
CPSC 340 Assignment 6 (due Dec 2 at 11:55pm)

Instructions

Rubric: {mechanics:5}

IMPORTANT!!! Before proceeding, please carefully read the general homework instructions
at https://www.cs.ubc.ca/~fwood/CS340/homework/. The above 5 points are for following the submission
instructions perfectly.

We use blue to highlight the deliverables that you must answer/do/submit with the assignment.

1 Data Visualization

If you run python main.py -q 1, it will load the animals dataset and create a scatterplot based on two
randomly selected features. We label some points, but because of the binary features the scatterplot shows
us almost nothing about the data. One such scatterplot looks like this:

1.1 PCA for visualization

Rubric: {reasoning:2}

Use scikit-learn’s PCA to reduce this 85-dimensional dataset down to 2 dimensions, and plot the result.
Briefly comment on the results (just say anything that makes sense and indicates that you actually looked
at the plot).

1.2 Data Compression

Rubric: {reasoning:2}

1. How much of the variance is explained by our 2-dimensional representation from the previous question?

2. How many PCs are required to explain 50% of the variance in the data?

1



1.3 Multi-Dimensional Scaling

Rubric: {reasoning:1}

If you run python main.py -q 1.3, the code will load the animals dataset and then apply gradient descent
to minimize the following multi-dimensional scaling (MDS) objective (starting from the PCA solution):

f(Z) =
1

2

n∑
i=1

n∑
j=i+1

(‖zi − zj‖ − ‖xi − xj‖)2. (1)

The result of applying MDS is shown below.

Although this visualization isn’t perfect (with “gorilla” being placed close to the dogs and “otter” being
placed close to two types of bears), this visualization does organize the animals in a mostly-logical way.
Compare the MDS objective for the MDS solution vs. the PCA solution; is it indeed lower for the MDS
solution?

1.4 ISOMAP

Rubric: {code:10}

Euclidean distances between very different animals are unlikely to be particularly meaningful. However,
since related animals tend to share similar traits we might expect the animals to live on a low-dimensional
manifold. This suggests that ISOMAP may give a better visualization. Fill in the class ISOMAP so that
it computes the approximate geodesic distance (shortest path through a graph where the edges are only
between nodes that are k-nearest neighbours) between each pair of points, and then fits a standard MDS
model (1) using gradient descent. Plot the results using 2 and using 3-nearest neighbours.

Note: when we say 2 nearest neighbours, we mean the two closest neigbours excluding the point itself. This
is the opposite convention from what we used in KNN at the start of the course.

The function utils.dijskstra can be used to compute the shortest (weighted) distance between two points in a
weighted graph. This function requires an n×n matrix giving the weights on each edge (use 0 as the weight
for absent edges). Note that ISOMAP uses an undirected graph, while the k-nearest neighbour graph might
be asymmetric. One of the usual heuristics to turn this into a undirected graph is to include an edge i to j if
i is a KNN of j or if j is a KNN of i. (Another possibility is to include an edge only if i and j are mutually
KNNs.)

2



1.5 t-SNE

Rubric: {reasoning:1}

Try running scikit-learn’s t-SNE on this dataset as well. Submit the plot from running t-SNE. Then, briefly
comment on PCA vs. MDS vs. ISOMAP vs. t-SNE for dimensionality reduction on this particular data set.
In your opinion, which method did the best job and why?

Note: There is no single correct answer here! Also, please do not write more than 3 sentences.

1.6 Sensitivity to Initialization

Rubric: {reasoning:2}

For each of the four methods (PCA, MDS, ISOMAP, t-SNE) tried above, which ones give different results
when you re-run the code? Does this match up with what we discussed in lectures, about which methods
are sensitive to initialization and which ones aren’t? Briefly discuss.

2 Neural Networks

NOTE: before starting this question you need to download the MNIST dataset from
http://deeplearning.net/data/mnist/mnist.pkl.gz and place it in your data directory.

2.1 Neural Networks by Hand

Rubric: {reasoning:5}

Suppose that we train a neural network with sigmoid activations and one hidden layer and obtain the
following parameters (assume that we don’t use any bias variables):

W =

[
−2 2 −1
1 −2 0

]
, v =

[
3
1

]
.

Assuming that we are doing regression, for a training example with features xTi =
[
−3 −2 2

]
what are

the values in this network of zi, h(zi), and ŷi?

2.2 SGD for a Neural Network: implementation

Rubric: {code:5}

If you run python main.py -q 2 it will train a one-hidden-layer neural network on the MNIST handwritten
digits data set using the findMin gradient descent code from your previous assignments. After running for
the default number of gradient descent iterations (100), it tends to get a training and test error of around
5% (depending on the random initialization). Modify the code to instead use stochastic gradient descent.
Use a minibatch size of 500 (which is 1% of the training data) and a constant learning rate of α = 0.001.
Report your train/test errors after 10 epochs on the MNIST data.

2.3 SGD for a Neural Network: discussion

Rubric: {reasoning:1}

Compare the stochastic gradient implementation with the gradient descent implementation for this neural
network. Which do you think is better? (There is no single correct answer here!)

3



2.4 Hyperparameter Tuning

Rubric: {reasoning:2}

If you run python main.py -q 2.4 it will train a neural network on the MNIST data using scikit-learn’s
neural network implementation (which, incidentally, was written by a former CPSC 340 TA). Using the
default hyperparameters, the model achieves a training error of zero (or very tiny), and a test error of
around 2%. Try to improve the performance of the neural network by tuning the hyperparemeters. Hand
in a list changes you tried. Write a couple sentences explaining why you think your changes improved (or
didn’t improve) the performance. When appropriate, refer to concepts from the course like overfitting or
optimization.

For a list of hyperparameters and their definitions, see the scikit-learn MLPClassifier documentation:
http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html.
Note: “MLP” stands for Multi-Layer Perceptron, which is another name for artificial neural network.

3 Very-Short Answer Questions

Rubric: {reasoning:12}

1. Is non-negative least squares convex?

2. Name two reasons you might want sparse solutions with a latent-factor model.

3. Is ISOMAP mainly used for supervised or unsupervised learning? Is it parametric or non-parametric?

4. Which is better for recommending moves to a new user, collaborative filtering or content-based filtering?
Briefly justify your answer.

5. Collaborative filtering and PCA both minimizing the squared error when approximating each xij by
〈wj , zi〉; what are two differences between them?

6. Are neural networks mainly used for supervised or unsupervised learning? Are they parametric or
nonparametric?

7. Why might regularization become more important as we add layers to a neural network?

8. With stochastic gradient descent, the loss might go up or down each time the parameters are updated.
However, we don’t actually know which of these cases occurred. Explain why it doesn’t make sense to
check whether the loss went up/down after each update.

9. Consider using a fully-connected neural network for 3-class classification on a problem with d = 10. If
the network has one hidden layer of size k = 100, how many parameters (including biases), does the
network have?

10. The loss for a neural network is typically non-convex. Give one set of hyperparameters for which the
loss is actually convex.

11. What is the “vanishing gradient” problem with neural networks based on sigmoid non-linearities?

12. Convolutional networks seem like a pain... why not just use regular (“fully connected”) neural networks
for image classification?

4


