
CPSC 213: Assignment 8
Due: Monday, November 14, 2011 at 7am.  

Late assignments are accepted until Thursday, November 17 at 7am with a 20% penalty per day 
(or fraction of a day) past the due date.  This rule is strictly applied and there are no exceptions.

Goal
In this assignment you will gain experience with programming with threads in Java and will 
examine the use and implementation of user-level threads in C.

Notes on FunWithThreads
In the first part of the assignment you do some thread programming in Java.  You are provided 
with a file, “FunWithThreads.java”, that includes a simplified model of a disk with an operation 
called read.  Unlike disk hardware, this read operation is synchronous.  Like disk hardware it 
takes around 10ms (1/100 of a second) to complete a disk read.  During this time the read 
method waits by sleeping (leaving the CPU idle while it waits).

The program is parameterized by command line arguments that are listed at the beginning of the 
class.  If you run the class without arguments (or providing incorrect argument syntax), it prints a 
description of the arguments.  You use these arguments to select from one of three different 
implementations (sequential, threaded, and executor).  The first of these is provided for you.  
Your first goal is to implement the other two.  Note that your implementations must store the 
result of calls to read in the val array like sequential does.

The threaded version should create and start a thread, using Java’s standard Thread interface (as 
described in class), for every read and then join with these threads to record the read result in the 
val array.  And so, for example, this version will create 1000 threads to perform 1000 reads.  

The executor version should use a fixed thread pool with the number of threads in the pool 
specified by the argument “threadCount”, which is set by a command-line argument.  The 
statement that creates the executor is provided.  Also provided is an ArayList to store the future 
values returned by executor submit method.  This collection is provided because you might be 
tempted to create an array to store the future values for each read call, but futures are generics 
and Java does not allow you to create an array of generics.  Collections of generics are fine, 
however.

To test your implementation, use the “-verbose” argument and small number of reads (e.g., “-
count 20”) and examine the output.  The output comes as a list of number pairs.  The first 
number is a sequence number assigned by the disk read when it completes and the second is a 
sequence number you assign when you request the read (it is the argument to the read method).  



The request number should be monotonically increasing, but you may see some small variation 
between the request and completion numbers and even some repeated or out-of-order completed 
sequence numbers; this is okay.  As an aside you might ask yourself why this is happening (we 
will talk about this problem next week).

Once you are certain your two implementations work, your next task is to time compare the 
runtime performance of these three alternatives under various setting of the readCount and 
threadCount parameters.

In UNIX you can time any operation by placing the word “time” before the command on the 
command line.  For example, to time the sequential version you would type:

 time java FunWithThreads -c 1000 -s

For the timing to be valid you must not specify the verbose option and you must perform a large 
number of reads (e.g., at least 1000) and run the command a number of times.  Running times 
will vary depending on what else is running on the system (and some other factors) and so the 
best value to record is the minimum of several executions.  Best results will be achieved running 
this on your laptop since you can control what else is running better there than on a department 
server.

The output of the time command is a little complicated.  It shows you elapsed time and some 
other things (e.g., user and system time etc.) and looks something like this.

 1.704u 1.402s 0:01.82 170.3%! 0+0k 0+0io 12pf+0w

We are only interested in the elapsed time, which is the third number, in this case 1.82 s.

To begin, compare all three implementations performing 1000 reads (i.e., “-count 1000”).  For 
the executor implementation vary the size of the thread pool to find the best value to the nearest 
50 threads or so (e.g., “-e 200” and then “-e 250” etc.).  This does not have to be exact and there 
will be enough variation that an exact answer will be elusive.  

Now, compare only the threaded and executor versions, varying read count (i.e., “-count 1000” 
and then “-count 10000”, etc.) to determine when executors are faster than threads.  Again, vary 
the size of the thread pool to get the best executor performance.  

Notes on UThreads
In the second part of the assignment you will switch to C and the UThread user-level thread 
package we have discussed in class.

The uthreads package runs on Intel x86 machines running Linux, MacOS or Cygwin.  You can 
use the department linux machines by connecting to lin0x.ugrad.cs.ubc.ca. 

To compile on Linux or Cygqin it is necessary to explicitly include the pthread library by adding 
“-lpthread” to the gcc command line.



Requirements
Here are the requirements for this week’s assignment.

1. Implement the “threaded” and “executor” methods of FunWithJava.c as described above.
2. Test your implementation of these two methods.
3. Compare the running time of the sequential, threaded, and executor implementations for a 

readCount of 1000, varying the size of the executor thread pool to optimize its 
performance.  Carefully describe what you observe including saying which 
implementation is fastest/slowest etc., which thread-pool size gave the best results for 
executor, and what you think accounts for the performance differences you saw.

4. Compare the running time of threaded and executor for larger read counts (e.g., increase 
by a factor of 10 each time) to determine when threaded is slower than executor, varying 
the size of the executor thread pool to optimize its performance.  Carefully describe what 
you observe including the readCount (to the nearest 1000-5000 or so) at which executor 
begin to perform better than threaded, the ideal thread pool size for executor for this 
number of reads, and what you think accounts performance differences you saw.  Be sure 
you answer this question as best you can: why does the thread version slow down faster 
than the executor version?

5. Compile the files ping_pong.c and uthread.c.  Run the resulting program
 gcc -c -o uthread.o uthread.c
 gcc -o ping_pong ping_pong.c uthread.o

6. Read uthread.c carefully.  Describe the control-flow path involved in creating and starting 
a new thread by listing the uthread procedures that execute, in order, starting with the 
creation of a thread and ending when the thread’s start procedure begins executing.  

7. Execute the ping_pong program and examine its output.  Carefully explain this output by 
describing the execution of the the ping and pong threads.  Your explanation should be 
detailed and should include a description of control flow paths (i.e., procedure names 
executed) in the uthread package relevant to explain the execution of the these two 
threads.

8. Modify the ping_pong procedure to add a call to uthread_yield in both ping and pong at 
the end (but inside) of the iteration loop (i.e., just after the “j” for loop, but inside of the 
“i” for loop).  Run this modified program, examine its output and compare it to the 
previous output.  Explain what you see by again describing the execution of the two 
threads in a detailed fashion including the relevant uthread-thread control flow.

9. Modify the ping_pong procedure to change the argument to uthread_init() from 1 to 2 to 
change its running environment from a uni-processor to a 2-processor system.  Run 
ping_pong again (you should run it at least 3-5 times; they should be different from each 
other), compare and explain its output as you did in question 4.  Carefully explain what 
this change did and why it produced the output it did.  

10. Implement the problem from Assignment 7 using threads instead of calls to doAsync.  
Change the “Triple” struct to remove the “result” field and now have the add and sub 
routines return the resulting value (they will return this as an opaque pointer (i.e., void*).  



Use uthread_join to get this value, cast it back to its actual type, and to synchronize the 
three phases of the computation (the inner additions, the subtracting, and outer addition)

Material Provided
The files FunWithThreads.java, uthread.h, uthread.c and ping_ping.c are provided in the file 
code.zip.

What to Hand In
Use the handin program.  The assignment directory is a8.

1. A single file called “README.txt” that includes your name, student number, four-digit 
cs-department undergraduate id (e.g., the one that’s something like a0b1), and all written 
material required by the assignment as listed below. 

2. Your modified FunWithThreads.java.
3. Your answers to questions 3 and 4.
4. Your answers to questions 6-9, including samples of ping_pong output for questions 7-9.
5. Your Assignment-7 program implemented with uthreads.


