CPSC 213

Introduction to Computer Systems

Unit 2a
1/0 Devices, Interrupts and DMA

Reading

» Text
*8.1,8.2.1,85.1-8.5.3

Looking Beyond the CPU and Memory

Memory Bus

cPU

Memorgj

{The ;
Processors IQ |:_| 1/0 Controllers l
0 O O O O /0 vevices
» Memory Bus » 1/0O Controller
e data/control path connecting CPU, ® a processor running software (firmware)

Main Memory, and I/O Bus
® also called the Front Side Bus

» I/O Bus

e data/control path connecting Memory
Bus and I/O Controllers

e e.g., PCI

e connects I/0 Device to I/0 Bus
¢ e.g. ,SCSI, SATA, Ethernet, ...
» /0O Device

¢ |/O mechanism that generates or
consumes data

® e.g., disk, radio, keyboard, mouse, ...

Talking to an 1/O Controller

read ox1000

addresses

oxo - ox7FfEEE

OXFOO00000 OXF 0000400 -
- oxgoooooff oxgoooo4Lf

» Programmed I/O (PIO)

¢ CPU transfers a word at a time between CPU and I/O controller

e typically use standard load/store instructions, but to 1/0-mapped memory
» 1/0-Mapped Memory

* memory addresses beyond the end of main memory

¢ used to name /O controllers (usually configured at boot time)

e |oads and stores are translated into I/O-bus messages to controller
» Example

¢ to read/write to controller at address 0x80000000

1d $0x80000000, ro

st rl (ro@) # write the value of rl to the device
d (ro), r1 # read a word from device into rl

Limitations of PIO

» Reading or writing large amounts of data slows CPU

¢ requires CPU to transfer one word at a time

e controller/device is much slower than CPU

¢ and so, CPU runs at controller/device speed, mostly waiting for controller
» 10 Controller can not initiate communication

e sometimes the CPU asks for for data

¢ but, sometimes controller receives data for the CPU, without CPU asking
- e.g., mouse click or network packet reception (everything is like this really as we will see)

¢ how does controller notify CPU that it has data the CPU should want?

» One not-so-good idea
e what is it?

e what are drawbacks?

e when is it okay?

Key Observation

The
iProcessors
et

» CPU and I/O Controller are independent processors
¢ they should be permitted to work in parallel
e either should be able to initiate data transfer to/from memory
¢ either should be able to signal the other to get the other’s attention

Autonomous Controller Operation

PI0:
data transfer
CPU <-> Controller
initiated by CPU

Je DMA:
|_| data transfer
Cowntroller <-> Memory

IV\E:ET‘T‘U.PE: initiated by Controller
control transfer

controller -» CPU
» Direct Memory Access (DMA)

e controller can send/read data from/to any main memory address

¢ the CPU is oblivious to these transfers
¢ DMA addresses and sizes are programmed by CPU using PIO

» CPU Interrupts
e controller can signal the CPU
e CPU checks for interrupts on every cycle (its like a really fast, clock-speed poll)
¢ CPU jumps to controller’s Interrupt Service Routine if it is interrupting

Adding Interrupts to Simple CPU

» New special-purpose CPU registers
e isDevicelnterrupting set by I/O Controller to signal interrupt
e interruptControllerlD set by I/O Controller to identify interrupting device
e interruptVectorBase interrupt-handler jump table, initialized a boot time

» Modified fetch-execute cycle

while (true) {
if (isDevicelInterrupting) {
mlr[5]1-4] « r[6];

r5] « r[5]-4;

rie6l - pc;

pc « interruptVectorBase [interruptControllerID];
b
fetch ();
execute ();

b

Sketching Interrupt Control Flow

Current Program

Interrupt Vector
ISR - Controller #0 % O
L~ " l o
iret
ire o

—

1. Controller #0 Interrupts
2. CPU jumps to its ISR
3. ISR returis to program

ISR - Controller #1

iret

ISR - Controller #2

iret

ISR - Controller #3

iret

Programming with I/O

Reading from Disk (a Timeline)

CPU 1/0 Cowtroller

1, PI0 to requesk read
2. P10 Received, start read

wait for read to complete
do other things

3. Read completes
4. Transfer data to memory (DMA)

s, Iv&arrup& CPU
&, Ihkerrup& Received
Call readCompLeke.

First Cut at Disk Read

» Tell disk controller what block to read and where to put data

struct Ctrl {

int op;
charx buf;
int siz;

int blkNo;

+

void scheduleRead (charx aBuf, int aSiz, int aBlkNo) {
// use PIO to instruct disk controller to read
struct Ctrlx ctrl = (struct Ctrilx) 0x80000000;

ctrl->op =1;
ctrl->buf = aBuf;
ctrl->siz = aSiz;
ctrl->blkNo = aBlkNo;

char buf[4096]
scheduleRead (buf, sizeof(buf), 1234);
// do some other things ... LOTS of other things

» Read is finished when disk controller interrupts CPU

interruptVector [DISK_ID] = readComplete;
void readComplete () { .

// content of disk block 1234 is now in buf Who& LS MT'OV\S.?
}

Generalized Disk Read

» Completion Queue
e stores a completion routine (and other info) for all pending operations
® organized as a circular queue: add to head, consume from tail

struct Comp {
void (xhandler) (charx, int);
charx buf;
int siz;

+

struct Comp compQueue[1000];
int compHead = 0;
int compTail = 0;
void asyncRead (charx aBuf, int aSiz, int aBlkNo,
void (xaCompHandler) (charx, int)) {

// store completion record in main memory

compHead = (compHead + 1) % 1000;

compQueue [compHead].handler = aCompHandler;

compQueue [compHead].buf aBuf;

compQueue [compHead].siz = aSiz;

// use PI0 to instruct disk controller to read

scheduleRead (aBuf, aSiz, aBlkNo);

» Your code to request a disk read
e call asynchronous read
e specify your own completion routine

char buf[4096];
void askForBlock (int aBlkNo) {
asyncRead (buf, sizeof(buf), aBlkNo, nowHaveBlock);

void nowHaveBlock (charx aBuf, int aSiz) {
// aBuf now stores the requested disk data
}

» Generalized interrupt service routine
e consumes next completion record, calling specified completion routine
e assumes /O operations complete in order

interruptVector [DISK_ID] = diskInterruptServiceRoutine;

void diskInterruptServiceRoutine () {
struct Comp comp = compQueue[compTaill;
compTail = (compTail + 1) % 1000;
comp.handler (comp.buf, comp.siz);
asm ("iret"); // return from interrupt

Timeline of Asynchronous Disk Read

» Your program schedules the read
¢ call asyncRead, register a completion routine
® enqueue completion routine
e use PIO to tell controller which block to read and where to put the data
» The disk controller performs the read
¢ gets data from disk surface
e uses DMA to transfer data to memory
e interrupts CPU to signal completion
» Interrupt Service Routine
e dequeue next completion routine
¢ call completion routine so that your program can consume data ...
e return from interrupt

What is wrong now?

Synchronous vs Asynchronous

» Consider reading a block and then using its data
¢ read must complete before data can be read (by nowHaveBlock)

» A synchronous approach

read (buf, siz, blkNo); // read siz bytes at blkNo into buf
nowHaveBlock (buf, siz); // now do something with the block

® nowHaveBlock starts only after read completes and block is in memory
® the execution of consecutive statements in a program is synchronized

» An asynchronous approach
asyncRead (buf, siz, blkNo, nowHaveBlock);

¢ asyncRead returns immediately; the next statement executes before nowHaveBlock
¢ the execution of request and response is not synchronized
e when nowHaveBlock runs, it does not have the context of its calling procedure

Sync vs Async a Closer look

» Call graphs
Sym:hrov\ous Asyhchrov\ous
4
i rea read
wau
N main
nowHaverRlock
nowHaveBlock
diske ISR
» Runtime stack when nowHaveBIlock runs
nowHaveBlock nowHaveBlock
main disk ISR

Happy System, Sad Programmer

» Humans like synchrony
e we expect each step of a program to complete before the next one starts
e we use the result of previous steps as input to subsequent steps
e with disks, for example,
- we read from a file in one step and then usually use the data we’ve read in the next step
» Computer systems are asynchronous
¢ the disk controller takes 10-20 milliseconds (10-3s) to read a block

- CPU can execute 60 million instructions while waiting for the disk
- we must allow the CPU to do other work while waiting for I/O completion
* many devices send unsolicited data at unpredictable times
- e.g., incoming network packets, mouse clicks, keyboard-key presses
- we must allow programs to be interrupted many, many times a second to handle these things

» Asynchrony makes programmers sad

¢ it makes programs more difficult to write and much more difficult to debug

Possible Solutions

» Accept the inevitable
e use an event-driven programming model
- event triggering and handling are de-coupled
® a common idiom in many Java programs
- GUI programming follows this model
e CSP is a language boosts this idea to first-class status
- no procedures or procedure calls
- program code is decomposed into a set of sequential/synchronous processes
- processes can fire events, which can cause other processes to run in parallel
- each process has a guard predicate that lists events that will cause it to run
» Invent a new abstraction
e an abstraction that provides programs the illusion of synchrony
¢ but, what happens when

- a program does something asynchronous, like disk read?

- an unanticipated device event occurs?

» What'’s the right solution?
¢ we still don’t know — this is one of the most pressing questions we currently face

