Automatic Differentiation (1)

Slides Prepared By:

Atilim Gunes Baydin
gunes@robots.ox.ac.uk

Outline

This lecture:
- Derivatives in machine learning
- Review of essential concepts (what is a derivative, Jacobian, etc.)
- How do we compute derivatives
- Automatic differentiation

Next lecture:
- Current landscape of tools
- Implementation techniques
- Advanced concepts (higher-order API, checkpointing, etc.)

Derivatives and
machine learning

Derivatives in machine learning

“Backprop” and gradient descent are at the core of all recent advances
Computer vision

ILSVRC top-5 error on ImageNet

2010 2011 2012 2013 2014 Human ArXiv 2015

Top-5 error rate for ImageNet (NVIDIA devblog) Faster R-CNN (Ren et al. 2015) NVIDIA DRIVE PX 2 segmentation

Speech recognition/synthesis Machine translation

” ! ! ! ! ! ! ! pertect
E» Q.\A Technology of 1970s-2010 (GMM-HMM,) Encoder e [—| e |—| &2 |—| & |—| e |—| &5 |—| e 5 R s e E
: * T =z 7 —— neural (GNMT)
8 20 K]
5 18 [Technology since 2010 (DNN) z phrase-based (PBMT)
£
3
& k|
=i —_—
S u

n——————— Decoder do — di — d2 — da

0 500 1,000 1,500 2,000 2,500
Training Data (hours) English English English Spanish French Chinese
i | 1 T > > > > > >

Translation model

Word error rates (Huang et al., 2014) Google Neural Machine Translation System (GNMT)

Derivatives in machine learning

“Backprop” and gradient descent are at the core of all recent advances

Probabilistic programming (and modeling)

Pyro ProbTorch 6’? PROB

(2017) (2017) TORCH
Edward TensorFlow Probability ‘ﬁﬁ
(2016) (2018) TensorFlow

- Variational inference
- “Neural” density estimation
- Transformed distributions via bijectors
- Normalizing flows (Rezende & Mohamed, 2015)
- Masked autoregressive flows (Papamakarios et al., 2017)

Derivatives in machine learning

At the core of all: differentiable functions (programs) whose parameters are

tuned by gradient-based optimization

Qlw)= Z Q.(w) ////

N
=1

d ——
Wt+1:Wt—1’IZ vai(W) S
i=1

SGD

Momentum

NAG
Adagrad
Adadelta

Rmsprop

(Ruder, 2017) http://ruder.io/optimizing-

radient-descent/

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

Automatic differentiation

Execute differentiable functions (programs) via automatic differentiation

A word on naming:
- Differentiable programming, a generalization of deep learning (Olah, LeCun)
“Neural networks are just a class of differentiable functions”
- Automatic differentiation
- Algorithmic differentiation
- AD
- Autodiff
- Algodiff
- Autograd
Also remember:

- Backprop
- Backpropagation (backward propagation of errors)

Essential concepts
refresher

Derivative

Function of areal variable f:R — R

Sensitivity of function value w.r.t.
a change in its argument
(the instantaneous rate of change)

Dependent Independent

|
y = f(z
YV @)= /

’ \ N Jim 2 i LS8 S
Leibniz Lagrange Newton

Leibniz, c. 1675

Derivative

Function of areal variable f:R — R

General Formulas Exponential and Logarithmic Functions
1. %C =0 7. Ed;ef(x) = f'(x)e"‘x)
d B . (Y T ’ d e X
2, E[f(x) Fgx)]=Ff(x)Fgx) 8. i it In(a)
d]] d d f

3 @] = f'()g(x) +g'() + () 9. LD = 7000 +n(rG0)] =52

d f(X)] g(Of'(x) — g'()f (x)
4, = = ~

dx1g(x) (9()°

d Y r

5; 5 f(e®) = f'(9(x))g'(x)
6. L yn = nyn-s around 15 such rules

dx

Note: the derivative is a linear operator, a.k.a. a higher-order
function in programming languages (R — R) — (R — R)

Leibniz, c. 1675

10

Partial derivative

Function of several real variables f : R" — R A i S

A derivative w.r.t. one independent variable,
with others held constant

2= flay) = 2" +ay+y°

llde£A
A
— =7
ox 4 ————
0z
=2y+x

Oy

Partial derivative

Function of several real variables f:R" — R

The gradient, given

fx), x e R
is the vector of all partial derivatives
of of .,
Vix)= T
T I In, —grad f (x|, x)
1 " Vf(x points to the direction with the largest rate of
nabla (x) change
or “del”

Nabla is the higher-order function: (R” — R) — (R" — R")

12

Total derivative

Function of several real variables f:R" — R

The derivative w.r.t. all variables
(independent & dependent) {

f(t,x(t), y(t))

ﬁ_ 6f+8f8x+8f8y
dt ot Oxdt Oyodt

Consider all partial derivatives simultaneously and accumulate all direct and
indirect contributions (Important: will be useful later)

13

Matrix calculus and machine learning

Extension to

Scalar output Vector output
multivariable _ m
functions Scalarinput = f:R — R f R— R
Vectorinput = f: R" — R f - R" 5 R™

\ ———\
N
N

N
' \\\:\\\»
N
\

"\
A

NN\

=

N
=N\

RN
ity
S N
==
=S
\

L=

=N

===
=
2=
L

—

AR 2
RN =
WSS =

vector field

e
—
ZZ

N Z

scalar field

In machine learning, we construct (deep) compositions of
- f - R" 5 R™, e.g., aneural network
- f:R" - R ,eg.,alossfunction, KL divergence, or log joint probability ,,

Matrix calculus and machine learning

Differential identities: matrix [11[°]

Condition Expression | Result (humerator layout) |
Aisnotafunctionof X | d(A) = 0 | pat Weir?hts e
ais nota functionof X | d(aX) = adX | o S n
dX+Y)= dX + dY | e XK'I = mil]
d(XY) = (dX)Y + X(dY) |

(Kronecker product) | d(X ® Y

N

= (dX)® Y + X ® (dY)

‘ n

(Hadamard product) | d(X oY) = | (dX)oY 4+ X o (dY) - .
T T | i k B =
d(XT) = (dX) A
d(X 1) = ~X1(@x)x!
(conjugate transpose) d(XH) = (dX)H

And many, many more rules

Generalization to tensors (multi-dimensional arrays) for efficient
batching, handling of sequences, channels in convolutions, etc.

15

Matrix calculus and machine learning

Finally, two constructs relevant to machine learning: Jacobian and Hessian

0f; O f
J.. = It H. —
v 533] v (9332'(9113]'
Ofi ... 0N] B
J=1|: . *f &P
%ﬂ o gﬂ H = | 9x20x ax% 0xo0xy,
1 In : : :
o Of | ’f o . Pf
= _(9_:131 SR a—xn_ | Oxpdr1 01029 oxs

(R" - R™) — (R" — R™*™) (R" - R) — (R" — R"™*")

16

How to compute derivatives

Derivatives
as code

We can compute the derivatives not just of
mathematical functions, but of general programs
(with control flow)

18

Derivatives
as code

h=x
ln+1 = ‘Hn(l == In)

f(zx) = 1y = 64x(1—z)(1 —2x)*(1 — 8z + 8z2)?

Coding
A\ 4
f(x):
v=x
fori=1to3
v=4v(1l-v)
v

or, in closed-form,

£(x):
64x (1-x) (1-2x)°2 (1-8x+8x"2) "2

f(x) = 128z(1 — z)(—8 + 16z)(1 — 2x)?(1 —
8r+8x2)+64(1—x)(1 —27)%(1 — 8z +8x2)2 —

Automatic
Differentiation

v

£2.(x)x
(v,v?) = (x,1)
fori=1to3
(v,v’) = (4v(1-v), 4v’-8vv’)
(v,v?)

Manual 64x(1 — 2x)2(1 — 8z + 822)% — 2562 (1 —) (1 —
Differentiation 2z)(1 — 8z + 8z%)*
Coding
v
£ (x)in
128x(1 -x)(-8+16x)(1 -2
x)"2(1-8x+8x"2) +64 (1
= x) (1= x) 20 (1= 8 x +8
R x"2)°2-64x(1-2x)"2(1-8
Symbolic " x+8x72)72-256x(1-x)(1-
Differentiation 2x)(1-8x+8x72)72
of the Closed-form
£2(x0) = f/(z0)
Exact
Numerical
Differentiation
T2 0%
h = 0.000001
(f(x+h) -f(x)) /h
£2(x0) = f'(xp)
Approximate

19

Manual
You can see papers like this:

anisotropic CVT over a sound mathematical framework. In this article a new objective
function is defined, and both this function and its gradient are derived in closed-form for
surfaces and volumes. This method opens a wide range of possibilities, also deseribed in the

hﬂ A N\
~" N
Use it

Novel model Derive gradient in a standard
optimization procedure

Analytic derivatives are needed for theoretical insight
- analytic solutions, proofs
- mathematical analysis, e.g., stability of fixed points
Unnecessary when we just need derivative evaluations for optimization

20

Symbolic differentiation

Symbolic computation with Mathematica, Maple, Maxima,
and deep learning frameworks such as Theano
Problem: expression swell

Logisticmap I, 1 = 4lp(1 — Ip).)/, = x Number of terms
600 — i
T L1, ® &
500 — "
1 = 1
400 —
2 4z(1 —x) 4(1 —z) — 4x
2 2 2 300
3 16z(l-z)(1-2z)* 16(1—=z)(1 —2x)° —162(1 —2x)* —
64z(1 — x)(1 — 2x) 200 —
®
4 64z(l—2)(1-22)% 128z(1— 2)(—8+ 162)(1 — 2z)2(1 — — ;

(1 — 8z + 8z2)2 8z+822)+64(1—x)(1—2x)%(1—8z+
8x22)? —64x(1—2x)%(1—8z+8x2)2 — 0
2562(1 — z)(1 — 22)(1 — 8z + 8x2)2 [

Symbolic differentiation

Symbolic computation with Mathematica, Maple, Maxima,

and deep learning frameworks such as Theano Graph optimization
Problem: expression swell (e.g., in Theano)
Logistic map I, 1 = (1 — In), }y = x /
no I, 41, <L1,, (Simplified form)
I & 1 i
2 4z(l—zx) 41 — z) — 4z 4 — 8z

3 16z(1—-z)(1-2x)?2 16(1—x)(1—2x)? —16x(1 —2z)2 — 16(1 — 10z + 24x? — 1623)
64z(1 — x)(1 — 2x)

4 64z(1—z)(1—-22)%> 128z(1—2)(—8+162)(1—22)2(1 — 64(1 — 42z + 504z — 26402 +
(1 — 8z + 822)2 82+822)+64(1—x)(1—22)2(1—8z+ 7040x* — 99842° 4 71682° — 204827)
8x2)? —64x(1—2x)%(1—8z+8x2)2 —
256z(1 — x)(1 — 2z)(1 — 8z + 8x2)?

22

Symbolic differentiation

Problem: only applicable to closed-form mathematical functions

You can find the derivative of

In [1]: |def f(Xx):
return 64 *(1-x) *(1-2*x)"2 *(1-8*x+8*x*x)"2

but not of
In [2]: def f(x,n):
if n ==
return x
else:
vV = X

for i in range(1,n):
vV = 4*y*(1-v)
return v

Symbolic graph builders such as Theano and TensorFlow
have limited, unintuitive control flow, loops, recursion

Numerical differentiation

Finite difference approximationof Vf, f:R" —» R

0f(x) _ fx+ hej) = f(x)

Error

Problem: needs to be evaluated n times,
once with each standard basis vector e; € R"

Problem: we must select A and
we face approximation errors

1012 10°1% 108 10° 10 102 10°

_|Round-off error !l |

= —— Forward difference

/
Truncagion error|

dominant dominant

t,

/

/:
Wy,
i

— — - Center difference

| [| [| [[|
I 3070 WP et 10 o' w107

h

C|foe +h) —f(x*) d

E(h, x* ——
() h dx

FO)]

f(x) = 64x(1 — x)(1 — 2x)2(1 — 8x + 8x%)?

24
x* =0.2

Numerical differentiation

Finite difference approximationof Vf, f:R" —» R

0f(x) _ fx+he;) — f(x)
8332' h ’
Better approximations exist:

- Higher-order finite differences
e.g., center difference:

0f(x) _ f(x+he)— f(x— he))
- Richardson extrapolation

- Differential quadrature

0< hkl

These increase rapidly in complexity
and never completely eliminate the error

Error

1012 10°1% 108 10° 10 102 10°

_|Round-off error !l |

= —— Forward difference

/
Truncagion error|

dominant dominant

g

| "W\" ! / 4 /
le

| [| [| [[|
I 3070 WP et 10 o' w107

— — - Center difference

h

C|foe +h) —f(x*) d

E(h, x* - —
() h dx

FO)]

f(x) = 64x(1 — x)(1 — 2x)2(1 — 8x + 8x%)?

25
x* =0.2

Still extremely useful as a quick check of our gradient implementations
Good to learn:

0f(x) f(x+ he;) — f(x — he;) 2
ox; - 2h +O)

Automatic differentiation

If we don’t need analytic derivative expressions, we can

evaluate a gradient exactly with only one forward and one reverse execution

of of
f f(x) Tl B
In machine learning, this is known as
backpropagation or “backprop”

- Automatic differentiation is more than
backprop

- Or, backprop is a specialized reverse mode
automatic differentiation
- We will come back to this shortly

Nature 323, 533-536 (9 October 1986)

Learning representations
by back-propagating errors

David E. Rumelhart*, Geofirey E. Hinton}
& Ronald J. Williams*

* Institute for Cognitive Séience, C-015, University of California,
San Diego, La Jolla, California 92093, USA

t Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weichte af tha cannectinneg in the natwark cn ac tn minimiva o

27

Backprob or automatic
differentiation?

> 1960s

NS e

> > 1980s >

Precursors

Kelley, 1960

Bryson, 1961
Pontryagin et al., 1961
Dreyfus, 1962

Wengert, 1964
Forward mode

Linnainmaa, 1970, 1976
Backpropagation

Dreyfus, 1973
Control parameters

Werbos, 1974
Reverse mode

Speelpenning, 1980
Automatic reverse mode

Werbos, 1982
First NN-specific backprop

Parker, 1985
LeCun, 1985

Rumelhart, Hinton, Williams, 1986
Revived backprop

Griewank, 1989
Revived reverse mode 29

Recommended reading:

Griewank, A., 2012. Who Invented the Reverse Mode of Differentiation?
Documenta Mathematica, Extra Volume ISMP, pp.389-400.

Schmidhuber, J., 2015. Who Invented Backpropagation?
http.//people.idsia.ch/~juergen/who-invented-backpropagation.html

30

Automatic differentiation

Automatic differentiation

All numerical algorithms, when executed, evaluate to compositions of
a finite set of elementary operations with known derivatives
- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

32

Automatic differentiation

All numerical algorithms, when executed, evaluate to compositions of
a finite set of elementary operations with known derivatives
- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(av b) — 1Og(ab>

Vf(a,b)=(1/a,1/b)

33

Automatic differentiation

All numerical algorithms, when executed, evaluate to compositions of
a finite set of elementary operations with known derivatives
- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):
c=ax*hb 3
d = log(c) C

return d ° @ d

34

Automatic differentiation

All numerical algorithms, when executed, evaluate to compositions of
a finite set of elementary operations with known derivatives
- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

rimal
f(a, b): 5 - P
c=a*hb 3 6
return d , ° @ d

1.791 = f(2, 3)

35

Automatic differentiation

All numerical algorithms, when executed, evaluate to compositions of
a finite set of elementary operations with known derivatives
- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):
c=a*hb
d = log(c)
return d

1.791 = (2, 3)
[0.5, ©.333] = (2, 3)

primal

y) e
6
a 1.791
0.5
d

3 0.166 1
b L
9.333 derivative

tangent, adjoint
“gradient” 36

Automatic differentiation

All numerical algorithms, when executed, evaluate to compositions of
a finite set of elementary operations with known derivatives
- Called a trace or a Wengert list (Wengert,1964)
- Alternatively represented as a computational graph showing dependencies

f(a, b):
c=a*hb
d = log(c)
return d

1.791 = (2, 3)
[0.5, ©.333] = (2, 3)

V fla,b) = (1/a,1/b)

primal
2 /
6
. 1.791
0.5
d
3 0.166 1
b —
9.333 derivative N
tangent, adjoint
“gradient” 37

Automatic differentiation

Two main flavors

Forward mode Reverse mode (a.k.a. backprop)
: Primals
Primals
Derivatives < —
Derivatives
Tangents
(Tang) (Adjoints)

Nested combinations

(higher-order derivatives, Hessian-vector products, etc.)
- Forward-on-reverse
- Reverse-on-forward

What happens to control flow?

It disappears: branches are taken, loops are unrolled, functions are inlined, etc.
until we are left with the linear trace of execution

f(a, b):
c=a*hb
if ¢ > 0:
d = log(c)
else:
d = sin(c)
return d

39

What happens to control flow?

It disappears: branches are taken, loops are unrolled, functions are inlined, etc.
until we are left with the linear trace of execution

f(a=2, b=23):

) 2
c=a*b==6 a 6
c 1.791
d = log(c) = 1.791 3 ° @ d
b

return d

40

What happens to control flow?

It disappears: branches are taken, loops are unrolled, functions are inlined, etc.
until we are left with the linear trace of execution

f(a=2, b=-1):)
c=a*b-=-2 a -2
c -90.909
() (i) ——
-1
b

d = sin(c) = -0.909
return d

41

What happens to control flow?

It disappears: branches are taken, loops are unrolled, functions are inlined, etc.
until we are left with the linear trace of execution

f(a=2, b=-1):)
c=a*b-=-2 a -2
c -90.909
() (i) ——
-1
b

d = sin(c) = -0.909
return d A directed acyclic graph (DAG)

N

0->050 O—»O\O—_»Q/—:O o Topological ordering
42

Forward mode
fiR? =R’

f(x1, x2):
vl = x1 * x2

V2
yl
y2

log(x2)
sin(vl)
vl + v2

return (yl1, y2)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

43

Forward mode
fiR? =R’

f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

44

Forward mode
fiR? =R’

f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

45

Forward mode
fiR? =R’

f(x1, x2):

vl
V2
yl
y2

x1l * x2
log(x2)
sin(vl)
vl + v2

return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

46

Forward mode
fiR? =R’

f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

47

Forward mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)

y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

48

Forward mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)

y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

49

Forward mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2

return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

50

Forward mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2

return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

51

Forward mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2

return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

> yl
g\ y2
%)
(9?)2 1 (9562 B

52

Forward mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2

return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

-0.279

53

Forward mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)

y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

P cos(vl)—1

54

Forward mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)

y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

55

Forward mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)

y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (tangents): independent — dependent

@ ~ OJup Oy

85131 B 8x1 i (9331

56

Forward mode
fiR? =R’

In general, forward mode evaluates
a Jacobian-vector product Jf(X)V

So we evaluated:

Oy1 Oyt | Oy1]
Oxry Oz | |1| |9
Oyo Oy | |0 Oy
| Ox1 Oxo | Ox1_

Primals: independent —dependent
Derivatives (tangents): independent — dependent

6
vl
3 -9.279
> yl
2.880
7.098
-y2
3

57

Primals: independent —dependent
FO rwa rd m O d e Derivatives (tangents): independent — dependent
f:R? > R?

In general, forward mode evaluates

3 -0.279
a Jacobian-vector product Jf(x)v oy
So we evaluated: 2.880
Oy Oyt "0y 7.098
oy Oy | |0 oy 3
| Ox1 Oz9 | | Ox1_

Canbeany v € R?
not only unit vectors

58

Forward mode
fiR? =R’

In general, forward mode evaluates
a Jacobian-vector product Jf(X)V

So we evaluated:

Oy1 Oy | Oy |
Oxry Oz | |1| |9
dy2 dy2 | |0)
| Ox1 Oz9 | | Ox1_

Canbeany v € R?
not only unit vectors

Primals: independent —dependent
Derivatives (tangents): independent — dependent

For f : R"™ — R thisis a
directional derivative V f(x) - v

59

Reverse mode
fiR? =R’

f(x1, x2):
vl = x1 * x2

V2
yl
y2

return (yl1, y2)

log(x2)
sin(vl)
vl + v2

Primals: independent —dependent
Derivatives (adjoints): independent <dependent

60

Primals: independent —dependent
Reve rse m O d e Derivatives (adjoints): independent <—dependent

fiR®— R
vl
f(x1, x2):

vl = x1 * x2 "yl
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2 ‘G"\ ‘ ‘

~ log " + —y2
return (yl1, y2) — —/

(2, 3)

61

Primals: independent —dependent
Reve rse m O d e Derivatives (adjoints): independent <—dependent

fiR®— R
f(x1, x2):
vl = x1 * x2 "yl
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2 ‘G"\ ‘ ‘
~ log " + —y2
return (yl1, y2) — —/

(2, 3)

62

Primals: independent —dependent
Reve rse m O d e Derivatives (adjoints): independent <—dependent

fiR®— R
f(x1, x2):
vl = x1 * x2 "yl
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2 ‘G"\ ‘ ‘
~ log " + —y2
return (yl1, y2) — —/

(2, 3)

63

Primals: independent —dependent
Reve rse m O d e Derivatives (adjoints): independent <—dependent

fiR®— R
f(x1, x2):
vl = x1 * x2 "yl
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2 ‘G"\ ‘ ‘
~ log " + —y2
return (yl1, y2) — —/

(2, 3)

64

Primals: independent —dependent
Reve rse m O d e Derivatives (adjoints): independent <—dependent

fiR®— R
f(x1, x2):
vl = x1 * x2 "yl
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2 ‘GA\ ‘ ‘
~ log " + —y2
return (yl1, y2) — —/

(2, 3)

65

Reverse mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2

return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (adjoints): independent <dependent

6
vl
5 -0.279
; . s y1
(o))—— 2

66

Reverse mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)

y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (adjoints): independent <dependent

67

Reverse mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2

return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (adjoints): independent <dependent

-0.279

:yl

1

7.098
(o))—— 2

68

Primals: independent —dependent
Reve rse m O d e Derivatives (adjoints): independent <—dependent

fiR®— R

f(x1, x2): "0.279
vl = x1 * x2 ={1
v2 = log(x2)
yl = sin(vl) 2 998
y2 = vl + v2 ‘GA\ ‘ ‘

~ log " + —y2

return (yl1, y2) ~—/ — 0

(2, 3)

69

Reverse mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)

y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (adjoints): independent <dependent

-0.279
:yl
1
7.098
)
0

70

Reverse mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2

return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (adjoints): independent <dependent

-0.279
:yl
1
7.098
@) 2
5]
0y1 dy1
—— = cos(vl)=—"=
vy (v)8y1

71

Reverse mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)

y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (adjoints): independent <dependent

-0.279
:yl
1
7.098
)
0

72

Reverse mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)

y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (adjoints): independent <dependent

-0.279
> yl
1
7.098
\log) N\, y2
0

73

Reverse mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)

y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (adjoints): independent <dependent

-0.279
> yl
1
7.098
\log) N\, y2
0

74

Primals: independent —dependent
Reve rse m O d e Derivatives (adjoints): independent <—dependent

f:R? = R?

f(x1, x2): -0.279
vl = x1 * x2 ={1
v2 = log(x2)
yl = sin(vl) 2 998
y2 = vl + v2 . - y2
return (yl1, y2) 0

(2, 3)

y1 _ vy _ 9y
85131 85131 avl 23?}1

75

Reverse mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)

y2 = vl + v2
return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (adjoints): independent <dependent

-0.279
> yl
1
7.098
\log) N\, y2
0

76

Reverse mode

f:R? > R?
f(x1, x2):
vl = x1 * x2
v2 = log(x2)
yl = sin(vl)
y2 = vl + v2

return (yl1, y2)

(2, 3)

Primals: independent —dependent
Derivatives (adjoints): independent <dependent

1.920 0

Oyp _ 0vi Onx n Ovg Oy1 oy

6392 B 6—%8’01 6—3926_’02 - wlc’)vl

7

Primals: independent —dependent
Reve rse m O d e Derivatives (adjoints): independent <—dependent

fiR? =R’
6
In general, forwar.d mode evaluates a \@/?96@ 9.279
transposed Jacobian-vector product -yl
J}(X)V 1
So we evaluated: 7.098
- — _ - -y2
Oyp Oy | T dy o
Oxr| 09 1 . 11
Oyr O | |0 oY1
Ox1 Ox9] 019

78

Reve rse m O d e Primals: independent —dependent

Derivatives (adjoints): independent <dependent
2 2
fFRP>R

In general, reverse mode evaluates a
transposed Jacobian-vector product

T
Jf(X)V For f: R"™ — R thisis
So we evaluated: the gradient V f(x)
Oy oy | T Oy]
Or; 0x9 1 |91
Oya 9yo | |0 oY1
| Or1 Oz9 | | 019 |

79

Forward vs reverse summary

In the extreme f: R — R™ In the extreme f : R" - R

use forward mode to evaluate use reverse mode to evaluate
(% %) Vf(x):(ﬁ--- ﬁ)
or’ ' Ox oxi Oxy

80

Forward vs reverse summary

In the extreme f: R — R™ In the extreme f : R" - R

use forward mode to evaluate use reverse mode to evaluate
(% %) Vf(x):(ﬁ--- ﬁ)
or’ ' Ox oxi Oxy

In general f : R"™ — R" the Jacobian Jp(x) € R™*™ can be evaluated in

- O(n time(f)) with forward mode
- O(m time(f)) with reverse mode

Reverse performs better when 1. > m

81

Backprop through
normal PDF

Backprop through normal PDF

2

1 (2—p)2 of) _(u—aé“) of) _(u—fg)
f(a;\,u,a): e_ 202 _ n— e 20 _ r— e 20
V2ono? Ox 2o O 210
0.5
" OO o ;

| //u
o) 2 1T (u—x)z

83

Summary

Summary

This lecture:
- Derivatives in machine learning
- Review of essential concepts (what is a derivative, etc.)
- How do we compute derivatives
- Automatic differentiation

Next lecture:
- Current landscape of tools
- Implementation techniques
- Advanced concepts (higher-order API, checkpointing, etc.)

85

References

Baydin, A.G., Pearlmutter, B.A., Radul, A.A. and Siskind, J.M., 2017. Automatic differentiation in machine learning: a survey.
Journal of Machine Learning Research (JMLR), 18(153), pp.1-153.

Baydin, Atihm Glnes, Barak A. Pearlmutter, and Jeffrey Mark Siskind. 2016. “Tricks from Deep Learning.” In 7th International
Conference on Algorithmic Differentiation, Christ Church Oxford, UK, September 12-15, 2016.

Baydin, Atim Glines, Barak A. Pearlmutter, and Jeffrey Mark Siskind. 2016. “DiffSharp: An AD Library for .NET Languages.” In 7th
International Conference on Algorithmic Differentiation, Christ Church Oxford, UK, September 12-15, 2016.

Baydin, Atilm Giines, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood. 2018. “Online Learning Rate
Adaptation with Hypergradient Descent.” In Sixth International Conference on Learning Representations (ICLR), Vancouver,

Canada, April 30 - May 3, 2018.

Griewank, A. and Walther, A., 2008. Evaluating derivatives: principles and techniques of algorithmic differentiation (Vol. 105).
SIAM.

Nocedal, J. and Wright, S.J., 1999. Numerical Optimization. Springer.

86

Extra slides

Forward mode

Primals: independent [l dependent
Derivatives (tangents): independent [dependent

88

Forward mode

f(a, b):
c=a*hb
d = log(c)

return d

Primals: independent [l dependent
Derivatives (tangents): independent [dependent

89

Forward mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

Primals: independent [l dependent
Derivatives (tangents): independent [dependent

90

Forward mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

Primals: independent [l dependent
Derivatives (tangents): independent [dependent

91

Forward mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

Primals: independent [l dependent
Derivatives (tangents): independent [dependent

92

Forward mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

Primals: independent [l dependent
Derivatives (tangents): independent [dependent

93

Forward mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

Primals: independent [l dependent
Derivatives (tangents): independent [dependent

94

Forward mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

Primals: independent [l dependent
Derivatives (tangents): independent [dependent

()]

(o)

oc
oa

95

Forward mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

Primals: independent [l dependent
Derivatives (tangents): independent [dependent

()]

(o)

Jc _da, O0_,

da Oa | 0

96

Forward mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

()]

Primals: independent [l dependent
Derivatives (tangents): independent [dependent

(o)

od
da

1.791

97

Forward mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

()]

Primals: independent [l dependent
Derivatives (tangents): independent [dependent

(o)

00 _10c
da ¢ Oa

1.791

98

Primals: independent [dependent
FO rwa rd m O d e Derivatives (tangents): independent [dependent

2 6
i c 1.791
OO

3 9.5
b
0

g4 0

In general, forward mode evaluates a Jacobian-vector product Jf(X)V

d
We evaluated the partial derivative 0d \ith x = (a,b),v =(1,0)

oa
99

Reverse mode

f(a, b):
c=a*hb
d = log(c)

return d

Primals: independent [dependent
Derivatives (adjoints): independent [dependent

100

Reverse mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

Primals: independent [dependent
Derivatives (adjoints): independent [dependent

101

Reverse mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

Primals: independent [dependent
Derivatives (adjoints): independent [dependent

102

Primals: independent [dependent
Reve rse m O d e Derivatives (adjoints): independent [| dependent

2
f(a, b): 3
c=a*hb C
d = log(c) * =@ - d
return d z

(2, 3)

103

Primals: independent [dependent
Reve rse m O d e Derivatives (adjoints): independent [| dependent

2
f(a, b): 3
c=a*hb C
d = log(c) * =@ - d
return d z

(2, 3)

104

Primals: independent [dependent
Reve rse m O d e Derivatives (adjoints): independent [| dependent

2
f(a, b): 5 6 1 701
c=a*hb C ’
d=1 (1og) - d
= log(c) * \°¢)
return d z

(2, 3)

105

Primals: independent [dependent
Reve rse m Od e Derivatives (adjoints): independent [| dependent
2
f(a, b): 5 6
C = oa%b c P 1.791
d = log(c) * \lo8) - d
return d 3 1
b
(2, 3)
od
— =1

106

Primals: independent [dependent
Reve rse m O d e Derivatives (adjoints): independent [| dependent

f(a, b): 5 6 1 701
c=a%*hb C ~)
d = log(c) * og) - d
return d 3 1
b
(2, 3)
od

oc

107

Primals: independent [dependent
Reve rse m O d e Derivatives (adjoints): independent [| dependent

2
f(a, b): 3 1 701
c=a%*hb C ~)
d = log(c) * og) - d
return d z 9.166 1
(2, 3)
od 10d

dc ¢ ad

108

Primals: independent [dependent
Reve rse m O d e Derivatives (adjoints): independent [| dependent

2
f(a, b): 5 6
o e) P 1.791
d = log(c) * og) d
return d z 9.166 1
f(2, 3)
od

da

109

Reverse mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

Primals: independent [dependent
Derivatives (adjoints): independent [dependent

2
a

9.5 -

3 0.166

b

00 _0c0d _ od
da Oa Oc Oc

1.791

110

Reverse mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

Primals: independent [dependent
Derivatives (adjoints): independent [dependent

2
a 1.791
9.5 C ~

%k =\lcig/ d
3 0.166 1
b
od

Ob

111

Reverse mode

f(a, b):
c=a*hb
d = log(c)
return d

(2, 3)

Primals: independent [dependent
Derivatives (adjoints): independent [dependent

2
d

C
0.5 - @
3 0.166
b
0.333

od _0cod _ od

ob Ob Oc oc

1.791

112

Primals: independent [dependent
Reve rse m O d e Derivatives (adjoints): independent [| dependent

’ 6
@ 1.791
0.5 ¢
d
3 0.166 1
b
0.333
In general, reverse mode evaluates a transposed Jacobian-vector product J}(x)v
od od
We evaluated the gradient V f(a,b) = (8_’ %) with x = (a,b),v = (1)
a 113

Primals: independent [dependent
Reve rse m O d e Derivatives (adjoints): independent [| dependent

import torch

def f(x):

¢ = x[0] * x[1] 2
1fici>0:
d = torch.log(c) d 1.791
else: 9.5 C ¢
d = torch.sin(c)
return d %k =@ > d
x = torch.tensor([2., 3.], requires grad=True) 3 0.166 1
y = f(x)
y.backward() b
print(y)
print(x.grad) @.333
tensor(1.7918, grad fn=<LogBackward>)
tensor([0.5000, 0.3333])
In general, reverse mode evaluates a transposed Jacobian-vector product J}(x)v

0d 9d\ ith x = (a,b),v = (1)

We evaluated the gradient V f(a,b) = (%, %) "

