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Last Time: Linear Regression

We discussed linear models:
Vi = WX twixig b T wgxy
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“Multiply feature x; by weight w;,
add them to get y.”.

We discussed squared error function:
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— http://setosa.io/ev/ordinary-least-squares-regression
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:

— We use ‘w’ as a “d times 1” vector containing weight ‘w;" in position .

— We use ‘y’ as an “n times 1” vector containing target ‘y.” in position V"

— We use ‘x;’ as a “d times 1” vector containing features ‘j’ of example ‘".

* We're now going to be careful to make sure these are column vectors.

— So ‘X’ is a matrix with x," in row 7".
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:
— Our prediction for example ‘i’ is given by the scalar w'x..
— Our predictions for all ‘i’ (n times 1 vector) is the matrix-vector product Xw.
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:
— Our prediction for example ‘i’ is given by the scalar w'x.

— Our predictions for all ‘i’ (n times 1 vector) is the matrix-vector product Xw
— Residual vector ‘r’ gives difference between predictions and y, (n times 1)
— Least squares can be written as the squared L2-norm of the residual
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Back to Deriving Least Squares ford > 2...

* We can write vector of predictions y; as a matrix-vector product:

n_ )
Y‘ Xw = ‘”;'*
T
W In

* And we can write linear least squares in matrix notation as:

Fle) = 3yl =12 (=)
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* WEe’ll use this notation to derive d-dimensional least squares ‘w’.

— By setting the gradient V f(w) equal to the zero vector and solving for ‘w’.



Digression: Matrix Algebra Review

* Quick review of linear algebra operations we’ll use:

— If ‘@’ and ‘b’ be vectors, and ‘A" and ‘B’ be matrices then:

O\Tlo = loTO\
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Linear and Quadratic Gradients

* From these rules we have (see post-lecture slide for steps):
_ N _ - T1 — Ty?T | T
«F(w)"f,_,g‘ w'x, y;)z:‘%“)fw‘yﬂl”’%waw W)\(,Z/+7yly

wafrix /A’ vector 'L’ \Sm '
T
= 7'\ WTAW + w L -+ [ 557 These ave Scalats
50 dimensions mafch.
* How do we compute gradient?
Let's fist do it with =1 Here are The j?/\‘P/ﬂh'eo,J“U"‘J o
1[\(\,\,) = Luowtwh+c fo 4" dimensions: Fll - derivf
2' 1y L4 VLc]=0 C(zero vm‘or) are on wc/o/m)e n
= Saw Tw ¢ 1= 1 not<s On
VLW j - linewr and

I )= + |
'W=aw b+0 VL%WW/‘{W’):AW Gf Als symmetvic) qu%df;iffm‘s.



Linear and Quadratic Gradients

* We've written as a d-dimensional quadratic:
n - L _ Ty T
(25726t = 5 =yl = 3w XA =Wy + Ly Ty
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* Gradient is given by: VW) = Aw - L, + D

* Using definitions of ‘A" and ‘b’: = XTXW - XTy
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Normal Equations

* Set gradient equal to zero to find the “critical” points:
9 T
X 'Xw* )¢ y = 0

* We now move terms not involving ‘w’ to the other side:
ki - v
X Xw=X Y

* Thisis a set of ‘d’ linear equations called the normal equations.
— This a linear system like “Ax = b” from Math 152.

* You can use Gaussian elimination to solve for ‘w’.

— In Julia, the “\” command can be used to solve linear systems:

Tr‘m'h: W:(XIX)\(}(,y) P(eo(ic"’ ykqf = th*"\’



Normal Equations

III

* Set gradient equal to zero to find the “critica
X 'Xw* )(T‘/ = 0

* We now move terms not involving ‘w’ to the other side:
ki - v
X Xw=X Y

e Thisis a set of ‘d’ linear equations called the “normal equations”.
— This a linear system like “Ax = b” from Math 152.

* You can use Gaussian elimination to solve for ‘w’.

points:

— In Python, you solve linear systems in 1 line using numpy.linalg.solve.



Incorrect Solutions to Least Squares Problem
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Least Squares Cost

Cost of solving “normal equations” X"™Xw = X'y?

Forming X'y vector costs O(nd).

— It has ‘d’ elements, and each is an inner product between ‘n’ numbers.
Forming matrix X"™X costs O(nd?).

— It has d? elements, and each is an inner product between ‘n’ numbers.

Solving a d x d system of equations costs O(d?).
— Cost of Gaussian elimination on a d-variable linear system.
— Other standard methods have the same cost.

Overall cost is O(nd? + d3).
— Which term dominates depends on ‘n’ and ‘d’.



Least Squares Issues

* |ssues with least squares model: X is nx/
— Solution might not be unique. .
— It is sensitive to outliers. o K is dxn
— It always uses all features. and  XTX s dxd

— Data can might so big we can’t store X'X.
* Oryou can’t afford the O(nd? + d3) cost.

— It might predict outside range of y, values.
— It assumes a linear relationship between x, and y..



Non-Uniqueness of Least Squares Solution

 Why isn’t solution unique?
— Imagine having two features that are identical for all examples.

— | can increase weight on one feature, and decrease it on the other,

without changing predictions. A _
Yi =V X +wlé£ =Wy *wy )y, + Ox,

o
ry
— Thus, if (wy,w,) is a solution then (w;+w,, 0) is another solution.

— This is special case of features being “collinear”:
* One feature is a linear function of the others.

e But, any ‘W’ where V f(w) = 0 is a global minimizer of ‘f’.
— This is due to convexity of ‘f’, which we’ll discuss later.



(pause)



Motivation: Non-Linear Progressions in Athletics

* Are top athletes going faster, higher, and farther?
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:



Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x. | y;) and p(y;) with Gaussian or other model.
* CPSC 540.




Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x. | y;) and p(y;) with Gaussian or other model.

— Non-parametric models:
* KNN regression:

— Find ‘K’ nearest neighbours of X.
— Return the mean of the corresponding y..
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x. | y;) and p(y;) with Gaussian or other model.

- Non-pa ra metric mOdeIS: KNeighborsRegressor (k = 5, weights = 'uniform’)
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Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x. | y;) and p(y;) with Gaussian or other model.

— Non-parametric models:
* KNN regression.

e Could be weighted by distance. i
* ‘Nadaraya-Waston’: weight all y, by distance to x.. *
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Adapting Counting/

* We can adapt our classificatig
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— Regression tree: tree with mea >

100

— Probabilistic models: fit p(x; | ¥

— Non-parametric models:

* KNN regression. ' ' : :
* Could be weighted by distance. ?/ 5 10 15

50

* ‘Nadaraya-Waston’: weight all y;

* ‘Locally linear regression’: for each x;, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)



Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x. | y;) and p(y;) with Gaussian or other model.

— Non-parametric models:

* KNN regression.

e Could be weighted by distance.

* ‘Nadaraya-Waston’: weight all y, by distance to x.

* ‘Locally linear regression’: for each x;, fit a linear model weighted by distance.

(Better than KNN and NW at boundaries.)

— Ensemble methods:

e Can improve performance by averaging across regression models.



Adapting Counting/Distance-Based Methods

* We can adapt our classification methods to perform regression.

* Applications:
— Regression forests for fluid simulation:
* https://www.youtube.com/watch?v=kGB7Wd9CudA
— KNN for image completion:
* http://graphics.cs.cmu.edu/projects/scene-completion
e Combined with “graph cuts” and “Poisson blending”.
— KNN regression for “voice photoshop”:

 https://www.youtube.com/watch?v=I1314XLZ59iw
* Combined with “dynamic time warping” and “Poisson blending”.

 But we’ll focus on linear models with non-linear transforms.
— These are the building blocks for more advanced methods.



Why don’t we have a y-intercept?

— Linear model is ¥, = wx; instead of J, = wx, + w, with y-intercept w,.
— Without an intercept, if x, = 0 then we must predict V. = 0.
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Why don’t we have a y-intercept?

— Linear model is ¥, = wx; instead of J, = wx, + w, with y-intercept w,.

— Without an intercept, if x, = 0 then we must predict V. = 0.
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Adding a Bias Variable

e Simple trick to add a y-intercept (“bias”) variable:
— Make a new matrix “Z” with an extra feature that is always “1”,

G |

0! Wq/sl X
* Now use “Z” as your features in linear regression.
— We'll use ‘v’ instead of ‘W’ as regression weights when we use features ‘7.

y".: \/2/,"’\/2,2_ Wo +lel
o 1

w, | w, Xl
* So we can have a non-zero y-intercept by changing features.
— This means we can ignore the y-intercept in our derivations, which is cleaner.



Motivation: Limitations of Linear Models

* On many datasets, vy, is not a linear function of x.
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e Can we use least square to fit non-linear models?



Non-Linear Feature Transforms

Can we use linear least squares to fit a quadratic model?
N

_ 2
Y, = o T WG T

You can do this by changing the features (change of basis):
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Non-Linear Feature Transforms

Y 0
(v O
— o A
O oA T
= wtwX
L o) o S
|inear @) O |
|eqsf o INeas
Sc’mayej qub'/
S na
wiTh
(,V\mdrgfl'c
Lasis

To erulic" on Néw r.ln'fo\ ’5(/7 '}\Orm ’f -ﬂfom 7 W,‘J h‘/{( \/:’ZV\/




General Polynomial Features (d=1)

* We can have a polynomial of degree ‘p’ by using these features:

- P
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* There are polynomial basis functions that are numerically nicer:
— E.g., Lagrange polynomials (see CPSC 303).



Summary

Matrix notation for expressing least squares problem.

Normal equations: solution of least squares as a linear system.
— Solve (X™X)w = (XTy).

Solution might not be unique because of collinearity.

— But any solution is optimal because of “convexity”.
Tree/probabilistic/non-parametric/ensemble regression methods.
Non-linear transforms:

— Allow us to model non-linear relationships with linear models.

Next time: how to do least squares with a million features.



Linear Least Squares: Expansion Step
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Vector View of Least Squares
 We showed that least squares minimizes:
Flw)=4 ”X\v")/”ﬁ
 The % and the squaring don’t change solution, so equivalent to:

Fw) = \'Xw‘y“

* From this viewpoint, least square minimizes Euclidean distance
between vector of labels ‘y’ and vector of predictions Xw.



Bonus Slide: Householder(-ish) Notation

* Househoulder notation: set of (fairly-logical) conventions for math.
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Bonus Slide: Householder(-ish) Notation

* Househoulder notation: set of (fairly-logical) conventions for math:
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When does least squares have a unique solution?

We said that least squares solution is not unique if we have repeated
columns.

But there are other ways it could be non-unique:

— One column is a scaled version of another column.

— One column could be the sum of 2 other columns.

— One column could be three times one column minus four times another.

Least squares solution is unique if and only if all columns of X are
“linearly independent”.
— No column can be written as a “linear combination” of the others.

— Many equivalent conditions (see Strang’s linear algebra book):
* X has “full column rank”, X™X is invertible, X™X has non-zero eigenvalues, det(X"X) > 0.

— Note that we cannot have independent columns if d > n.



