
Making the Liskov Substitution Principle Happy and Sad

ABSTRACT
The Liskov Substitution Principle states, among other
constraints, that a subtype is not substitutable for its super type
if it strengthens its operations’ preconditions, or weakens its
operations’ postconditions. We found that students in two
subsequent courses had trouble remembering these rules. Their
major stumbling block appeared to be recalling which condition
(pre- or post-) could be strengthened and which could be
weakened. We developed a simple visual reminder to help: A
method is happy if it is substitutable—A smile is wider at the top
than at the bottom, suggesting weaker/looser/wider pre-
conditions, and stronger/tighter/narrower post conditions.; A
method is sad if it isn’t substitutable—a frown is narrower at the
top, suggesting stronger/tighter/narrower preconditions, and
wider at the bottom, suggesting weaker/looser/wider
postconditions. Though the technique is far from perfect, we
found that it allowed students to move on to the more
interesting design questions around the LSP.

CCS CONCEPTS
• Social and Professional Topics → Software Engineering

Education

KEYWORDS
Software engineering education

ACM Reference Format:
Elisa Baniassad 2018, Making the Liskov Substitution Principle Happy
and Sad, In Proceedings of 40th International Conference on Software
Engineering: Software Engineering Education and Training Track (ICSE-
SEET’18). ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3183377.3183380

Figure 1: Happy and sad operations

1 THE LISKOV SUBSTITUTION PRINCIPLE
(LSP)

The Liskov Substitution Principle (LSP) [1] states that a
subclass should not break the expectations set by its
superclass: A Penguin is not substitutable for a Bird if
users of Bird expect it to be able to fly; A Square is not
substitutable for a Rectangle if users expect to be able to
change width and height independently. Encoding this
rule involves two constraints about pre- and
postconditions of operations: a subclass can only be a
substitute for its superclass if its operations’ preconditions
are not strengthened, and its operations’ postconditions
are not weakened.

2 EDUCATIONAL CONTEXT
We teach the LSP in two courses: a second year
introduction to software construction (SC) and its follow-
on third year software engineering course (SE), in classes
with multiple sections of 160 students each. A mix of
students take these courses, but most are computer
science majors. In the SC course we introduce the LSP
generally, and in the SE course we delve into it more
deeply in the context of a broader range of design
principles.

We took a very standard approach to teaching the LSP,
using typical examples (Square versus Rectangle, Circle
versus Ellipse) in both courses. Because of the lapse in
time between taking second year Software Construction
and third year Software Engineering, students reported
little confidence when asked to recall the LSP. Thus, we
found it necessary to repeat most of the LSP content in the
SE course almost identically to its introduction in the SC
course.

Elisa Baniassad  
University of British Columbia

Vancouver, BC
ebani@cs.ubc.ca

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions
fromPermissions@acm.org.
ICSE-SEET'18, May 27-June 3 2018, Gothenburg, Sweden
© 2018 Copyright is held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5660-2/18/05$15.00
https://doi.org/10.1145/3183377.3183392

pre

post

mailto:Permissions@acm.org
https://doi.org/10.1145/3183377.3183392

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden Elisa Baniassad

To adjust for the level of experience of the second year SC
students (still learning about Object-Orientation, and
somewhat new to Java), we chose to associate weakening
and strengthening conditions, with the simpler and more
visualisable concepts of widening and narrowing ranges of
inputs/outputs. We then leveraged that association in
those standard examples: A Penguin accepts a narrower
range of inputs than a Bird, because it would not
implement the fly method; a Square’s setWidth operation
produces a wider range of outputs than a Rectangle’s
because it changes both width and height; if a Doctor’s
bookAppointment operation accepted hours between 9am
and 5pm, then a Specialist subtype of Doctor would be
violating the LSP by implementing its bookAppointment
operation as only permitting hours of 10am to 2pm, hence
narrowing the range of acceptable inputs.

3 OUR ORIGINAL EXPERIENCE TEACHING
THE LSP: STUCK ON WHICH IS WHICH

We noticed that students in both courses were stuck on
recalling which of the conditions should be strengthened
and which should be weakened for substitutability to be
maintained. We called this the which is which question.
Students asked for clarification regularly on the forum,
and even confident students in both courses mixed it up
when answering others. All the students’ responses in
both the SC and SE forums were focused on indicating
which is which, rather than getting at the “expectations of
the type” spirit of the LSP. Examples of narrowing and
broadening ranges were discussed in each forum, but all of
those threads began with establishing which is which.

One student in the second year SC course created her own
visualisation (Figure 2) to help her remember which is

which, and shared it with her classmates on the forum
(they indicated appreciation!) Reassuringly, the student
had correctly mapped narrower to stronger, and wider to
weaker. However, the diagram’s purpose perfectly
illustrates that the student was entirely focused on which
is which — there was no domain insight about what
strengthening and weakening actually implied.

We provided our own complicated visualisation (Figure 3)
for both courses and this did help with leveraging dual-
mode learning, but it was not easy to remember or redraw
from memory, and did not seem to help students with
their recall of which is which. The forum questions for
both courses remained focused on that question, and one
student posted a note complaining of confusion with the
diagram, and asking domain-knowledge questions about
how the visualisation worked.

Upon talking to students and monitoring the forums we
saw that the question of which is which had, for some,
become the implicit learning outcome, as opposed to a
learning mechanism. Advanced students actually used the
implications of the LSP to derive the rule for which is
which: “If you were expecting to make a Doctor’s
appointment at 9am, you wouldn’t want to be told you
couldn’t, right? So the preconditions MUST be wider or
the same!” These more proficient students were able to
follow the circular approach, but because reasoning
backwards required nuanced intuition, prior knowledge,
and design sense, it failed to give novices or struggling
students solid ground upon which to base their recall of
which is which. This line of reasoning was the opposite of
what we wanted when teaching the LSP. The goal for
learning the LSP is to impress on students that you would
not want a subclass to break the expectations of users of

! 2

Figure 2: Student’s diagram prior to us introducing the
happy and sad operations notation

Figure 3: Our original (confusing) visualisation
�

�

Behaviour
super

sub

ca
n

w
ea

ke
n

pr
ec

on
di

tio
n

ca
n

st
re

ng
th

en
po

st
co

nd
iti

on

must at least accept this

must not exceed this

Making the Liskov Substitution Principle Happy and Sad ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

the superclass. Which is which should just be a vehicle for
expressing and underscoring that subtle insight.

4 HAPPY AND SAD OPERATIONS
To get students past the question of which is which we
transformed the rule into a simple notation that was
facilitated by this line of reasoning:

1) An operation is happy if it can be
substituted for its super type’s method
and sad if it cannot.

2) A smile is wider at the top than at the
bottom; a frown is the opposite.

3) Preconditions are at the top of the
smile/frown, postconditions are at the
bottom of the smile/frown.

4) Ergo: Preconditions can be wider
(looser/weaker), postconditions can be
narrower (tighter/stronger).

We also needed to point out that it was fine if there was
no change to either the precondition, postcondition, or
both. The three main combinations were summarised with
the drawing in Figure 1. We could then expand the notion
of happy and sad operations to discuss the substitutability
implications for entire classes, as shown in Figure 4. A
single sad operation makes the entire class sad, and (not
depicted) makes users of the class sad.

The happy/sad memory device was introduced
simultaneously in both courses.

5 WHAT WE NOTICED AFTER
INTRODUCING HAPPY AND SAD

The notation took under 5 minutes to introduce to the
classes, and it did not need to be explained beyond stating
the four points. Students did not ask clarifying questions
about the happy and sad faces in class or on the forum.
While introducing the happy and sad faces in the second
year SC class, one student at the back of the room (of 160
seats) actually said “Aaah!” so loudly that it was audible
up at the front.

After introducing the happy and sad notation, there were
no questions on the second year forum related to LSP
(other than asking if it would be on the exam).

In the third year SE forum we no longer saw confusion or
fixation about the which is which question. The discussions
moved on in style and substance to clarifying the
technical manifestations of strengthening and weakening
(a reduction in a range? Fewer methods implemented?
More or fewer outputs or exceptions thrown?). These
questions were raised without the which is which
clarification as their preamble.

For the first time we saw instances of students
synthesising and relating the LSP to other topics and
contexts. For instance, one student asked whether a
violation of one case of the Interface Segregation Principle
[2] (no client should depend on methods it does not use)
would imply a violation of the LSP (because portions of an
interface might not be sufficiently implemented). Another
student specifically asked if the faces’ meanings changed
if they were placed in the context of classes. Originally
Figure 4 was only illustrated in class while Figure 1 was
also in the PDF of the handouts. We subsequently added
Figure 4 to the PDF of the notes so students who missed
class would be sure to see it. But it was encouraging that
the student was able to ask about how operations’
substitutability would influence a whole class’s
substitutability, suggesting reasoning about the broader
implications of the LSP rather than on which is which.

Figure 5. Example of a Happy/Sad annotated exam

We asked an LSP question on the SE final exam without
including the memory device. The question was answered
mostly correctly, and the happy and sad faces were drawn
by some students in the margins next to the LSP questions
(always accompanying a correct answer). This suggests
that the happy and sad mnemonic was remembered and
applied correctly though it was roughly a month later.

6 WHY SIMPLE VISUALS HELP
Simple visual memory devices are common. Our happy
and sad faces draw inspiration from iconic approaches
such as the Right Hand Rule for remembering the direction
of magnetic force on a moving charge, and the “alligator
mouth eats the bigger number” approach for helping

! 3

Figure 4: Happy and Sad classes

�

TypeSubstitutable UnSubstitutable

pre

post

I am
substitutable!

pre

post

I am NOT
substitutable

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden Elisa Baniassad

children recall which is which in the less than and greater
than symbols.

As educators, we often seek to provide opportunities for
dual-mode representations of subjects: supplying visuals
that underscore the topics we are covering. However,
according to Cook [3] visual representations can be
problematic if prior knowledge is key to their
understandability: understanding the diagram becomes its
own learning task. The need for prior knowledge
probably accounts for why the more complex visuals we
initially introduced weren’t as successful, and didn’t
produce the “Ahh” moment that the happy and sad faces
did. The students were forced to then take a sidebar and
interpret the visualisation, rather than using it to facilitate
a more advanced question, as is evidenced by the forum
question related to the image. Simple visuals, like happy
and sad faces, the direction of fingers on a hand, or an
open alligator mouth, require no prior domain knowledge
to interpret, and so impose little additional cognitive load.

7 HUMOUR HELPS PEOPLE REMEMBER
The happy and sad faces are a little sillier than concepts
we usually see in computing classes, but maybe that is
why they work. The field of humour and learning can tell
us a great deal about how to intersperse distinctiveness, or
absurdities, to great effect in our lectures.

In 1994, [4] Schmidt ran a study looking at whether
humorous sentences were easier to recall than serious
ones conveying the same meaning. He found that they
were! But he also found that people’s concept of humour
mattered: so if something wasn’t funny to them, then they
wouldn’t remember it as well as something that was. The
happy and sad faces are, if not actively “funny”, at least
humorous and somewhat absurd. They are a light touch,
in an otherwise bland or dry subject. This levity might be
a proxy for humour to some extent, and so might explain
why students were quickly able to initially grasp and later
recall the stronger/weaker pairing and then move on to
the implications of that rule.

Puns have been found to be the best form of humour for
recall[5]. The authors hypothesise that its the constrained
nature of the pun that affords better recall, by limiting the
breadth of information that can fit into the punchline.
While the happy and sad faces are not traditional puns,
they do have a very simple punchline that relates back to
the meaning of what they represent: a happy face makes
substitutability happy, a sad face makes substitutability
sad. This is a degree of semantic constraint that may be
similar to that of the pun.

All that said, we don’t want to go overboard by making
everything funny. Study subjects showed worse recall for
sentences in a list where every sentence was absurd, than
for sentences in a list where every sentence made sense.
But in a mixed-list, with some absurd, and some sensible
sentences, the absurd ones were remembered better [6].
The fact that the happy and sad faces were used as a single
absurd/silly message may have helped them stand out as
memorable learning tools.

9 FUTURE DIRECTIONS
This evaluation of the happy and sad face approach was
based on an analysis of forum comments, recollections of
in-class responses, and observation of exam performance
and students’ exam annotations. Evaluation such as this is
limited if we want to be sure we can isolate the effects of,
and derive reproducible positive outcomes from the happy
and sad face memory cue. A controlled study may serve to
solidify evidence for the approach. However, there is
anecdotal evidence that happy and sad faces work: We
have employed the happy/sad technique since the initial
semester captured in this paper, and obtained the same
results—no questions about which is which, and lots of
content-driven discussion about the design implications of
the LSP.

ACKNOWLEDGMENTS
Thanks to Alice Campbell for pedagogical context for cognitive
load related to visualisations, and to Laura Barton for the use of
her Substitutability diagram. Thanks also to the reviewers for
ICSE-SEET, and to the reviewers and participants from SPLASH-
E 2017, who helped workshop an earlier version of this paper.

REFERENCES

s f

[1] B. H. Liskov and J. M. Wing, “A Behavioral Notion of Subtyping,”
ACM Transactions on Programming Languages and Systems, vol.
16 (6), pp. 1811-1841, 1994

[2] Martin, R.C., “The Interface Segregation Principle”, C++ Report,
Aug. 1996.

[3] Cook, M. P. (2006), Visual representations in science education: The
influence of prior knowledge and cognitive load theory on
instructional design principles. Sci. Ed., 90: 1073–1091. doi:10.1002/
sce.20164

[4] Schmidt, Stephen R. Effects of humor on sentence memory. Journal
of Experimental Psychology: Learning, Memory, and Cognition,
V o l 2 0 (4) , J u l 1 9 9 4 , 9 5 3 - 9 6 7 . htt p : / / d x . d o i . o r g /
10.1037/0278-7393.20.4.953

[5] Hannah Summerfelt, Louis Lippman, and Ira E. Hyman Jr. The
Effect of Humor on Memory: Constrained by the Pun. The Journal
of General Psychology Vol. 137 , Iss. 4,2010

[6] McDaniel, Mark A.; DeLosh, Edward L.; Merritt, Paul S. Order
information and retrieval distinctiveness: Recall of common versus
bizarre material. Journal of Experimental Psychology: Learning,
Memory, and Cognition, Vol 26(4), Jul 2000, 1045-1056. http://
dx.doi.org/10.1037/0278-7393.26.4.1045

! 4

