Method
• Advantages:

– Deals	with	conditional	independence	(if	linear).
– Sort	of	deals	with	collinearity:

• Picks	at	least	one	of	“mom”	and	“mom2”.
– Very	fast	with	specialized	algorithms.

• Disadvantages:
– Tends	to	give	false	positives	(selects	too	many	variables).

• Neither	good	nor	bad:
– Does	not	take	small	effects.
– Says	“gender”	is	relevant	if	we	know	“baby”.
– Good	for	prediction	if	we	want	fast	training	and	don’t	care	about	having	
some	irrelevant	variables	included.

“Elastic	Net”:	L2- and	L1-Regularization
• To	address	non-uniqueness,	some	authors	use	L2- and	L1-:

• Called	“elastic	net”	regularization.
– Solution	is	sparse	and	unique.
– Slightly	better	with	feature	dependence:	

• Selects	both	“mom”	and	“mom2”.

• Optimization	is	easier	though	still	non-differentiable.

L1-Regularization	Debiasing and	Filtering
• To	remove	false	positives,	some	authors	add	a	debiasing step:
– Fit	‘w’	using	L1-regularization.
– Grab	the	non-zero	values	of	‘w’	as	the	“relevant”	variables.
– Re-fit	relevant	‘w’	using	least	squares	or	L2-regularized	least	squares.

• A	related	use	of	L1-regularization	is	as	a	filtering	method:
– Fit	‘w’	using	L1-regularization.
– Grab	the	non-zero	values	of	‘w’	as	the	“relevant”	variables.
– Run	standard	(slow)	variable	selection	restricted	to	relevant	variables.

• Forward	selection,	exhaustive	search,	stochastic	local	search,	etc.

Non-Convex	Regularizers
• Regularizing	|wj|2 selects	all	features.
• Regularizing	|wj|	selects	fewer,	but	still	has	many	false	positives.
• What	if	we	regularize	|wj|1/2 instead?

• Minimizing	this	objective	would	lead	to	fewer	false	positives.
– Less	need	for	debiasing,	but	it’s	not	convex	and	hard	to	minimize.

• There	are	many	non-convex	regularizers with	similar	properties.
– L1-regularization	is	(basically)	the	“most	sparse”	convex	regularizer.

Can	we	just	use	least	squares??
• What	went	wrong?
– “Good”	errors	vs.	“bad”	errors.

Can	we	just	use	least	squares??
• What	went	wrong?
– “Good”	errors	vs.	“bad”	errors.

Online	Classification	with	Perceptron
• Perceptron for	online	linear	binary	classification	[Rosenblatt,	1957]

– Start	with	w0 =	0.
– At	time	‘t’	we	receive	features	xt.
– We	predict	𝑦"t =	sign(wt

Txt).
– If	𝑦"t ≠	yt,	then	set	wt+1 =	wt +	ytxt.

• Otherwise,	set	wt+1 =	wt.

(Slides	are	old	so	above	I’m	using	subscripts	of	‘t’	instead	of	superscripts.)

• Perceptron	mistake	bound	[Novikoff,	1962]:
– Assume	data	is	linearly-separable with	a	“margin”:

• There	exists	w*	with	||w*||=1	such	that	sign(xtTw*)	=	sign(yt)	for	all	‘t’	and	|xTw*|	≥	γ.
– Then	the	number	of	total	mistakes	is	bounded.

• No	requirement	that	data	is	IID.

Perceptron	Mistake	Bound
• Let’s	normalize	each	xt so	that	||xt||	=	1.
– Length	doesn’t	change	label.

• Whenever	we	make	a	mistake,	we	have	sign(yt)	≠	sign(wt
Txt)	and

• So	after	‘k’	errors	we	have	||wt||2 ≤	k.

Perceptron	Mistake	Bound
• Let’s	consider	a	solution	w*,	so	sign(yt)	=	sign(xtTw*).

– And	let’s	choose	a	w*	with	||w*||	=	1,	
• Whenever	we	make	a	mistake,	we	have:

– Note:	wt
Tw* ≥	0	by	induction	(starts	at	0,	then	at	least	as	big	as	old	value	plus	γ).

• So	after	‘k’	mistakes	we	have	||wt||	≥	γk.

Perceptron	Mistake	Bound
• So	our	two	bounds	are	||wt||	≤	sqrt(k)	and ||wt||	≥	γk.

• This	gives	γk	≤	sqrt(k),	or	a	maximum	of	1/γ2 mistakes.
– Note	that	γ >	0	by	assumption	and is	upper-bounded	by	one	by	||x||	≤	1.
– After	this	‘k’,	under	our	assumptions	
we’re	guaranteed	to	have	a	perfect	classifier.

