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Admin
• Midterm will	be	released	Monday	19/10.
– Take-home.	
– Kaggle competition



Last	Time:	Feature	Selection
• Last	time	we	discussed	feature	selection:

– Choosing	set	of	“relevant”	features.

• Most	common	approach	is	search	and	score:	
– Define	“score”	and	“search”	for	features	with	best	score.

• But	it’s	hard	to	define	the	“score”	and	it’s	hard	to	“search”.
– So	we	often	use	greedy	methods	like	forward	selection.

• Methods	work	ok	on	“toy”	data,	but	are	frustrating	on	real	data.
– Different	methods	may	return	very	different	results.
– Defining	whether	a	feature	is	“relevant”	is	complicated	and	ambiguous.



My	advice	if	you	want	the	“relevant”	variables.
• Try	the	association	approach.
• Try	forward	selection	with	different	values	of	λ.
• Try	out	a	few	other	feature	selection	methods	too.

• Discuss	the	results	with	the	domain	expert.
– They	probably	have	an	idea	of	why	some	variables	might	be	relevant.

• Don’t	be	overconfident:
– These	methods	are	probably	not	discovering	how	the	world	truly	works.
– “The	algorithm	has	found	that	these	variables	are	helpful	in	predicting	yi.”

• Then	a	warning	that	these	models	are	not	perfect	at	finding	relevant	variables.



Related:	Survivorship	Bias
• Plotting	location	of	bullet	holes	on	planes	returning	from	WW2:

• Where	are	the	“relevant”	parts	of	the	plane	to	protect?
– “Relevant”	parts	are	actually	where	there	are	no	bullets.
– Planes	shot	in	other	places	did	not	come	back (armor	was	needed).

https://en.wikipedia.org/wiki/Survivorship_bias



Related:	Survivorship	Bias
• Plotting	location	of	bullet	holes	on	planes	returning	from	WW2:

• This	is	an	example	of	“survivorship	bias”:
– Data	is	not	IID	because	you	only	sample	the	“survivors”.
– Causes	havoc	for	feature	selection,	and	ML	methods	in	general.

https://en.wikipedia.org/wiki/Survivorship_bias



Related:	Survivorship	Bias
• Plotting	location	of	bullet	holes	on	planes	returning	from	WW2:

• People	come	to	wrong	conclusions	due	to	survivor	bias	all	the	time.
– Article	on	“secrets	of	success”,	focusing	on	traits	of	successful	people.
– But	ignoring	the	number	of	non-super-successful	with	the	same	traits.
– Article hypothesizing	about	various	topics	(allergies,	mental	illness,	etc.).

https://en.wikipedia.org/wiki/Survivorship_bias



“Feature”	Selection	vs.	“Model”	Selection?
• Model	selection:	“which	model	should	I	use?”
– KNN	vs.	decision	tree,	depth	of	decision	tree,	degree	of	polynomial	basis.

• Feature	selection:	“which	features	should	I	use?”
– Using	feature	10	or	not,	using	xi2 as	part	of	basis.

• These	two	tasks	are	highly-related:
– It’s	a	different	“model”	if	we	add	xi2 to	linear	regression.
– But	the	xi2 term	is	just	a	“feature”	that	could	be	“selected”	or	not.
– Usually,	“feature	selection”	means	choosing	from	some	“original”	features.

• You	could	say	that	“feature”	selection	is	a	special	case	of	“model”	selection.

Model	Selection

Feature	
Selection



Can	it	help	prediction	to	throw	features	away?
• Yes,	because	linear	regression	can	overfit with	large	‘d’.
– Even	though	it’s	“just”	a	hyper-plane.

• Consider	using	d=n,	with	completely	random	features.
– With	high	probability,	you	will	be	able	to	get	a	training	error	of	0.
– But	the	features	were	random,	this	is	completely	overfitting.

• You	could	view	“number	of	features”	as	a	hyper-parameter.
– Model	gets	more	complex	as	you	add	more	features.



(pause)



Recall:	Polynomial	Degree	and	Training	vs.	Testing

• We’ve	said	that	complicated	models	tend	to	overfit more.

• But	what	if	we	need	a	complicated	model?
http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf



Controlling	Complexity
• Usually	“true”	mapping	from	xi to	yi is	complex.
– Might	need	high-degree	polynomial.
– Might	need	to	combine	many	features,	and	don’t	know	“relevant”	ones.

• But	complex	models	can	overfit.
• So	what	do	we	do???

• Our	main	tools:
– Model	averaging:	average	over	multiple	models	to	decrease	variance.
– Regularization:	add	a	penalty	on	the	complexity	of	the	model.



Would	you	rather?
• Consider	the	following	dataset	and	3	linear	regression	models:

• Which	line	should	we	choose?



Would	you	rather?
• Consider	the	following	dataset	and	3	linear	regression	models:

• What	if	you	are	forced	to	choose	between	red and	green?
– And	assume	they	have	the	same	training	error.

• You	should	pick	green.
– Since	slope	is	smaller,	small	change	in	xi has	a	smaller	change	in	prediction	yi.

• Green	line’s	predictions	are	less	sensitive	to	having	‘w’	exactly	right.
– Since	green	‘w’	is	less	sensitive	to	data,	test	error	might	be	lower.	



Size	of	Regression	Weights	are	Overfitting

• The	regression	weights	wj with	degree-7	are	huge	in	this	example.
• The	degree-7	polynomial	would	be	less	sensitive	to	the	data,

if	we	“regularized”	the	wj so	that	they	are	small.



L2-Regularization
• Standard	regularization strategy	is	L2-regularization:

• Intuition: large	slopes	wj tend	to	lead	to	overfitting.

• Objective	balances	getting	low	error	vs.	having	small	slopes ‘wj’.
– “You	can	increase	the	training	error	if	it	makes	‘w’	much	smaller.”
– Nearly-always reduces	overfitting.

– Regularization	parameter	λ	>	0	controls	“strength”	of	regularization.
• Large	λ	puts	large	penalty	on	slopes.



L2-Regularization
• Standard	regularization strategy	is	L2-regularization:

• In	terms	of	fundamental	trade-off:
– Regularization	increases	training	error.
– Regularization	decreases	approximation	error.

• How	should	you	choose	λ?
– Theory:	as	‘n’	grows	λ should	be	in	the	range	O(1)	to	(√n).
– Practice:	optimize validation	set	or	cross-validation error.

• This	almost	always	decreases	the	test	error.



L2-Regularization	“Shrinking”	Example
• Solution	to	a	“least	squares	with	L2-regularization”	for	different	λ:

• We	get	least	squares	with	λ =	0.
– But	we	can	achieve	similar	training	error	with	smaller	||w||.

• ||Xw –y	||	increases	with	λ,	and	||w||	decreases	with	λ.
– Though	individual	wj can	increase	or	decrease	with	lambda.
– Because	we	use	the	L2-norm,	the	large	ones	decrease	the	most.

λ w1 w2 w3 w4 w5

0 -1.88 1.29 -2.63 1.78 -0.63

1 -1.88 1.28 -2.62 1.78 -0.64

4 -1.87 1.28 -2.59 1.77 -0.66

16 -1.84 1.27 -2.50 1.73 -0.73

64 -1.74 1.23 -2.22 1.59 -0.90

256 -1.43 1.08 -1.70 1.18 -1.05

1024 -0.87 0.73 -1.03 0.57 -0.81

4096 -0.35 0.31 -0.42 0.18 -0.36

||Xw – y||2 ||w||2

285.64 15.68

285.64 15.62

285.64 15.43

285.71 14.76

286.47 12.77

292.60 8.60

321.29 3.33

374.27 0.56



Regularization	Path
• Regularization	path	is	a	plot	of	the	optimal	weights	‘wj’	as	‘λ’ varies:

• Starts	with	least	squares	with	λ=	0,	and	wj converge	to	0	as	λ grows.



L2-regularization	and	the	normal	equations
• When	using	L2-regularized	squared	error,	we	can	solve	for	∇ f(w)	=	0.
• Loss	before:	
• Loss	after:

• Gradient	before:	
• Gradient	after:

• Linear	system	before:	
• Linear	system	after:	
• But	unlike	XTX,	the	matrix	(XTX	+	λI)	is	always	invertible:

– Multiply	by	its	inverse	for	unique	solution:
20

rf(w) = XTXw �XT y

XTXw = XT y

rf(w) = XTXw �XT y + �w

(XTX + �I)w = XT y



Gradient	Descent	for	L2-Regularized	Least	Squares

• The	L2-regularized	least	squares	objective	and	gradient:

• Gradient	descent	iterations	for	L2-regularized	least	squares:

• Cost	of	gradient	descent	iteration	is	still	O(nd).
– Can	show	number	of	iterations	decrease	as	λ increases (not	obvious).



Why	use	L2-Regularization?
• It’s	a	weird	thing	to	do,	but	we	(cs340	professors)	say	“always	use	
regularization”.
– “Almost	always	decreases	test	error”	should	already	convince	you.

• But	here	are	6	more	reasons:
1. Solution	‘w’	is	unique.	
2. XTX	does	not	need	to	be	invertible (no	collinearity	issues).
3. Less	sensitive	to	changes	in	X	or	y.
4. Gradient	descent	converges	faster (bigger	λ means	fewer	iterations).
5. Stein’s	paradox:	if	d	≥	3,	‘shrinking’	moves	us	closer	to	‘true’	w.
6. Worst	case:	just	set	λ small	and	get	the	same	performance.



(pause)



Features	with	Different	Scales
• Consider	continuous	features	with	different	scales:

• Should	we	convert	to	some	standard	‘unit’?
– It	doesn’t	matter	for	decision	trees	or	naïve	Bayes.

• They	only	look	at	one	feature	at	a	time.
– It	doesn’t	matter	for	least	squares:

• wj*(100	mL)	gives	the	same	model	as	wj*(0.1	L)	with	a	different	wj.

Egg	(#) Milk	(mL) Fish	(g) Pasta
(cups)

0 250 0 1

1 250 200 1

0 0 0 0.5

2 250 150 0



Features	with	Different	Scales
• Consider	continuous	features	with	different	scales:

• Should	we	convert	to	some	standard	‘unit’?
– It	matters	for	k-nearest	neighbours:

• “Distance”	will	be	affected	more	by	large	features	than	small	features.
– It	matters	for	regularized	least	squares:

• Penalizing	(wj)2 means	different	things	if	features	‘j’	are	on	different	scales.

Egg	(#) Milk	(mL) Fish	(g) Pasta
(cups)

0 250 0 1

1 250 200 1

0 0 0 0.5

2 250 150 0



Standardizing	Features
• It	is	common	to	standardize	continuous	features:

– For	each	feature:
1. Compute	mean	and	standard	deviation:

2. Subtract	mean	and	divide	by	standard	deviation (“z-score”)

– Now	changes	in	‘wj’	have	similar	effect	for	any	feature	‘j’.
• How	should	we	standardize	test	data?

– Wrong	approach:	use	mean	and	standard	deviation	of	test	data.
– Training	and	test	mean	and	standard	deviation	might	be	very	different.
– Right	approach:	use	mean	and	standard	deviation	of	training	data.



Standardizing	Features
• It	is	common	to	standardize	continuous	features:

– For	each	feature:
1. Compute	mean	and	standard	deviation:

2. Subtract	mean	and	divide	by	standard	deviation (“z-score”)

– Now	changes	in	‘wj’	have	similar	effect	for	any	feature	‘j’.
• If	we’re	doing	10-fold	cross-validation:

– Compute	µj and	σj based	on	the	9	training	folds	(e.g.,	average	over	9/10s	of	data).
– Standardize	the	remaining	(“validation”)	fold	with	this	“training”	µj and	σj.
– Re-standardize	for	different	folds.



Standardizing	Target
• In	regression,	we	sometimes	standardize	the	targets	yi.
– Puts	targets	on	the	same	standard	scale	as	standardized	features:

• With	standardized	target,	setting	w	=	0	predicts	average	yi:
– High	regularization	makes	us	predict	closer	to	the	average	value.

• Again,	make	sure	you	standardize	test	data	with	the	training	stats.
• Other	common	transformations	of	yi are	logarithm/exponent:

– Makes	sense	for	geometric/exponential	processes.	



Regularizing	the	y-Intercept?
• Should	we	regularize	the	y-intercept?

• No!	Why	encourage	it	to	be	closer	to	zero?	(It	could	be	anywhere.)
– You	should	be	allowed	to	shift	function	up/down	globally.

• Yes!	It	makes	the	solution	unique	and	it	easier	to	compute	‘w’.

• Compromise:	regularize	by	a	smaller	amount	than	other	variables.



(pause)



Predicting	the	Future
• In	principle,	we	can	use	any	features	xi that	we	think	are	relevant.
• This	makes	it	tempting	to	use	time as	a	feature,	and	predict	future.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mile/



Predicting	the	Future
• In	principle,	we	can	use	any	features	xi that	we	think	are	relevant.
• This	makes	it	tempting	to	use	time	as	a	feature,	and	predict	future.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mi
https://overthehillsports.wordpress.com/tag/hicham-el-guerrouj/le/



Predicting	100m	times	400	years	in	the	future?

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gif



Predicting	100m	times	400	years	in	the	future?

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gif
http://www.washingtonpost.com/blogs/london-2012-olympics/wp/2012/08/08/report-usain-bolt-invited-to-tryout-for-manchester-united/



Interpolation	vs	Extrapolation
• Interpolation is	task	of	predicting	“between	the	data	points”.

– Regression	models	are	good	at	this	if	you	have	enough	data	and	function	is	continuous.
• Extrapolation is	task	of	prediction	outside	the	range	of	the	data	points.

– Without	assumptions,	regression	models	can	be	embarrassingly-bad	at	this.

• If	you	run	the	100m	regression	models	backwards	in	time:
– They	predict	that	humans	used	to	be	really	really slow!

• If	you	run	the	100m	regression	models	forwards	in	time:
– They	might	eventually	predict	arbitrarily-small	100m	times.
– The	linear	model	actually	predicts	negative	times	in	the	future.

• These	time	traveling	races	in	2060	should	be	pretty	exciting!

• Some	discussion	here:
– http://callingbullshit.org/case_studies/case_study_gender_gap_running.html

https://www.smbc-comics.com/comic/rise-of-the-machines



No	Free	Lunch,	Consistency,	and	the	Future



No	Free	Lunch,	Consistency,	and	the	Future



No	Free	Lunch,	Consistency,	and	the	Future



Ockham’s	Razor	vs.	No	Free	Lunch
• Ockham’s	razor is	a	problem-solving	principle:

– “Among	competing	hypotheses,	the	one	with	the	
fewest	assumptions	should	be	selected.”

– Suggests	we	should	select	linear	model.

• Fundamental	trade-off:
– If	same	training	error,	pick	model	less	likely	to	overfit.
– Formal	version	of	Occam’s	problem-solving	principle.
– Also	suggests	we	should	select	linear	model.

• No	free	lunch	theorem:
– There	exists	possible	datasets	where	you	should	
select	the	green	model.



No	Free	Lunch,	Consistency,	and	the	Future
• We	can	resolve	“blue	vs.	green”	by	collecting	more	data:



No	Free	Lunch,	Consistency,	and	the	Future



No	Free	Lunch,	Consistency,	and	the	Future



No	Free	Lunch,	Consistency,	and	the	Future



No	Free	Lunch,	Consistency,	and	the	Future



No	Free	Lunch,	Consistency,	and	the	Future



No	Free	Lunch,	Consistency,	and	the	Future



Discussion:	Climate	Models
• Has	Earth	warmed	up	over	last	100	years?	(Consistency	zone)

– Data	clearly	says	“yes”.

• Will	Earth	continue	to	warm	over	next	100	years?	(generalization	error)
– We	should	be	more	skeptical	about	models	that	predict	future	events.

https://en.wikipedia.org/wiki/Global_warming



Discussion:	Climate	Models
• So	should	we	all	become	global	warming	skeptics?
• If	we	average	over	models	that	overfit	in	*independent*	ways,	we	expect	the	

test	error	to	be	lower,	so	this	gives	more	confidence:

– We	should	be	skeptical	of	individual	models,	but	agreeing	predictions	made	by	models	
with	different	data/assumptions	are	more	likely	be	true.

• All	the	near-future	predictions	agree,	so	they	are	likely	to	be	accurate.
– And	it’s	probably	reasonable	to	assume	fairly	continuous	change	(no	big	“jumps”).

• Variance	is	higher	further	into	future,	so	predictions	are	less	reliable.
– Relying	more	on	assumptions	and	less	on	data.

https://en.wikipedia.org/wiki/Global_warming



Index	Funds:	Ensemble	Extrapolation	for	Investing
• Want	to	do	extrapolation	when	investing	money.

– What	will	this	be	worth	in	the	future?
• Index	funds	can	be	viewed	as	an	ensemble	method	for	investing.

– For	example,	buy	stock	in	top	500	companies	proportional	to	value.
– Tries	to	follow	average	price	increase/decrease.

– This	simple	investing	strategy	outperforms	most	fund	managers.

http://fibydesign.com/005-introduction-to-index-investing-stocks-index-funds-vtsax/



Summary
• Regularization:

– Adding	a	penalty	on	model	complexity.

• L2-regularization:	penalty	on	L2-norm	of	regression	weights	‘w’.
– Almost	always	improves	test	error.

• Standardizing	features:
– For	some	models	it	makes	sense	to	have	features	on	the	same	scale.

• Interpolation	vs.	Extrapolation:
– Machine	learning	with	large	‘n’	is	good	at	predicting	“between	the	data”.
– Without	assumptions,	can	be	arbitrarily	bad	“away	from	the	data”.

• Next	time:	learning	with	an	exponential	number	of	irrelevant	features.



L2-Regularization
• Standard	regularization strategy	is	L2-regularization:

• Equivalent	to	minimizing	squared	
error	but	keeping	L2-norm	small.



Regularization/Shrinking	Paradox
• We	throw	darts	at	a	target:
– Assume	we	don’t	always	hit	the	exact	center.
– Assume	the	darts	follow	a	symmetric	pattern	
around	center.	



Regularization/Shrinking	Paradox
• We	throw	darts	at	a	target:
– Assume	we	don’t	always	hit	the	exact	center.
– Assume	the	darts	follow	a	symmetric	pattern	
around	center.	

• Shrinkage	of	the	darts	:
1. Choose	some	arbitrary location	‘0’.
2. Measure	distances	from	darts	to	‘0’.



Regularization/Shrinking	Paradox
• We	throw	darts	at	a	target:
– Assume	we	don’t	always	hit	the	exact	center.
– Assume	the	darts	follow	a	symmetric	pattern	
around	center.	

• Shrinkage	of	the	darts	:
1. Choose	some	arbitrary location	‘0’.
2. Measure	distances	from	darts	to	‘0’.
3. Move	misses	towards	‘0’,	by	small

amount	proportional	to	distance	from	0.

• If	small	enough,	darts	will	be	closer	to	center	on	average.



Regularization/Shrinking	Paradox
• We	throw	darts	at	a	target:
– Assume	we	don’t	always	hit	the	exact	center.
– Assume	the	darts	follow	a	symmetric	pattern	
around	center.	

• Shrinkage	of	the	darts	:
1. Choose	some	arbitrary location	‘0’.
2. Measure	distances	from	darts	to	‘0’.
3. Move	misses	towards	‘0’,	by	small

amount	proportional	to	distance	from	0.

• If	small	enough,	darts	will	be	closer	to	center	on	average.
Visualization	of	the	related	higher-dimensional	paradox	that	the	mean	of	data	coming	from	a	Gaussian	
is	not	the	best	estimate	of	the	mean	of	the	Gaussian	in	3-dimensions	or	higher:	https://www.naftaliharris.com/blog/steinviz


