Introduction to Computer Systems

Unit O
Introduction

About the Course

its all on the web page ...
http://www.cs.ubc.ca/~feeley/cs213
Lecture Notes Companion

Piazza

marks
in-class clicker questions (you will need a clicker)
labs
quizzes
midterm
final

work together! but don’t cheat!

never present anyone else’s work as your own

it is your responsibility to provide proper attribution
anything you hand in in this course should follow this rule anything
but, don’t let this stop you from helping each other learn ...

Overview of the course

Hardware context of a single executing program
hardware context is CPU and Main Memory
develop CPU architecture to implement C and Java

differentiate compiler (static) and runtime (dynamic) computation

System context of multiple executing programs with 10
extend context to add IO, concurrency and system software
thread abstraction to hide 10 asynchrony and to express concurrency
synchronization to manage concurrency
virtual memory to provide multi-program, single-system model
hardware protection to encapsulate operating system

message-passing to communicate between processes and machines

GOAL: To develop a model of computation that is
rooted in what really happens when programs execute.

What you will get out of this ...

Become a better programmer by

deepening your understand of how programs execute

learning to build concurrent and distributed programs
Learn to design real systems by

evaluating design trade-offs through examples

distinguish static and dynamic system components and techniques
Impress your friends and family by

telling them what a program really is

What do you know now?

What happens what a program runs

Here’s a program

class SortedList {
static SortedList alist;
int size;
int list[];

void insert (int aValue) {

int 1 = 0;

while (list[i] <= aValue)
i+

for (int j=size-1; j>=i; j—-)
list[j+1] = listl[j];

list[i] = aValue;

size++;

What do you understand about the execution of insert?

Example

*list stores {1,3,5,7,9}
°SortedList.alList.insert(6) is called
Data structures

e draw a diagram of the data structures
* as they exist just before insert is called

;SOFtLI.St CI’ass' w

OO0V NUIWEL |

Lisk

class SortedList {
static SortedList alList;
int size;
int list[];

void insert (int aValue) {

int i = 0;
while (list[i] <= aValue)
i++;

for (int j=size-1; j>=i; j—-)
list[j+1]1 = listl[jl;
list[i] = aValue;
size++;
}
}

assumiing List[] was
initialized ko sktore 10
elements:

= hew Integer[10];

Data structures e e et aLists
int size;
* lets dig a little deeper int Ustll;

void insert (int aValue) {

* which of these existed before program started? int i = 0

while (list[i] <= aValue)

- these are the static features of the program P44
i) for (int j=size-1; j>=i; j—-)
* which were created by execution of program? list[j+1] = list[jl;
list[i] = aValue;
- these are the dynamic features of the program) Size++;
¥

54SortL|'stCI’ass' b
i . Static:

* class and alist variable
(sort of - clearer in C)

a SortedLlst Ob' |
i anamic:

* SortedList object

* size and Llist variables

* value of alist, size and List

* Lisk of 10 integers

SO0V NUIWR |

Execution of insert

how would you describe this execution?

carefully, step by step?

Sequence of Instructions
* program order

* changed by control-flow skructures

end-while:

end-if:

save location of SortedList.alList.insert(6)

goto end-while if list[i]>aValue (1>6)

aValue = 6
i=20

i=0+1 (1)
goto end-while
i=1+1 (2)
goto end-while
i=2+1 (3)

goto end-while
j = size-1 (4)
goto end-if if

if list[i]=aValue
if list[i]>aValue
if list[i]=aValue

j<i (4<3)

list[i+1] = list[i] (list[5]1=9)

j = 5-1 (3)
goto end-if if

j<i (3<3)

list[i+1] = list[i] (list[4]1=7)

j = 4-1 (2)
goto end-if if

j<i (2<3)

list[i] = aValue (list[3] = 6)
size = size+1 (6)
statement after SortedList.alist

(3>6)
(5>6)

(7>6)

.insert(6)

class SortedList {
static SortedList alList;
int size;
int list[];
void insert (int aValue) {
int i = 0;
while (list[i] <= aValue)
i++;
for (int j=size-1; j>=i; j—-)
list[j+1] = list[j];
list[i] = aValue;
size++;

¥
¥

Instruction Types?
* read/write variable
* ariblmetic
* conditional goto

Execution: What you Already Knew

Data structures

e variables have a storage location and a value

* some variables are created before the program starts

* some variables are created by the program while it runs

e variable values can be set before program runs or by the execution

Execution of program statements

* execution is a sequence of steps

® sequence-order can be changed by certain program statements
* each step executes an instruction

* instructions access variables, do arithmetic, or change control flow

10

An Overview of Computation

Phases of Com D ., T

A IENR
Creation

Execution

Compilation

Source Object Dynamic

State

Code Code

» Human creation
* design program and describe it in high-level language
» Compilation
e convert high-level, human description into machine-executable text
» Execution
* a physical machine executes the text
* parameterized by input values that are unknown at compilation
e producing output values that are unknowable at compilation
» Two important initial definitions
* anything that can be determined before execution is called static
* anything that can only be determined during execution is called dynamic

12

Examples of Static vs Dynamic State

Static state in Java

Dynamic state in Java

13

A Simple Machine that can Compute

CPU G
—

Memory

» Memory
e stores programs and data
* everything in memory has a unique name: its memory location (address)
* two operations: read or write value at location X

» CPU

* machine that executes programs to transform memory state
* loads program from memory on demand one step at a time

* each step may also read or write memory

» Not in the Simple Machine
* |/O Devices such as mouse, keyboard, graphics, disk and network
* we will deal with these other things in the second half of the course

14

The Simple Machine Model
A Closer Look

How do we start?

» One thing we need to do is add integers
* you already know how to do this from 121 (hopefully :))

» A 32-bit Adder

* implemented using logic gates implemented by transistors
* it adds bits one at a time, with carry-out, just like in grade 2.

INPUT register INPUT register

OUTPUT register

16

Generalizing the Adder

What other things do we want to do with Integers

What do we do with the value in the output register

17

Register File and ALU

» Arithmetic and Logic Unit (ALU)

* generalizes ADDER to perform many operations on integers
* three inputs: two source operands (valA, valB) and a operation code (opCode)
* output value (valE) = operation-code (operando, operands)
» Register File
* generalizes input and output registers of ADDER
* a single bank of registers that can be used for input or output
* registers named by numbers: two source (srcA, srcB) and one destination (dst)

Register File ALU

srcA valA

dst

18

Reglster File ALU

valA

%)
IS
>

®
@)
w

oecode i

» Functional View
* input for one step: opCode, srcA, srcB, and dst
* a program is a sequence of these steps (and others)

srcA _) Register File

SICB sl and

19

Putting Initial Values into Registers

» Current model is too restrictive

* to add two numbers the numbers must be in registers
* programs must specify values explicitly

» Extend model to include immediates

* an immediate value is a constant specified by a program instruction

» extend model to allow some instructions to specify an immediate (valC)

Register File ALU

0:
1:
2:
3:
4:
5:
6:
7

SrcA VaIAl

dst l vaIE)

20

Reglster File ALU

dst - valE
* « —

» Functional View

* we now have an additional input, the immediate value, valC

21

Memory Access

» Memory is

* an array of bytes, indexed by byte address
» Memory access is

e restricted to a transfer between registers and memory

* the ALU is thus unchanged, it still takes operands from registers

e this is approach taken by Reduced Instruction Set Computers (RISC)
» Extending model to include RISC-like memory access

* opcode selects from set of memory-access and ALU operations

* memory address and value are in registers

=—-E0—
6:— i Memory Eaae om

r—»

22

0:
i
2:
3:
4:
5:
6:
7

» Central Processing Unit or Core (CPU)
* a reqister file
* logic for ALU, memory access and control flow
* a clock to sequence instructions
* memory cache of some active parts of memory (e.g., instructions)

» Memory
* is too big to fit on the CPU chip, so its stored off chip
* much slower than registers or cache (200 x slower than registers)

23

S B i B MO D S B

Iz

» A Program
* sequence of instructions stored in memory
» An Instruction

* does one thing: math, memory-register transfer, or flow control
* specifies a value for each of the functional inputs

A Program

: valC=?, dst=?, srcA=?, srcB=?, opCode=? —»
: valC=?, dst=?, srcA=?, , opCode=? —»
: valC=?, dst=?, srcA=?, srcB=?, opCode=? —»
: valC=?, dst=?, srcA=?, , opCode=? —»

WNEFRLOS

Instruction Set Architecture (ISA)

The ISA is the “interface” to a processor implementation
defines the instructions the processor implements
defines the format of each instruction

Instruction format
is a set of bits (a number)
an opcode and set of operand values

Types of instruction

math
Mmemory access
control transfer (gotos and conditional gotos)

Design alternatives
simplify compiler design (CISC such as Intel Architecture 32)
simplify processor implementation (RISC

Assembly language
symbolic representation of machine code

Example Instruction: ADD

Description
opCode = 61

two source operands in registers: srcA = rA, srcB =B

put destination in register: dst = rB

Assembly language
general form: add rA, rB
e.g.,add ro, ril

Instruction format
16 bit number, divided into 4-bit chunks: 61sd
high-order 8 bits are opCode (61)
next 4 bits are srcA (S)
next 4 bits are srcB/dst (d)

add rA,

rB

0110

0001

ssss|dddd

add ro,

ri

0110

0001

0000

0001

26

Simulating a Processor Implementation

OO0 Simple Machine (SM213) - /Users/feeley/Documents/Work/Courses/213/213 2009W T2/Snippets/S6-if.s

||| Open... | Save I Save As... I Reset Data I Checkpoint Data I I Run l Run Slowly | Halt [Slower l Faster | Step

. Register File Reg Views M y - 100 Instructions - 100
ava S I I I l u a O r Reg Value | AsiInt As Ref Addr 0 1 2 3| B Addr Mac Label Asm Comment
ro: (00000001 1 0x100: 00 00 00 00| o ©x109: ce @00 ld Sa, r@ 0 = &
rl: 00000002 2 0x104: 10 00|10 @0 || o ©x1e6 1ld @xe(re), ré h=a
r2:[FFFFFFFF -1 0x103: 01 |00 @@ @0 || o ©x108: o1-- eecozece 1d Sb, ri rl=&b
" r3: 00000000 (] 0x10c: 20 @010 11|/ 5 ©x1@e: ld exa(rl), ri r1=b
[) edlt/execute assem bly_lang uage ré: 00000000 [} ox110:(60 1267 02|| o @x11@: cerz wov rl, r2 2= b
r5:| 00000000) 0x114:[63 @2][61 @2]| 0 @x112:[67-2 not r2 tempc=!b
r6: 00000000 ") @x118: a2 (02|60 13|| o0 ©@x114:|63-2 inc r2 tempc=-b
. . r7: 02000000 o @x11c: 8001 6@ @3 || o ©x116:|61ez add _r@, r2 temp_c = a-b
P .t f | .t 0x120: (00 00|00 (00 || o @x118:[azez bgt r2, then if (a>b) goto +2
See reg IS er I e, l I Iel I lory, e C. 0x124:/30 | @033 @@ || o ©xlla: ce13 else mov ril, r3 temp_max = b
@x128: fo |00 00 00| o ©@xllc:|s-o1 br end_if goto +1
o o @xlle:|eees then | mov r@, r3 temp_max = a
Current Instruction E g:i;g e (IMench: & l: Sr;axé t;?rﬂ) = &r;\ax
0 HEED s r3, ox max = temp_max
add ro, r2 o 0x128:[re halt
[r(2) <= r(2] + r[0) Memory - 1000)) Data - 1000
Reg Value || Addr [0[1]2]3 ‘ Asint| AsRef Label Comment ‘
PC: 00000118 ‘ 0x1000: 00 00 00 01 il aa
Instruction: 6102 @eeeeeee || Memory - 2000 Data - 2000
Ins Op Code:|6 ‘ Addr 0 1 2 3 ‘ As Int As Ref Label Comment ‘
Ins Op 0:'1 ‘ 0x2000: 00 20 00 02 2 b b
n [InsOp 1: @ \ Memory - 3000 Data - 3000
Ins Op 2: 2 ‘ Addr 0 1 2 3| Asint AsRef Label Comment
Ou WI II I Ip el I Ien Ins Op Imm: @2 ||[[ex3200: (00 00| 00 (00 [} max | max ‘
Ins Op Ext: 00000000 ||=

* the fetch + execute logic
e for every instruction in SM213 ISA

i Tick Cloci §

Febch Instruction from)\A@.m«ucw:jf ‘t Execute it ,

SM213 ISA

» developed as we progress through key language features
» patterned after MIPS ISA, one of the 2 first RISC architectures

27

