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Admin

* Assignment 3 is up:

— Start early, this is usually the longest assignment.

* We're going to start using calculus and linear algebra a lot.
— You should start reviewing these ASAP if you are rusty.
— A review of relevant calculus concepts is here.
— A review of relevant linear algebra concepts is here.



Supervised Learning Round 2: Regression

* We're going to revisit supervised learning:
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* Previously, we considered classification:

— We assumed y. was discrete: y, = ‘spam’ or y, = ‘not spam’.
* Now we’re going to consider regression:
— We allow y, to be numerical: y, = 10.34cm.



Example: Dependent vs. Explanatory Variables

* We want to discover relationship between numerical variables:
— Does number of lung cancer deaths change with number of cigarettes?
— Does number of skin cancer deaths change with latitude?
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Example: Dependent vs. Explanatory Variables

* We want to discover relationship between numerical variables:
— Do people in big cities walk faster?

— Is the universe expanding or shrinking or staying the same size?
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Example: Dependent vs. Explanatory Variables

* We want to discover relationship between numerical variables:
— Does number of gun deaths change with gun ownership?
— Does number violent crimes change with violent video games?

Gun ownership vs. gun deaths, by state Crime Rate (number of reported violent crimes per 100,000 population)
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Example: Dependent vs. Explanatory Variables

* We want to discover relationship between numerical variables:
— Does higher gender equality index lead to more women STEM grads?

* Not that we’re doing supervised learning:

— Trying to predict value of 1 variable (the ‘y,’ values).

(instead of measuring correlation between 2).

* Supervised learning does not give causality:
— OK: “Higher index is correlated with lower grad %”.
— OK: “Higher index helps predict lower grad %”.

— BAD: “Higher index leads to lower grads %”.
* People/media get these confused all the time, be careful!
* There are lots of potential reasons for this correlation.
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Handling Numerical Labels

* One way to handle numerical y;: discretize.
— E.g., for ‘age’ could we use {‘age < 20’, 20 < age < 30’, ‘age > 30'}.
— Now we can apply methods for classification to do regression.
— But coarse discretization loses resolution.
— And fine discretization requires lots of data.

* There exist regression versions of classification methods:
— Regression trees, probabilistic models, non-parametric models.

* Today: one of oldest, but still most popular/important methods:
— Linear regression based on squared error.
— Interpretable and the building block for more-complex methods.



Linear Regression in 1 Dimension

Assume we only have 1 feature (d = 1):

— E.g., X, is number of cigarettes and y, is number of lung cancer deaths.

Linear regression makes predictions ¥, using a linear function of x;:
A
>/i = WX,

The parameter ‘w’ is the weight or regression coefficient of x.
— We’re temporarily ignoring the y-intercept.
As x. changes, slope ‘w’ affects the rate that y. increases/decreases:

— Positive ‘W’: V. increase as X increases.
| |
— Negative ‘W’: V. decreases as X: increases.
| |



Linear Regression in 1 Dimension
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Aside: terminology woes

* Different fields use different terminology and symbols.
— Data points = objects = examples = rows = observations.

— Inputs = predictors = features = explanatory variables= regressors =
independent variables = covariates = columns.

— Outputs = outcomes = targets = response variables = dependent variables
(also called a “label” if it’s categorical).

— Regression coefficients = weights = parameters = betas.
* With linear regression, the symbols are inconsistent too:
— In ML, the data is X and y, and the weights are w.

— In statistics, the data is X and y, and the weights are B.
— In optimization, the data is A and b, and the weights are x.



Least Squares Objective

* Our linear model is given by:
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* So we make predictions for a new example by using:
N
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e But we can’t use the same error as before:

— Itis unlikely to find a line where y, = yi exactly for many points.
* Due to noise, relationship not being quite linear or just floating-point issues.

— “Best” model may have |y, — y,| is small but not exactly 0.



Least Squares Objective

* Instead of “exact y,”, we evaluate “size” of the error in prediction.
* Classic way is setting slope ‘W’ to minimize sum of squared errors:
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* There are some justifications for this choice. vale For example
— A probabilistic interpretation is coming later in the course.

e But usually, it is done because it is easy to minimize.



Least Squares Objective

e Classic way to set slope ‘W’ is minimizing sum of squared errors:
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Least Squares Objective

e Classic way to set slope ‘W’ is minimizing sum of squared errors:
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Minimizing a Differential Function

* Math 101 approach to minimizing a differentiable function f’:
1. Take the derivative of ‘f’.
2. Find points ‘W’ where the derivative f’(w) is equal to 0.
3. Choose the smallest one (and check that f”’(w) is positive).
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Digression: Multiplying by a Positive Constant

Note that this problem:

P = 2 (wx =)

Has the same set of minimizers as this problem:
N
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And these also have the same minimizers:
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| can multiply ‘t” by any positive constant and not change solution.
— Derivative will still be zero at the same locations.
— We'll use this trick a lot!

(Quora trolling on ethics of this)




Finding Least Squares Solution

* Finding ‘w’ that minimizes sum of squared errors:
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Finding Least Squares Solution

* Finding ‘w’ that minimizes sum of squared errors:
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* Let’s check that this is a minimizer by checking second derivative:
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— Since (anything)? is non-negative and (anything non-zero)? > 0,
if we have one non-zero feature then f"’(w) > 0 and this is a minimizer.



Least Squares Objective/Solution (Another View)

e Least squares minimizes a quadratic that is a sum of quadratics
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(pause)



Motivation: Combining Explanatory Variables

Smoking is not the only contributor to lung cancer.

— For example, there environmental factors like exposure to asbestos.
How can we model the combined effect of smoking and asbestos?
A simple way is with a 2-dimensional linear function:
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Least Squares in 2-Dimensions

 Linear model:
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Least Squares in 2-Dimensions

 Linear model:
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Different Notations for Least Squares

e |f we have d’ fe;\\tures, the d-dimensional linear model is:
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— In words, our model is that the output is a weighted sum of the inputs.

 \We can re-write this in summation notation:
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Notation Alert (again)

* |n this course, all vectors are assumed to be column-vectors:
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Least Squares in d-Dimensions

* The linear least squares model in d-dimensions minimizes:
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e Dates back to 1801: Gauss used it to predict location of Ceres.

 How do we find the best vector ‘w’ in ‘d” dimensions?
— Can we set the “partial derivative” of each variable to 0?



Partial Derivatives

F(w)




F(w)
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Least Squares Partial Derivatives (1 Example)

* The linear least squares model in d-dimensions for 1 example:
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 Computing the partial derivative for variable ‘1’
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Least Squares Partial Derivatives (‘n” Examples)

* Linear least squares partial derivative for variable 1 on example ‘i’:

D\N‘.F( Wl) ) J (WX —y;)x.,
* For a generic variable ‘j” we would have:
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* Andif f’is summed over all ‘n” examples we would have:
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. Unfortunately, the partial derivative for w; depends on all {w,, w,,..., wy}
— | can’t just “set equal to 0 and solve for w;".



Gradient and Critical Points in d-Dimensions

Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘w’ where the gradient vector equals the zero vector.

Gradient is vector with partial derivative ‘j’ in position ‘j’:
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Gradient and Critical Points in d-Dimensions

* Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘w’ where the gradient vector equals the zero vector.

* Gradient is vector with partial derivative ‘j’ in position ‘j’:
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Summary

Regression considers the case of a numerical y..

Least squares is a classic method for fitting linear models.
— With 1 feature, it has a simple closed-form solution.
— Can be generalized to ‘d’ features.

Gradient is vector containing partial derivatives of all variables.
Next time:
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