
CPSC 340 Machine Learning Take-Home Final Exam

(Fall 2020)

Instructions

This is a take home final with two components:

1. an individual component

2. a group component for groups of up to 5. Note that your final and midterm groups will not be allowed
to have any overlap in membership besides you.

You may work on the group components as an individual, but it is to your advantage to team up with others.
There will be no leniency in grading for smaller groups or individual work.

Submission instructions

Typed, LATEX-formatted solutions are due on Gradescope by Wednesday, December 16 at 11:59pm
PST.

• Please use the final.tex file provided as a starting point for your reports.

• Each student must submit question 1 individually as a pdf file named question1.pdf. Include your
CS ID and student ID. Upload your answer on Gradescope under Final Exam Question 1.

• Each group should designate one group member to submit their solution to question 2 to Gradescope us-
ing its group feature (https://www.gradescope.com/help#help-center-item-student-group-members).
Submit a zip file for question 2 under Final Exam Question 2. Include each group member’s CS ID
and student ID.

Question 1 - Individual [60/100 points]

Recall the MNIST data set from assignment 6 which could be downloaded at https://github.com/mnielsen/
neural-networks-and-deep-learning/blob/master/data/mnist.pkl.gz. Go ahead and download this
dataset, since we will be using it for this question.

MNIST contains labelled handwritten digits (i.e. 0 to 9) with 60,000 training examples and 10,000 test
examples. It is a widely used dataset and with known error rates for several machine learning methods
encountered in class. We will be using http://yann.lecun.com/exdb/mnist/ as a reference for test errors.

For this question, you will implement 5 machine learning methods from class and apply them to the MNIST
dataset in order to do supervised classification of digits, with the goal of minimizing the test error. The
approaches to be implemented and employed are one example from each of the following types:

1. k-nearest-neighbours (KNN)

2. linear regression

3. support vector machine (SVM)

1



4. multi-layer perceptron (MLP)

5. convolutional neural network (CNN)

This question will be answered in a report format, provided at the end of the exam LATEXfile
final.tex. You will have to provide test errors achieved using your implementations, calculated as the
percentage of incorrectly labeled test examples (using the default test set provided in the MNIST dataset
partition). As an example, results from http://yann.lecun.com/exdb/mnist/ for each of the above models
(with particular hyper-parameter settings) are shown below:

Model Error (%)

KNN
linear regression

SVM
MLP
CNN

Assignment 6 provides code that will load the MNIST dataset into a training set and a test set (if you
stored the dataset in a separate directory called ./data/). The rest of the code (model, training, and testing
procedures) must be written by you. You are not permitted to use built-in models (e.g. from PyTorch or
scikit-learn), but we encourage you to use code from your assignments. Remember that in past assignments,
you have had to implement all of the models listed except for CNNs.

Bundle your code along with a .pdf generated from the filled in LATEXreport into a .zip file and sub-
mit it to Gradescope. Marks may be taken off for very messy or hard to read code, so make sure to use
descriptive variable names and include comments where appropriate. Since we are also marking based on
test error, you are expected to only evaluate performance on the test set in the partition provided.

Question 2 - Group [40/100 points]

This part of the final is a group project that takes place on Kaggle at https://www.kaggle.com/t/

b1d0feabe2b94cc19c85a5694b606fe9. You can sign up for a new account or re-use the account for your
midterm; Again, note that the Kaggle servers may be in the US, so bear this in mind. We recommend that
for data protection purposes you use a non-identifiable (but ideally hilarious) team name. You will link your
group members to your team name in your submission document.

You are not allowed to use any software that you did not develop yourself. There is one exception to
this: you may use homework support code and code that you wrote yourself for your homework.

Similar to the midterm, your mark for this part of the final will be based on the score from Kaggle for
your test set predictions (see below and the Kaggle competition pages), a written report that explains your
findings, and your code. Your report must LATEXformatted and follow the format given in the answer tem-
plate for Question 2 below.

Imagine you are an intern working at a self-driving car company and you are writing a behavior prediction
algorithm that predicts the trajectory of a car of interest. Your task is to create an ego-centric predictive
model of vehicle motion conditioned on past positions (represented as coordinates (xj,t, yj,t) for a time step
t) of both the ego vehicle and other agents moving about the same intersection. Specifically, given one second
of vehicle position data for the ego vehicle and (up to) the ten nearest agents to the ego at the point in time
where prediction starts, you need to predict the future position of the ego vehicle 3 seconds into the future.

2



Data

This dataset we are providing you contains large amounts of road user trajectories (e.g., vehicles, pedestri-
ans) around an unsignalized intersection in the US (right-of-way for motorists, bicyclists, and pedestrians;
not controlled by a traffic signal). The data we are providing for this task is a small subset of the data from
the Interpret Challenge at http://challenge.interaction-dataset.com/prediction-challenge/intro.

Training/validation data: You will be provided with 2307 + 523 pairs of CSV files (i.e. X 001.csv

and y 001.csv) as your training and validation data respectively, where Xj is a snapshot of up to the ten
nearest vehicles at an intersection over one second in the past, and yj is the trajectory of the ego vehicle over
the next three seconds. Note that each (Xj ,yj) pair is a training/validation example on one ego vehicle, so
it must contain exactly one ego vehicle in each file.

Xj : Each training/validation Xj contains a column corresponding to the time step (the first column) and
60 more columns that contain information regarding up to 10 agents in the intersection. We have included a
table below that mimics the format of each Xj file (in the table i ranges from 0 to 9 and numbers in tuples
are randomly chosen) and instructions on how to read it.

Sorry for this notational clash, but note that (Xj ,yj) are different from the coordinate (xj,t,yj,t).

time step t idi rolei typei xi yi presenti ...

-1000 1 agent car -4.44 0.025 1 ...

... 1 agent car ... ... 1 ...

0 1 agent car 0.0 0.0 1 ...

Table 1: Table of Xj Files

Instructions:

• time step(ms) represents the time the agent appears in the snapshot. There are in total ten time steps
in the past from -1000ms (one second ago) to 0ms (current).

• idi represents the unique ID of the agent starting from 1.

• rolei is used to identify the ego vehicle, if role = agent: ego vehicle ; if role = others: other agents.

• typei represents the types of tracked agents. For example, it can be a car, a pedestrian and so on.

• (xi, yi) represents the (xi,t, yi,t) position of the agent i at the current time step t. Each (xi,t, yi,t) has
been transformed to lie in the ego vehicle’s reference frame at time 0 with forward towards the “engine”
being the positive “y-axis” and towards the passenger door (in a left hand drive vehicle) as positive
“x-axis”. As a result, you will find that (xi,0, yi,0) for the ego vehicle (role = agent) is always (0, 0) at
time 0. You may find Figure 1 below to be helpful in visualizing this coordinate system.

• presenti is a binary value that represents whether an agent is in the intersection at that time step.

3



Note that we pick 9-nearest neighbours as other agents (role = others) around an ego vehicle. If there are
less than 9 neighbours, the extra columns will be filled with 0s.

Figure 1: Coordinate System Description

yj : Each training/validation yj is the trajectory of the ego vehicle over the next three seconds in the same
coordinate system, so it only contains x, y and time step (0ms to 3000ms).

Testing data: The testing data format is exactly the same as the training/validation format, except
you are not given yj , as that is what you need to predict. Specifically, you are given 20 test Xj CSV files,
each of which contains the information of an ego vehicle and its surrounding agents over the past one second,
and your task is to predict the future trajectory of the ego vehicle over the next three seconds. Note that
the final result you hand in shouldn’t be separated yj files, but should be combined into one table according
to the sample submission given on Kaggle.

Finally, there exists a python script to visuzalize the dataset at https://github.com/interaction-dataset/
interaction-dataset, and instructions on how to use it can be found on Kaggle.

Prediction Task

For each testing data X ###.csv, you only need to predict the ego vehicle’s future position over the next
three seconds. You are not required to make predictions for other nearby agents, but you may find it helpful
to do so. You are free to construct any feature set you wish and train as many models as you want in order
to solve this task. Your test accuracy will be measured (and compared) against the actual positions using
Root Mean Square Error (RMSE) as described in the Kaggle competition.

Submitting Your Results

Similar to the midterm Kaggle competition, your final grade for this question depends on multiple things.
Rubrics will grade for test accuracy (i.e. your Kaggle ranking), a description of your pipeline (e.g. data
preprocessing, feature engineering, hyper-parameter tuning, evaluation such as cross validation, ...), report
writing, code readability, and reflections.

Kaggle submission: You will upload your predictions to the Kaggle server. Please refer to the sample
submission file on Kaggle for the correct format.

Gradescope submission: Bundle your code along with a .pdf generated from the filled in LATEXreport

4



skeleton into a .zip file and submit it to Gradescope. Marks may be taken off for very messy or hard to
read code, so make sure to use descriptive variable names and include comments where appropriate. Since
we are also marking based on test error, you are expected to only evaluate performance on the test set in
the partition provided.

5



Skeleton for Question 1 Answer

1 Introduction (3 points)

Three sentences describing the MNIST classification problem.

2 Methods (40 points)

2.1 KNN (8 points)

Three to four sentences describing the particulars of your KNN implementation, highlighting the hyperpa-
rameter value choices you made and why.

2.2 linear regression (8 points)

Three to four sentences describing the particulars of your linear regression implementation, highlighting the
hyperparameter value choices you made and why.

2.3 SVM (8 points)

Three to four sentences describing the particulars of your SVM implementation, highlighting the hyperpa-
rameter value choices you made and why.

2.4 MLP (8 points)

Three to four sentences describing the particulars of your MLP implementation, highlighting the hyperpa-
rameter value choices you made and why.

2.5 CNN (8 points)

Three to four sentences describing the particulars of your CNN implementation, highlighting the hyperpa-
rameter value choices you made and why.

3 Results (10 points)

Model Their Error Your Error (%)

KNN 0.52
linear regression 7.6

SVM 0.56
MLP 0.35
CNN 0.23

4 Discussion (7 points)

Up to half a page describing why you believe your reported test errors are different than those provided (and
“detailed” on the MNIST website).

6



Skeleton for Question 2 Answer

1 Team

Team Members all team member names and csids here
Kaggle Team Name your Kaggle team name here

2 Introduction (3 points)

A few sentences describing the autonomous driving prediction problem.

3 Summary (12 points)

Several paragraphs describing the approach you took to address the problem.

4 Experiments (15 points)

Several paragraphs describing the experiments you ran in the process of developing your Kaggle competition
final entry, including how you went about data prepossessing, feature engineering, model, hyper-parameter
tuning, evaluation, and so forth.

5 Results (5 points)

Team Name Kaggle Score

the name of your team your kaggle score

6 Conclusion (5 points)

Several paragraphs describing what you learned in attempting to solve this problem, what you might have
changed to make the solution more valuable, etc.

7 Code

Include all the code you have written for the autonomous driving prediction problem.

7


