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Abstract 

Research has shown that individual differences can play a role in information 

visualization effectiveness. Unfortunately, results are limited given that there are so 

many individual differences that exist, and information visualizations are commonly 

designed without taking into account these user differences. The aim of this thesis is to 

investigate the impact of a specific set of individual differences (i.e., user 

characteristics) in order to identify which of these user differences have an impact on 

various aspects of information visualization performance. Eye tracking is also employed, 

in order to see if there is an impact of individual differences on user gaze behavior, both 

in general and for specific information visualization elements (i.e., legend, labels). In 

order to gather the necessary data, a user study is conducted, where users are required 

to complete a series of tasks on two common information visualizations: bar graphs and 

radar graphs. For each user, the following set of user characteristics are measured: 

perceptual speed, visual working memory, verbal working memory, and visualization 

expertise. 

Using various statistical models, results indicate that user characteristics do have a 

significant impact on visualization performance in terms of task completion time, 

visualization preference, and visualization ease-of-use. Furthermore, it is also found that 

user characteristics have a significant impact on user gaze behavior, and these 

individual differences can also influence how a user processes specific elements within 

a given information visualization. 
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Preface 

 

The study presented in Chapter 3 was not designed by the author of this Thesis. This 

includes decisions such as: which user characteristics were selected, which information 

visualizations were selected, which tasks to use, the domain of the data set, and other 

study factors such as data distribution and presentation order. 

 

A version of the research reported in Chapter 4 has been published as: Toker, D., 

Conati, C., Carenini, G., Haraty, M. (2012) Towards Adaptive Information Visualization: 

On the Influence of User Characteristics. UMAP2012: 274-285. 

 

A version of the research reported in Chapter 5 has been published as: Toker, D., 

Conati, B., Steichen, Carenini, G. Individual User Characteristics and Information 

Visualization: Connecting the Dots through Eye Tracking. CHI2013: 295-304. 
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Chapter 1 Introduction 

 

Information visualization is a thriving area of research in the study of human/computer 

communication. Some of the benefits of information visualization include: assisting 

users in comprehending huge amounts of data, facilitating the better understanding of 

data, aiding the perception of emerging properties in data, and enabling problems with 

data to become more immediately apparent [Ware 2012]. The benefits of employing 

information visualization are especially important given the ever-growing amount of 

digital information. While visualizations have gained increasingly in terms of general 

usage and usability, they have in the past typically followed a one-size-fits-all model, 

focused on the target data set and associated task model, with little consideration for 

user differences. The primary purpose of this research is to inform the design of user-

adaptive visualization systems which understand that different users have different 

visualization needs and abilities, and which can adapt to these differences during 

interaction. However, before adaptation strategies can be effectively specified, the 

influence of individual differences must be further studied and clarified. The research 

presented in this thesis will investigate the impact that user characteristics have for 

users performing information visualization based tasks. 

User-adaptation is the idea that an interactive system can adapt the interaction based 

on specific individual user needs and differences. User-adaptation has been shown to 

be effective in a variety of applications such as web search, desktop assistance, and e-

learning [Jameson 2008], but it is largely unexplored in information visualization. Even 

so, some initial work has been done that looks at the benefits of user-adaptation by 

recommending alternative visualizations. In one example, Gotz & Wen [2009] tested a 

behaviour-driven visualization recommendation system. Their idea was to monitor a 

user’s interaction data in order to define and detect suboptimal usage patterns, and then 

adapt to these patterns by recommending alternative visualizations to the user. Our 

research aims to inform similar adaptive visualization systems, but differs significantly in 
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two ways. First, we1 believe that user characteristics should be considered as an 

alternative/additional source to inform the design of user adaptive information 

visualization systems. Thus, we will investigate how a set of user characteristics affect 

visualization effectiveness and how this effect is modulated by items such as 

visualization type and task complexity. Individual differences that exist between users 

can include both long term user characteristics such as cognitive abilities or expertise, 

and short term factors such as cognitive load or attention. Studies such as Conati & 

Maclaren [2008] found that the cognitive ability of perceptual speed impacts 

visualization effectiveness in terms of which visualization is more suitable for a given 

user. In another example, Velez et al. [2005] found that a user’s spatial abilities, 

including perceptual speed, were strongly related to visualization comprehension. 

These studies are an indication that it is important to investigate the possibility of user-

adaptive information visualization systems that take into account these individual 

differences. In particular, a first step towards designing adaptive information 

visualization systems that can both detect and respond to individual differences, lies in 

gaining a more fine-grained understanding of the impact that user differences have on 

visualization processing. Thus, we extend previous work in two ways. First, we look at 

more cognitive differences and more performance measures. Second, we explore the 

potential of using gaze data as a source of information to detect individual differences. 

Eye tracking is an informative and sometimes the only available source of real-time 

information on visualization processing given that visual scanning and elaboration are 

both fundamental components of working with a visualization (they are in fact the only 

components for non-interactive visualizations). Additionally, using eye tracking is 

promising because current state of the art eye trackers are becoming less invasive 

given that they no longer require cumbersome head mounted equipment. 

 

                                            
1
 Due to the 'we' being so ubiquitous, it is used in this writing, and from here on in signifies that the 

research presented in this paper is a subset of work involving myself, my supervisor, and fellow 
researchers on the Advanced Tools for User-Adaptive Visualization (ATUAV) research team. 
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1.1 Research Goals and Approach 

Previously, Conati & Maclaren [2008] studied the impact of several user characteristics 

(i.e., Perceptual Speed, Visual Memory, Spatial Visualization, Disembodiment, Need for 

Cognition, and Learning Style) on task accuracy with two different visualizations. Their 

overall finding was that perceptual speed impacted task accuracy and this effect was 

mediated by which visualization the user was shown. Our aim is to both confirm that 

perceptual speed is a user characteristics that does impact visualization interaction, and 

also to gain a more fine-grained understanding of the impact that other potentially 

significant user characteristics have on visualization processing, i.e., visual working 

memory, verbal working memory, visual working memory, and visualization expertise. 

We will carry out this investigation by conducting a user study2 that will examine the 

impact of these user characteristics on user performance with two common 

visualizations: bar graphs and radar graphs. Our research will differ from Conati & 

Maclaren since they only examined the impact of user characteristics on visualization 

performance in terms of task accuracy, whereas our user study we also include task 

completion time (that together with task accuracy constitutes our objective measures of 

performance), as well as visualization preference and visualization ease-of-use (the 

subjective performance measures). Our study is also different since we are using eye 

tracking, which will be utilized to investigate the impact of user characteristics on user 

gaze behavior.  

 

The following are the questions that the research in this thesis addresses: 

 

Q1.     i. Do user characteristics influence (i.e., correlate with) the   

  performance  and preference of users while using bar graphs and  

  radar graphs?  

    ii. If there is an effect of user characteristics, how is this effect   

  influenced by visualization type? 

 

                                            
2
 Also mentioned in the preface, the author of this thesis was not involved in the design of this user study. 
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Q2. Eye Tracking: In order to investigate the impact of user characteristics on 

user gaze behavior, we analyze eye tracking measures collected from the 

user study. 

i. Do individual user characteristics influence (i.e., correlate with) a 

user's eye gaze behavior in a way that is detectable by eye 

tracking? 

ii. If yes, (a) which gaze features are influenced by which particular 

user characteristics? (b) Is the effect modulated by task context  

(e.g., task difficulty  or visualization type)? 

 

1.2 Contributions 

Our research confirms and extends preliminary existing findings that user 

characteristics do make a difference in visualization effectiveness, implying that user 

characteristics should be taken into account when designing user-adaptive information 

visualization systems. We also show that user characteristics have an impact on a 

user's gaze behaviours and that this impact is detectable via eye tracking. This finding is 

important because it provides a better understanding of how user characteristics such 

as perceptual speed can influence the processing of standard visualization components 

like legends and labels. Since components such as legends and labels are found in 

many information visualizations, our findings may generalize to other information 

visualizations beyond just bar and radar graphs. 

The major implication of this research is that it could inform or potentially drive the 

design of user-adaptive visualizations. Since we demonstrate that user characteristics 

do in fact have an impact on user performance and that user characteristics also 

influence eye gaze behavior, then eye tracking could be considered a source, amongst 

others, of real-time information to be leveraged for detecting user characteristics. This in 

turn, would provide useful information about the current user that an adaptive 

information visualization systems could use to generate tailored interventions aimed at 

improving the visualization system for that user. Examples of some possible 

interventions could be to either offer an alternative visualization altogether or to provide 
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support within the current visualization, such as highlighting relevant elements, or s 

adding explanatory material in order to facilitate visualization processing. 

 

1.3 Outline 

The remaining content of this thesis is organized as follows. First, Chapter 2 gives an 

overview of related work on individual differences in information visualization, user-

adaptive information visualization systems, and eye tracking. In Chapter 3 we present 

an overview of the user study that was conducted in terms of the tasks are were 

chosen, the user characteristics that are examined, and the experimental measures that 

were collected from the task interactions.  In Chapter 4, we present the data analysis 

and results on the impact of user characteristics on task performance which is 

separated into the objective performance measures and subjective preference 

measures. Chapter 5 presents the data analysis and results obtained on the impact of 

user characteristics on user gaze behaviour as a result of examining the eye tracking 

data. Chapter 6 briefly describes a follow up analysis of task difficulty on task 

completion time. Finally, Chapter 7 concludes with a summary of the research and 

outlines several directions of future work. 
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Chapter 2 Related Work 

 

Existing work on identifying the factors that define visualization effectiveness has mostly 

focused on properties of the data to be visualized or the tasks to be performed, 

sometimes obtaining inconclusive and conflicting results (see Gotz and Wen [2009] and 

Nowell [2002], for an overview). Extensive work has been done on comparing the 

effectiveness of graphical data in terms of accuracy and speed across different 

visualization types, yet this research has not typically taken into account individual 

differences (see Cleveland [1984] and Simkin [1987]). In the rest of this chapter, we first 

look at studies that have begun to explore the impact of individual differences on 

information visualization. Next, we look at research relating to user-adaptation 

techniques for information visualization. Finally, since we will be using eye tracking for 

our study, we look at research that uses eye tracking in order to detect differences in 

user gaze patterns, as well as various methods employed to analyse this type of data. 

 

2.1 Individual Differences in Information Visualization 

Lewandowsky and Spence [1989] examined the effect of expertise on user performance 

with scatter plots, discovering that high expertise improved accuracy yet decreased 

completion time. This was an early indication that the impact of individual differences 

should be investigated further. Recent work examining the impact of individual 

differences in information visualization include Chen [2000], who found a significant 

impact of associative memory on search performance using spatial interfaces. He 

identified that users with high associative memory had higher performance scores. 

Dillon [2000] argues based on previous studies, that we ought to take into consideration 

user differences such as knowledge, experience, and behavior patterns when designing 

information visualizations in order to reduce a user's disorientation during potentially 

overwhelming scenarios. Velez et al. [2005] explored the link between three spatial 

abilities (spatial orientation, spatial visualization, and disembedding) and two cognitive 

factors (visual memory and perceptual speed) on task comprehension (i.e., accuracy & 

task time) for visualization tasks involving the identification of a 3D object from its 
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orthogonal projections. They found not only a large diversity in the spatial and cognitive 

abilities of their study’s subjects, but also that these abilities are related to visualization 

comprehension. For example, they found that all three spatial abilities positively 

correlated with task accuracy, and the two cognitive traits negatively correlated with 

response selection time. Our research differs from Velez et al. since we will investigate 

a more basic set of tasks using two common information visualizations (bar & radar 

graphs). Furthermore, in addition to investigating the impact of individual differences on 

both accuracy and task time, we extend our study by exploring the impact of individual 

differences on visualization preference, visualization ease-of-use, and user eye gaze 

behavior.  Baldonado et al. [2000], a position paper, outlines 8 rules that should be used 

when designing information visualizations with multiple views. The first rule they define 

is Diversity, arguing that attributes such as user memory, learning abilities, and 

perceptual abilities can positively or negatively impact information visualization utility, 

and therefore should be taken into consideration when designing information 

visualizations. Allen [2000] found that given four different information visualization 

layouts (e.g., multi-window, world-map) of bibliographic references, perceptual speed 

significantly impacted which one was better. Users with low perceptual speed had 

higher recall using a world map interface, whereas users with higher perceptual speed 

had better recall using any of the other layouts. Perceptual speed was also a significant 

trait in the study done by Conati and Maclaren [2008]. They looked at how a set of 

cognitive traits (Visual Memory, Spatial Visualization, Perceptual Speed, 

Disembodiment, Need for Cognition, and Learning Style) influences two different 

information visualizations. These visualizations were designed to represent changes in 

a set variables and consisted of a radar graph and a Multiscale Dimension Visualizer 

(MDV). The MDV is a visualization that primarily uses color hue and intensity to 

represent change direction and magnitude [Williams 2004]. Conati and Maclaren found 

in terms of task accuracy that: (1) a user’s perceptual speed was a significant predictor 

of which of the two visualizations would work better, and (2) that visual memory, 

perceptual speed, need for cognition, spatial visualization, and some learning styles can 

each predict performance for certain individual tasks performed with one specific 

visualization type. The study we describe in this thesis can be seen as an extension of 
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this previous work in at least three fundamental ways. First, in our study we compare 

radar graphs with bar graphs, a much more common visualization than MDV. Thus, our 

findings may potentially have a much stronger impact on adaptive information 

visualization in general. Second, in addition to only measuring user performance in 

terms of task accuracy, we include task completion time plus subjective measures such 

as visualization preference and ease-of-use. Third, we will investigate the impact of user 

characteristics on user gaze behaviour by using eye tracking. 

Recently, there has also been a lot of interest on the impact of personality traits on 

information visualization effectiveness. Ziemkiewicz et al. [2011] found that the 

personality trait locus of control significantly impacted response time of correctly 

answered questions for a set of tasks performed on various tree-structured dataset 

visualizations. They discovered that users with internal locus of control were slower 

when correctly answering questions than users with external locus of control. Green and 

Fisher [2010] also examined personality traits including locus of control, extraversion, 

and neuroticism. Given two information visualization types (Map-view & Graphical-

view), they found that users with internal locus of control completed tasks (both correctly 

and incorrectly) more quickly, whereas users that were neurotic or extraverted 

completed tasks more slowly. Our research does not include personality traits, although 

they could be considered for future studies. 

 

2.2 User Adaptation for Information Visualization 

The benefits of user-adaptive interaction have been shown in a variety of tasks and 

applications such as operation of menu-based interfaces, web search, desktop 

assistance, and human-learning [Jameson 2003]. However, these ideas have had a 

minimal application to data visualization, largely due to the limited understanding of 

which user characteristics are relevant for adaptivity in this domain. Three notable 

exceptions are the work by Gotz and Wen [2009], Grawemeyer [2006], and Brusilovsky 

et al. [2006].  Gotz and Wen [2009] propose a technique to automatically detect a user’s 

suboptimal usage patterns based on activity logs collected from interaction with a multi-

purpose visualization. The visualization is then adapted accordingly by offering 
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alternative visualization types such as bar chart, line graph, or scatter plot. Gotz and 

Wen found that their adaptive system significantly improved task completion time for 

users compared to a non-adaptive version. Our research, on the other hand, will focus 

on informing how to adapt the visualization based on user cognitive measures/abilities 

instead of usage patterns. Grawemeyer [2006] ran a study that required users to 

perform a series of tasks where the user had to choose which visualization they wanted 

to use for each task. Visualization options were bar chart, pie chart, plot chart, sector 

graph, set diagram, and table.  A user-adaptive system was tested that adapts by 

hinting to the user which visualization would be best based on their prior knowledge in 

the given domain, as well as their performance with the visualizations they selected in 

previous tasks. Grawemeyer found that the adaptive system significantly improved 

response accuracy compared to a non-adaptive version where users would choose their 

visualization with no guidance. Lastly, Brusilovsky et al. [2006], tested a system that 

adapts the content of a fixed visualization type, based on the user’s domain knowledge 

and current progress in an educational system. The adaptation highlights which 

information items currently displayed within the visualization are the most relevant for a 

user to explore next. Brusilovsky et al. found that in general users preferred the 

adaptive version of the system, and other performance related measures have yet to be 

tested.  

Our research intends to support adaptation that involves both selecting alternative 

visualizations for different users (similar Gotz and Wen, and Grawemeyer), as well as 

providing adaptive help within a given visualization to best accommodate each user’s 

needs (like in Brusilovsky et al.). 

 

2.3 Eye Tracking 

2.3.1 Eye tracking as low level sensor 

In the field of psychology, the use of eye tracking has long been established as a 

suitable means for analyzing user attention patterns in information processing tasks 

[Keith 1995]. Research in this field has also investigated the impact of individual user 

differences on reading and search tasks [Rayner 1998]. In human-computer interaction 
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and information visualization, recent research has also started to use eye tracking 

technology to investigate trends and differences in user attention patterns and 

cognitive/decision processing. In particular, such research has typically focused on 

either identifying pattern differences for alternative visualizations [Goldberg 2011], task 

types [Simola 2008], and activities within a task [Courtemanche 2011], or on explaining 

differences in user accuracy between alternative visualization interfaces [Plumlee 2006]. 

While such studies provide valuable insights into differences in gaze behaviours for 

different tasks and/or activities, they have traditionally ignored individual differences 

between study participants. To the best of our knowledge, the only research exploring 

the effect of user traits on gaze behavior is work by Tai et al. [2006], Tang et al. [2012], 

and Grindinger et al. [2010]. In all three cases, their work focused on a single, domain-

specific user characteristic (task-domain expertise), showing that domain experts and 

novices display significantly different gaze behaviours. The scope of our work is 

broader, since we investigate a comprehensive array of user characteristics comprising 

of several cognitive abilities and visualization expertise, (i.e., expertise on specific 

information visualizations). All of these user characteristics are domain-independent, 

thus our results are more general across different information visualization tasks.  

2.3.2 Eye tracking data analysis techniques 

Several researchers have looked at how to process raw eye tracking data in order to 

detect attention patterns that distinguish different types of users, e.g. novices vs. 

experts [Grindinger 2010], or to distinguish information goals [Fukuhara and Nakano 

2011], [Muldner 2010]. One possible way to analyze eye tracking data is to apply data 

mining techniques such as Hidden Markov Models [Courtemanche 2011], Scan-Path 

clustering [Goldberg 2010], or explicitly defined unsupervised algorithms [Eivazi and 

Bednarik 2011], [Grindinger 2010]. While data mining methods can quickly identify 

clusters of similar attention patterns during visualization tasks, the results they return 

are often difficult to interpret, since unsupervised algorithms are typically applied as 

black-boxes. By contrast, although traditional human-guided statistical analyses can be 

more time-consuming, its findings tend to be more transparent and easier to interpret. 

Our investigation of eye tracking presents such a human-guided analysis of how gaze 

behavior relates to both user characteristics, and visualization properties. In particular, 
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we use several statistical models in order to provide fine-grained insights on how 

individual user characteristics interact with visualization components and task difficulty, 

and how these effects can impact user gaze patterns. 
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Chapter 3 User Study: Bar Graphs & Radar Graphs 

 

3.1 Overview 

This chapter contains the details and design of the user study that was conducted to 

investigate the impact of individual differences. The overall goal of this work is to A) 

identify what specific user characteristics influence visualization effectiveness, and B) 

explore the relationship of these user characteristics with a user's gaze behavior. As 

case studies, two basic visualization techniques are used: bar graphs and radar graphs. 

Bar graphs were chosen because they are one of the most popular and effective 

visualization techniques. Radar graphs were chosen because they were among the 

simpler of the two visualizations studied in Conati & Maclaren [2008], and though it has 

been argued that bar graphs are superior to radar graphs on common information 

seeking tasks [Few 2005], the reality is that radar graphs are still being discussed and 

used in various applications3. One notable study worth mentioning is the work done by 

Diehl et al. [2010] on uncovering the strengths and weakness of radial visualizations 

(e.g., radar graph, pie chart) versus non-radial visualizations (e.g., bar chart, parallel 

coordinates). Their work mentions that empirical evaluations between radial and non-

radial visualizations are rare, therefore the fact that their study compares the 

effectiveness of one radial visualization versus one non-radial visualization is very 

similar to our study except they do not consider individual user differences. Diehl et al. 

found that overall, the non-radial visualization (i.e., rectangular visualization in a 

Cartesian coordinate system) was significantly better in terms of speed and accuracy for 

a short set of 8 simple tasks. As we will see in our results, we too find that the non-radial 

(i.e., bar graph) visualization is also better than the radial, but only for the simple 

visualization tasks we examine. However, in Diehl et al., they acknowledge that the 

validity of their findings may not generalize to more complex visualizations, and in our 

study we find that there is in fact no longer a significant difference between the two 

visualization types for more complex tasks. 

                                            
3
 A Google search on "Radar Chart" as of January 1, 2013, produced 40,000 unique results that were all 

less than 10 years old. 



13 
 

3.2 Study Design Contribution 

An important point to make clear before diving into the specifics of the study, is that the 

author of this thesis was not directly involved in the design of the study described in this 

chapter (namely which visualizations, tasks, and cognitive traits to use). The reason for 

this is that the author became a member of the ATUAV research group right at the 

moment where the study was being administered. Nevertheless, while the author was 

not able to influence the choice of which information visualizations and tasks to use, as 

well as which cognitive traits to test for, it was still necessary to read and summarize all 

of the relevant research in order to generate the rationale and arguments for why all the 

choices had been made. Furthermore, the contribution of statistical and data analyses 

presented in Chapter 4, and Chapter 5 were not a substantial part of the study design 

(i.e., not clearly defined a priori) and are therefore another significant contribution of the 

author of this thesis. 
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Figure 3.1: Single scenario example for bar graph used in this study. 

 

Figure 3.2: Single scenario example for radar graph used in the study 
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Figure 3.3: Double scenario example for bar graph used in the study 

 

Figure 3.4: Double scenario example for radar graph used in the study 
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3.3 Experimental Tasks  

We constructed a fictional data set of 8 university courses containing student grades. 

One reason for choosing this data set was to avoid any confusion due to 

misunderstanding of the data, we wanted to have a data set that was familiar to most of 

our participants whom were all university students. 

The tasks were based on a set of low-level analysis tasks that Amar et al. [2005] 

identified as largely capturing people’s activities while employing information 

visualization, (see Table 3.1 for a list of the tasks). The tasks were chosen so that each 

of the two target visualizations would be suitable to support them. A first battery of tasks 

involved 5 questions comparing the performance of one student with the class average 

for 8 courses, e.g., "In how many courses is Maria below the class average?" (single 

scenario tasks from now on, since they involve a single student, refer to Figure 3.1 and 

Figure 3.2). A second battery of tasks involved 4 questions comparing the performance 

of two students and the class average in order to increase task complexity, e.g., "Find 

the courses in which Andrea is below the class average and Diana is above it?", (these 

are labelled the double scenario tasks since they pertain to two students, refer to 

Figure 3.3 and Figure 3.4). Participants repeated each of the 5 tasks in the single 

scenario with two different datasets that varied in terms of skewness of the value 

distribution to account for a possible effect of distribution type on visualization 

effectiveness. Specifically, this was meant to compare a spiky distribution against a 

close-to-uniform distribution, where the spiky distribution was created by alternating 

student grades between high and low for some of the courses displayed in adjacent 

positions. No variations on distribution were used for the double scenario tasks in order 

to keep the experiment’s length under one hour, as it is generally recommended for 

studies involving visual attention [Goldberg 2010]. The student names used in the task 

dataset were also changed between each round of tasks in order to prevent knowledge 

transfer. 
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Single Scenario Tasks (involving one student) 

Task Type Sample Question 

Compute Derived 

Value 
In how many courses is [Mary] below the class average? 

Retrieve Value In which course does [Mary] deviate most from the class average? 

Find Extremum In which courses is [Mary] above the class average? 

Retrieve Value Did [Mary] receive a higher mark in [marine biology] or [painting]? 

Sort What are [Mary’s] two strongest courses? 

Double Scenario Tasks (involving two students) 

Task Type Sample Question 

Retrieve Value Which of the two students is stronger in [Calculus]? 

Filter Find the courses in which [Mark] and [Alex] are both above the class average? 

Filter Find the courses in which [Alex] is below the average and [Mark] is above it? 

Compute Derived 

Value 

Which student has performed better than the class average in a greater number of 

courses? 

Table 3.1: Task set explored in the study (from Amar’s taxonomy) 

 

3.4 User Characteristics Considered in the Study 

The individual characteristics investigated in this study include three cognitive abilities: 

perceptual speed, visual working memory, and verbal working memory, as well as two 

measures of user visualization expertise, one for each of the two visualizations prior to 

the study. These user characteristics will be among the independent measures 

considered in the statistical analyses that are conducted in the following chapters. 
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Figure 3.5: Sample questions from the perceptual speed test. For each row, 
participants are required to indicate which item matches the one on the left 

3.4.1 Perceptual speed 

Perceptual speed is a measure of speed when performing simple perceptual tasks (e.g., 

finding figures or making comparison between letters, numbers, objects, pictures, or 

patterns) such that everyone would score perfect if there were no limitation on time 

[Salthouse 2000]. Perceptual was selected because it was part of the original set of 

cognitive measures related to perceptual abilities that were explored by Velez et al. 

[Velez 2005]. Perceptual speed was also the only measure in the set for which [Conati 

2008] found a significant interaction effect with visualization type when comparing the 

effectiveness of radar graphs and Multiscale Dimension Visualizer (MDV). In order to 

measure perceptual speed, we used Identical Figures Test (P-3) [Ekstrom 1976]. P-3 is 

a paper-based test that measures a participant’s speed in matching a figure on the left 

side of each row to one of five possible figures appearing on the right side (see Figure 

3.5). There are two trials, each consisting of 48 rows, and subjects are given 90 

seconds per trial to correctly match as many rows as possible. The final test score is the 

number of correctly answered rows, ranging from 0 to 96.  
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3.4.2 Visual working memory 

Visual working memory is part of the working memory responsible for temporary storage 

and manipulation of visual and spatial information [Logie 1995]. Visual working memory 

was also selected because it part of the original set of cognitive measures related to 

perceptual abilities that were explored by Velez et al. [Velez 2005]. Conati [2008] also 

found a significant result for visual working memory on user accuracy of certain filter 

tasks. Several tests are available for measuring visual working memory, but they each 

measure slightly different constructs (e.g., the ability to remember sequences of visual 

elements or the ability to integrate information from long-term memory). The test most 

appropriate for the nature of the tasks in this study is the one proposed and tested by 

Fukuda & Vogel [Fukuda 2009] which measures the ability to recall the location of basic 

colored squares over short intervals and most closely matched the task structure in our 

study. We were not specifically interested in looking at sequential or long-term visual 

memory since each of our tasks was static and did not require any visual information to 

be remembered from one task to the next. The Fukuda & Vogel test is computer based, 

and consists of 120 trials. In each trial an array of either 4, 6, or 8 different colored 

squares flash on the screen for 500ms. After 200ms, one of the colored squares re-

appears in its original location, and participants must select whether the square has the 

same or a different color than when it was first flashed. The final score for the test 

measures the percentage of correct answers. 

3.4.3 Verbal working memory 

Verbal working memory is part of the working memory responsible for temporary 

maintenance and manipulation of verbal information [Baddely 1986]. Verbal working 

memory was selected because we hypothesized that this cognitive trait may affect 

performance in processing textual components of a visualization, which, in our study 

include legends, labels, and task descriptions. We chose to use the Operation-word 

span test (OSPAN) for verbal working memory to measure this user characteristic. This 

test accounts for both the storage and the processing components of this trait and has 

shown the highest correlation with reading comprehension when compared to other 

tests [Turner 1989]. The test is computer-based, and shows a series of arithmetic 

equations that the participant must classify as True or False. Once a selection is made 
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for a given equation, one word appears on the screen for 800ms and then the next 

arithmetic equation appears. At the end of a series, participants are required to recall 

the words in correct order. This process is repeated several times with each series 

varying in length from 2 to 6 words. The insertion of secondary tasks between memory 

items (here, solving math examples) means that subjects are required to recall 

information that is periodically unattended and vulnerable to proactive interference 

[Kane 2002]. The final test score is a measure of the average word span in working 

memory, ranging from 0 to 6. 

3.4.4 User expertise 

There are numerous examples where domain expertise has been shown to impact both 

accuracy and speed with information visualizations (see Dillon [2000]). However, in our 

study, we choose to assess the impact of expertise with respect to each visualization, 

independent of the task domain. Participants in our study self-reported their expertise in 

using each of the two visualizations prior to the study as follows: for each visualization 

they answered the question: “Had you ever used radar(bar) graphs before this study?”. 

Then, users expressed their agreement with the statement “I am an expert in using 

radar(bar)  graph,” on a Likert-scale from 1 to 5. 

 

3.5 Study Design 

3.5.1 Participants 

Thirty-five subjects (18 were female), ranging in age from 19 to 35, participated in the 

experiment over a period of 3 weeks. Participants were recruited via advertising at the 

university, as is the standard practice. Ten participants were computer science 

students, while the rest came from a variety of backgrounds, including microbiology, 

economics, classical archaeology, and film production. Participants were each given 

$20 cash as compensation for participating in the study. 

3.5.2 Apparatus 

The experiment was conducted on a Pentium 4, 3.2GHz, with 2GB of RAM, and a Tobii 

T120 eye tracker as the main display. Tobii T120 is a remote eye tracker embedded in a 
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17” display, providing unobtrusive eye tracking (see Figure 3.6). The experimental 

software that we used, was fully automated and coded in the Python programming 

language.4 

 

Figure 3.6: The actual Tobii T120 eye tracker used for this study. The circled 
region shows where the eye tracking cameras are located within the computer 

screen housing. 

3.5.3 Procedure 

The experiment was a within-subjects study, designed and pilot-tested to fit in a single 

session lasting at most one hour. Participants began by completing tests for the three 

cognitive measures: first the paper-based perceptual speed test (3 minutes long), then 

the computer-based verbal working memory test (lasting between 7 and 12 minutes), 

and finally the computer-based test for visual working memory (10 minutes long). Next 

was a calibration step for the eye tracker software, then training on each of the two 

visualizations, followed by the main barrage of tasks for the study. Participants were 

trained on each of the two visualizations which lasted about 10 minutes. For training, 

participants were required to correctly identify several components of the bar and radar 

graphs (e.g., 'point to the course names', 'point to where a grade of 0 would be', 'point to 

the class average', etc.), and were then required to answer some sample task questions 

for each visualization. Each participant was offered a chance to re-do the training step if 

                                            
4
 This programming work was done by Nicholas FitzGerald at the Department of Computer Science in the 

LCI laboratory under the ATUAV project. 
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they felt they needed more practice. No participants re-trained on the bar graph and two 

participants requested one extra round of training for the radar graph. As for the main 

portion of the study, each participant performed the 14 tasks described in Section 3.3 

twice, once with each of the two target visualizations, for a total of 28 trials per 

participant. The presentation order with respect to visualization type was fully 

counterbalanced across subjects. Each task consisted of presenting the participant with 

a radar/bar graph displaying the relevant data, along with a textual question (see Figure 

3.1 and Figure 3.2). Participants would then select their answer from a drop-down list or 

set of radio boxes, and click OK to advance to the next task. Before seeing the next 

task, participants were also presented with a screen asking them to rate their 

confidence with their submitted answer on a Likert scale from 1 to 5 (see Figure 3.7). 

Finally, at the end of the study, participants were asked to complete a questionnaire in 

order to ascertain age, gender, background, visualization expertise, etc., (see Appendix 

B - Post Questionnaire). 

 

Figure 3.7: Prompt used to collect user confidence after each task 

3.6 Dependent Measures Collected From Users During Task 

Execution 

Several measures were collected regarding task performance. There were two objective 

measures: completion time and task accuracy, and two subjective measures: bar/radar 

graph ease-of-use, and bar/radar graph user preference. These measures, which are 
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described next, acted as the dependent variables in the statistical analyses that are 

performed and are explained in detail in Chapter 4.  Eye tracking data was also 

recorded for each user, and many features are generated from this data set which will 

be explained in greater detail in Chapter 5.  

3.6.1 Objective measures of user performance 

We considered two objective measures of user performance. First, we measured task 

accuracy, a measure of how well users performed in terms of providing the correct 

answer for each task. Second, we measured completion time: the experimental 

software recorded the total amount of time in milliseconds that participants spent on 

each task.  

3.6.2 Subjective measures of user performance 

There are two subjective measures we collected. First, preference ratings for each of 

the two visualizations were collected in the post-questionnaire via the two statements "I 

prefer to use bar graph for answering the questions" and "I prefer to use radar graph for 

answering the questions", rated on a Likert scale from 1 to 5. Secondly, an assessment 

of overall ease-of-use of each visualization was collected in the post-questionnaire by 

asking participants to rate on a Likert scale from 1 to 5 the two statements: "In general, 

radar graph was easy to understand," and "In general, bar graph was easy to 

understand." The questions were worded in such a way that "easy to understand" was 

chosen over "easy to use" since the visualizations in the study were not interactive, and 

thus it was more natural to express usability in terms of understandability. 

3.6.3 Eye tracking data 

Each user's gaze data was recorded using eye tracking, and a detailed explanation of 

all of the collected measures, as well as the processing and analysis of this data is 

described in Chapter 5. 
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Chapter 4 Impact of Individual Differences on User 

Performance & User Preferences: Analysis & Results 

The goal of this section is to investigate if user characteristics influence the 

effectiveness of two common information visualizations: bar graphs and radar graphs. In 

order to answer these questions, several statistical analyses are performed on the 

following objective measure and subjective measures that were discussed in the 

previous chapter: task completion time, visualization preference, and visualization ease-

of-use.  

First we look at the descriptive statistics of the characteristics collected from the users in 

this study, and then briefly compare the results to other studies. Next we analyse and 

discuss results for task completion, and then do the same for the two subjective 

measures: preference and ease-of-use. Lastly we present a summary of the findings 

and discuss the implications of our results for user-adaptive information visualization 

design. 

 

4.1 Summary of User Characteristics Data 

Table 4.1 (next page) summarizes the descriptive statistics of the user characteristics 

that were measured from the participants in our study. The rather large variances for 

most measures indicate that the study succeeded in collecting a pool of participants that 

was quite diverse. 



25 
 

 

Table 4.1: Summary of user characteristics collected from the study 

The user characteristic measurements we collected were also compared against 

measurements from other studies. For visual working memory, a different study of 117 

university students5 had a mean of 2.51 which is quite comparable to ours (see second 

row in Table 4.1), and this other study had a standard deviation of 0.7, which is not very 

similar to our study. We are not sure why our study would have a considerably higher 

standard deviation for visual working memory. Next, for verbal working memory, a 

different study of 70 university students reported by Lin [2007], had a mean of 4.97 and 

standard deviation of 0.92, which are both fairly comparable to results measured for this 

study. Lastly, for perceptual speed, a different study involving 83 army enlistees 

[Ekstrom 1976] reported a mean score of 68.6 which is considerably lower than the 

mean measured from this study of 85.7. One possibility for this difference arises from 

the fact that the perceptual speed test is paper based, and was designed to be graded 

using a test scoring machine. This type of test typically requires the answer-bubble for 

each question to be  completely shaded in with a pencil. For our study we graded the 

tests by hand since we did not have access to a scoring machine, therefore the study 

participants were informed that a simple checkmark or 'X' would suffice when indicating 

their answer to the test questions. Since the perceptual speed test consisted of 96 

questions, and shading in the answer-bubbles takes a bit more time than just making a 

checkmark, it is possible that these little savings in time made a big difference over the 

course of the whole test and was the cause for our mean score to be higher. Given that 

                                            
5
 This was a study performed at the UBC Department of Psychology, and the values were reported to us 

via email by faculty member James T. Enns. 
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the other study's standard deviation for perceptual speed was 9.8 versus 11.6 for our 

study, this similarity in standard deviations is a good indicator that the range in 

perceptual abilities of both user populations were quite similar, despite the mean being 

skewed to the higher side in our study. 

4.2 Effect on Performance Measures 

Unfortunately there was ceiling effect on accuracy for this experiment, and nearly all 

users received perfect scores on the set of tasks. This may be due to the fact that 

subjects could take as much time as they wanted to generate an answer. Therefore, the 

objective measures analyzed in this chapter will consist solely of task completion time. 

The analysis of completion time has been separated into single scenario tasks and 

double scenario tasks because in the single scenario phase there is an additional 

between-subject control for order of distribution6, and also because the statistical model 

(General Linear Model) used was not able to account for the unequal quantity of tasks 

administered to users between the single and double scenario. The single scenario set 

of tasks comprised of 10 different tasks, repeated once per visualization type, and the 

double scenario comprised of 4 different tasks, repeated once per visualization type. 

Statistical significance is reported at the 0.05 level, as well as partial eta squared (ηp²) 

for effect size, where .01 is a small effect, .09 is a medium effect, and .25 is a large 

effect [Field 2003]. 

4.2.1 Single scenario - model for analysis 

For the single scenario phase, the statistical model we used was a repeated-measures 

2 (visualization type) by 2 (distribution type) by 5 (task) general linear model with 

visualization-type order and distribution-type order as between-subject factors, and the 

user characteristics as the covariates. The sphericity assumption was verified for this 

data set using Mauchly's test. 

                                            
6
 The effectiveness of a particular visualization can depend on the distribution of data visualized. 

Therefore, we considered two different distributions, spiky and uniform, to test the effect of distribution on 
effectiveness of the visualization. For creating a spiky distribution, we alternated student grades between 
high and low values in neighbouring courses. 
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4.2.2 Single scenario results - main effects 

There was a large significant effect of visualization type (bar vs. radar), F(1, 20) = 

8.06, p = .01 ηp²= 0. 29. Completion time was faster with bar graphs (M = 14.25s, SE = 

0.6s),  than with radar graphs  (M = 19.0s, SE = 0.76s). This results supports the 

findings in Diehl et al. [20120] that for simple tasks, bar graphs are better than radar 

graphs in terms of performance since users are always faster with bar graphs and there 

is no loss of accuracy (users were on average 99% correct for all single scenario tasks). 

There was also a large significant main effect of perceptual speed, F(1,20) = 7.61, p = 

.01, ηp²= 0.28, indicating that  the higher the perceptual speed, the faster the completion 

time for both visualizations. The mean completion time for participants with low vs. high 

perceptual speed was 18 and 16 seconds respectively (where high/low is defined based 

on the median split of perceptual speed values). A plot of the perceptual speed scores 

is shown in Figure 4.1. This result confirms previous findings that differences in 

cognitive measures can sufficiently impact general visualization effectiveness and, like 

in [Conati 2008], it singles out perceptual speed as a relevant measure. 

 

Figure 4.1: Scatter plot with trend line showing task completion time and 
perceptual speed scores for each participant in the single scenario tasks. The 

vertical line shows the median split used to report users as high and low 
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4.2.3 Single scenario results - interaction effects 

There was a medium-large significant interaction effect between visualization type and 

perceptual speed, F(1,20) = 4.49, p < .05, ηp²= 0.18. Even though completion time is 

always faster with the bar graph, the difference in time performance between bar and 

radar decreases as a user's perceptual speed increases (See Figure 4.2). This result is 

important because it confirms the finding in [Conati 2008] that perceptual speed is a 

cognitive measure that can sufficiently impact the compared effectiveness of two 

different visualizations, at least when one of them is a radar graph. 

 

 

Figure 4.2: Chart showing the mean completion times for the interaction effect of 
perceptual speed and visualization type, users with low perceptual speed are 

taking even longer for radar graph tasks 
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There was also a large significant interaction effect between visualization type and 

visualization order, F(1,20) = 8.66, p < .01, ηp²= 0.30. Subjects that saw radar graphs 

first, proceeded to perform better with bar graphs than those who saw bar graphs first. 

Conversely, subjects who saw bar graphs first, proceeded to perform better on radar 

graphs than those who saw radar graphs first (see Figure 4.3). Thus, it appears that 

there is a training effect between visualizations, despite the fact that task details are 

changed from the first to the second visualization provided. What is likely happening is 

that  the user is becoming familiar with the general task context/domain (e.g., the fact 

that the user is looking for values of school courses) after seeing it with the first 

visualization provided, which facilitates task performance with the second visualization. 

 

Figure 4.3: Interaction for visualization type and order. Users always perform 
faster on the second visualization they use compared to their counterparts 

No significant findings were found for distribution type, so we do not consider this factor 

in subsequent analyses. There was also a lack of effect for visualization expertise for 

the single scenario tasks which may be due to a training effect. Given that the single 

scenario tasks were fairly simple and each user performed 20 of these tasks, all users 

became relative experts for this set of tasks by the end of the study. 
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4.2.4 Double scenario - significant results 

The double scenario comprised of 4 different tasks, repeated once per visualization 

type. These tasks required the user to answer questions that related to two students 

along with the class average, instead of just one student. For the double scenario, the 

statistical model we used was a repeated-measures 2 (visualization type) by 4 (task) 

general linear model, with visualization order as a between-subject factor, along with the 

user characteristics as covariates. 

The only significant effect found was a medium-sized effect of task, F(2, 50) = 4.32,      

p < .05, ηp²= 0.14. This effect suggests that in this phase there is a larger spread of 

difficulty across tasks as compared to the single scenario phase, resulting in a 

significant impact of the double scenario tasks on completion time.  

The lack of a significant effect and very low effect size of visualization type is 

interesting (p = .465, ηp²= 0.02), because it opens the possibility to challenge claims in 

the literature that bar graphs are generally superior to radar graphs (e.g., [Few 2005], 

[Simkin 1987], [Diehl et al. 2010]). Given the low effect size for visualization type, the 

lack of significant effect may be due to a training effect generated by the participants' 

interactions with the two visualizations in phase one, which managed to eliminate the 

effect of visualization type detected in phase one. An alternative explanation is that 

radar graphs are as good as bar graphs for the types of comparison tasks covered in 

the double scenario phase. While we do not have data to reliably choose between these 

two explanations, the fact remains that this is a scenario in which radar graphs are as 

effective as bar graphs, which presumably is a unique finding.  

4.2.5 Double scenario - marginally significant results 

There were also two marginally significant results worth mentioning here because their 

medium-large effect size.  

First, perceptual speed has a marginally significant main effect, F(1,26) = 3.87, p = .06, 

ηp²= 0.13, which reflects the correlation of this cognitive measure with visualization 

effectiveness, similar to what was detected in the single scenario phase. A plot of the 

perceptual speed scores is shown in Figure 4.4. We also calculated the experimental 

power for this result which was 0.6. This is below the typical recommended value for 
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experimental power of 0.80 [Field & Hole 2003]. An additional 20 participants would be 

required in order increase the experimental power from 0.60 to 0.80, which means we 

would have a 20% better chance of detecting a significant result given the medium-large 

effect size.  

Second, radar expertise has a marginally significant main effect, F(1,26) = 4.01, p = 

.055, ηp²= 0.14. In this case, the experimental power was 0.63, and 16 more participants 

would be required in order to increase the power to 0.80.  Recall that there was no 

effect of expertise in the single scenario, suggesting that for the simpler single scenario 

tasks, the training provided to participants as part of the experimental setup managed to 

remove differences due to existing expertise. For the double scenario tasks, it appears 

that expertise starts having an effect, possibly due to the fact the tasks in the double 

scenario are more difficult. Furthermore, the effect of radar expertise is in relation to 

completion time for both visualization types, which means that radar expertise is linked 

to both radar graph and bar graph performance. 

 

Figure 4.4 Task completion time and perceptual speed scores for double scenario 
tasks with trend line. The vertical line shows the median split used to report users 

as high and low 
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4.3 Effects on User Preference & Ease of Use 

In this section, the data from the study is no longer analyzed per task, but rather with 

respect to the whole interaction for each user. This is because the questions we asked 

in order to assess visualization preference and ease-of-use were given at the end of the 

experiment in the post test (see Appendix B - Post Questionnaire), and apply to the 

overall user experience with radar and bar graph, as opposed to specific tasks.  Figure 

4.5-left shows the distribution of preference ratings for bar and radar graph that were 

collected from the users of this study. The distribution of ratings for the bar graph is 

skewed towards high values, whereas it is more uniformly distributed for the radar 

graph, indicating a higher variance in user preferences for the radar graph visualization. 

Figure 4.5-right shows ease-of-use ratings for bar and radar graph. As was the case for 

preference ratings, more users give their highest rating to the bar graph compared to 

the radar graph with a higher variance for the radar graph ratings. It is worth noting 

however that in Figure 4.5-right, both the radar and bar graph are generally skewed 

towards high values, indicating that neither visualization is particularly difficult to 

understand.  

 

 

Figure 4.5: Likert-scale data collected for graph preference (left), and ease-of-use 
ratings (right) 
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4.3.1 Description of statistical model employed - multivariate (MANCOVA) 

Recall that preference and ease-of-use data was collected using a standard 5 point 

Likert-scale, and as such is not necessarily suitable for standard parametric analysis 

since ordinal data is not invariant to monotone transformations [Kaptein 2010]. 

Therefore, the Aligned Rank Transformation (ART) was applied using the web-based 

ART-Tool [Wobbrock 2011] which transforms the Likert ratings for Radar Preference, 

Bar Preference, Radar Ease-of-Use, and Bar Ease-of-Use into a form that is consistent 

over monotone transformations, which can then be correctly analyzed using standard 

parametric analysis. The statistical model we used was a multivariate analysis, with 

preference and ease of use ratings as the dependent variables, and the user 

characteristics as covariates. 
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4.3.2 Subjective measures results - main effects of cognitive abilities 

We found the following two effects of cognitive abilities on subjective measures: 

 A large significant effect of visual working memory on radar graph preference,  

F(1, 26) = 10.65, p < .01, ηp²= 0.29. In general, users with higher visual working 

memory had higher preference ratings for radar graphs (see Figure 4.6 and Figure 

4.7). Because radar graphs display extra visual clutter due to more intersecting 

colours, shapes, and overlapping lies, our results suggest that users with a higher 

visual working memory capacity prefer a more visually dense or stimulating 

visualization type.  

 

Figure 4.6: Histogram showing the responses for radar graph preference based 
on the median split of visual working memory 

 

 

Figure 4.7: Dot plot showing the visual working memory scores with a vertical 
line indicating the median split 
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 We also found a large significant effect of verbal working memory on bar graph 

ease-of-use,  F(1, 26) = 9.69, p < .01, ηp²= 0.27. In general, users with lower verbal 

working memory had a higher ease-of-use rating for bar graphs (see Figure 4.8 and 

Figure 4.9). It is difficult to interpret the link between verbal working memory and bar 

graph ease-of-use, especially given that users with higher verbal working memory 

are rating bar graphs less easy to use. Generally, we would expect having increased 

cognitive abilities would mean a visualization would be is easier to use. Verbal 

working memory however, is not related to visual processing so it is not surprising 

that it does not facilitate it. Further investigation however is necessary to understand 

why it interferes with user visualization ease-of-use. 

 

Figure 4.8: Histogram showing the responses for bar graph ease-of-use based on 
the median split of verbal working memory 

 

Figure 4.9: Visual working memory scores showing median split 
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These findings relating cognitive abilities to subjective measures are extremely 

interesting for two reasons. First, they are further evidence that user characteristics in 

general can affect a user's experience with visualizations. Second, they indicate that 

different characteristics may influence different factors that contribute to the user’s 

overall experience with a visualization. In the case of our study, perceptual speed 

correlated with actual performance (completion time), whereas visual working memory 

and verbal working memory correlated with non-performance related subjective 

measures such as preference and ease-of-use, respectively. 

4.3.3 Subjective measures results - main effects of expertise 

We also found two significant results relating to user expertise: 

 A very large significant effect of Radar Expertise on both i) Radar preference,     

F(1, 26) = 45.80, p < .001, η²= 0.64,  and  ii) Radar ease-of-use, F(1, 26) = 19.6,      

p < .001, ηp²= 0.43. We found that users with higher radar expertise had a higher 

preference and ease-of-use ratings for radar graphs. 

 We also found a very high significant effect of Bar Expertise on Radar ease-of-use,  

F(1, 26) = 931.86, p < .001, ηp²= 0.97. Users with higher bar expertise had a higher 

rated ease-of-use for radar graphs.  

Whereas it is quite intuitive that visualization expertise should correlates with the degree 

of preference and perceived ease-of-use of that visualization, it is interesting that in our 

study, visualization expertise only correlates with subjective measures, and not actual 

performance. 

 

4.3.4 Visualization preference direct comparison - follow up analysis 

In this subsection, we present a short follow up analysis that was run on visualization 

preference as a direct comparison between the two visualizations. We opted to add this 

section for three reasons: 

 Our survey questions did not include a question that asked users to explicitly 

elicit their preference for bar graph and radar graph as a head-to-head 
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comparison, which could have been useful to verify user preferences between 

the two visualizations. 

 We report results regarding preferences for bar and radar graph independent of 

one another, whereas the concept of having a preference may imply that an 

innate comparison is made between items, especially given the binary nature of 

the number of items to prefer in our study. 

 Direct comparison preference ratings can still be calculated by subtracting the 

preference ratings of one item from the other (in our case, a positive score would 

mean a user prefers bar over radar, a negative score indicates a user prefers 

radar over bar, and a neutral score means the user is indifferent). 

 

We computed direct comparison preference ratings by subtracting the radar graph 

preference from the bar graph preference for each user. We then used the Aligned 

Rank Transformation (see Section 4.3.1), and ran a univariate general linear model with 

the direct comparison preference ratings as the dependent measure, visualization order 

as a fixed factor, and the user characteristics as the covariates. Three significant results 

were found and are reported below in Table 4.2. 

 

User Trait F-Ratio Effect Size Sig. Value 

Verbal Working Memory F(1,27) = 631.93 ηp² = 0.959 p < 0.001 

Bar Graph Expertise F(1,27) = 998.59 ηp² = 0.974 p < 0.001 

Radar Graph Expertise F(1,27) = 430.0 ηp² = 0.941 p < 0.001 

Table 4.2: Results for direct comparison preference ratings between bar graph 
and radar graph 

 

We found that verbal working memory had a significant effect on the compared 

preference, where on average, users with higher verbal working memory had a stronger 

preference for bar graph over radar graph (see Figure 4.10). 
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Figure 4.10: Direct comparison preference ratings for bar and radar graphs based 
on verbal working memory 

 

Next, both bar graph expertise and radar graph expertise had a significant effect on 

compared preference, and in both cases, increased expertise correlated with a increase 

in preference for radar graphs over bar graphs (see Figure 4.11). 

 

 

Figure 4.11: Direct comparison preference ratings for bar and radar graphs based 
on expertise for bar graph (left), and radar graph (right) 
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4.4 Chapter Summary & Discussion 

The results of the analyses conducted in this chapter confirm and extend preliminary 

existing findings that individual user characteristics do have an impact on visualization 

effectiveness. A summary of our findings is shown below in Table 4.3. 

Factor Measure 

Visualization Type  single scenario  -   completion time - (main effect & interaction effect) 

Perceptual Speed 
 single scenario  -   completion time - (main & interaction effect) 

 double scenario -   completion time -  (main effect, p = .06)* 

Verbal Working 

Memory 
subjective measure - bar graph Ease-of-use- (main effect) 

Visual Working 

Memory 
subjective measure - radar graph Preference - (main effect) 

Bar Expertise subjective measure - radar graph Ease-of-use  - (main effect) 

Radar Expertise 

double scenario   -    completion time - (main effect, p = .055)* 

subjective measure - radar graph Preference - (main effect) 

subjective measure - radar graph Ease-of-use  - (main effect) 

Table 4.3: Summary of statistically significant results from this chapter, *indicates 
marginally significant 

4.4.1 Implications of findings 

For the specific comparison between bar graphs and radar graphs, it was discovered 

that while bar graphs are more effective than radar graphs in terms of completion time 

on simple information seeking tasks (i.e., single scenario tasks), the difference in 

performance with radar graphs is mediated by perceptual speed, decreasing for users 

with high perceptual speed. Yet, the two visualizations seem to be equivalent on more 

complex tasks (double scenario tasks). It is an open question to verify which of the two 

visualizations would be more effective on a set of tasks more complex than the ones 

considered in this study. As for impact of user characteristics on visualization 

effectiveness, in addition to the abovementioned interaction between perceptual speed 

and visualization type, there were also effects of other user characteristics such as 
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expertise, and visual/verbal working memory on the subjective measures of 

visualization preference and ease-or-use.  

We envision two possible forms of adaptation based on the results in this chapter. The 

first is an adaptive system that would select between different visualizations for different 

users based on their user characteristics (i.e., which visualization is best for a given 

user). The second form of adaptation would be to provide some users with additional 

support by also offering interventions within a given visualization. To illustrate, assume 

that an adaptive system has a model of the current user that specifies values for their 

characteristics. If the target visualization is intended to support simple, single-scenario-

like tasks, bar charts should be the default choice. However, if the user is low on 

perceptual speed, they may benefit from adaptive interventions, such as highlighting or 

arrow pointing to portions of the visualization relevant to the task. In contrast, if the 

visualization is intended to support more complex, double-scenario-like tasks, the 

adaptation may consist of selecting a different visualization for different user groups. For 

instance, users with high visual working memory or high radar graph expertise would 

likely prefer a radar graph, while users with none of these features would be more 

effective with bar graph. 
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Chapter 5 Eye Tracking: Impact of User 

Characteristics on Gaze  Patterns 

 

The goal of the analysis described in this chapter is twofold. First, we want to see if user 

characteristics influence a user's eye gaze behavior in a way that is detectable by eye 

tracking. Second, if there is an effect of user characteristics, which characteristics 

impact which eye gaze features, and how are these effects mediated by task difficulty 

and visualization type? The rest of this chapter will describe how we utilized the eye 

tracking measures collected from the study we ran (see Chapter 3) in order to address 

our goals for this chapter. First, eye tracking is defined and explained in terms of the 

eye gaze data we collected, and also how we pre-processed this data and defined 

areas of interest. Next, we define a novel way to define and assess task difficulty, which 

will be included as a model parameter for the statistical analyses executed in this 

chapter. We then provide a description of the statistical models used for analysis, 

followed by the experimental results. Finally, we end the chapter with a summary and 

discussion of our findings. 

 

5.1 Eye tracking Data & Pre-processing 

An eye tracker captures gaze information in terms of fixations (i.e., maintaining gaze at 

one point on the screen) and saccades (i.e., a quick movement of gaze from one 

fixation point to another), which can then be analyzed to derive a viewer’s attention 

patterns. For this analysis, several eye tracking measures are used that belong to the 

set of basic eye tracking features described by Goldberg and Helfman [2010] as the 

building blocks for comprehensive gaze processing. These features are built by 

calculating a variety of statistics upon the basic eye tracking measures that are 

described in Table 5.1. 
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Measure  Description 

Fixation rate Rate of eye fixations per milliseconds 

Number  of Fixations Number of eye fixations detected during an interval of interest 

Fixation Duration Time duration of an individual fixation 

Saccade Length Distance between two fixations delimiting a saccade (d in Figure 5.1) 

Relative Saccade Angles The angle between the two consecutive saccades (angle y in Figure 5.1) 

Absolute Saccade Angles The angle between a saccade and the horizontal  (angle x in Figure 5.1) 

Table 5.1: Description of basic eye tracking measures 

 

Figure 5.1: Saccade based eye measures 

Among the measures described in Table 5.1, fixation rate, number of fixations, and 

fixation duration are widely used. In addition, saccade length, relative saccade angle, 

and absolute saccade angle are included, as suggested by Goldberg and Helfman 

[2010] because these measures are useful to summarize trends in user attention 

patterns within a specific interaction window (e.g., if the user’s gaze seems to follow a 

planned sequence as opposed to being scattered). In order to extract individual eye 

tracking features, the raw gaze data from the Tobii eye tracker was processed using 

customized Python scripts7.  

5.1.1 Complete set of eye tracking features computed 

The total set of gaze features used for this analysis was obtained by computing 

statistics such as sum, average, and standard deviation over the measures shown in 

Table 5.1, at two levels of granularity. At the Task Level, features are computed over 

each task as a whole (see Table 5.2). At the AOI level, features are computed based on 

gaze activity within a specific region of the screen, or Area Of Interest (see Table 5.3). 

Included at the AOI level are transitions between pairs of defined AOIs (five in this 

                                            
7
 This programming work was done by Nicholas FitzGerald at the Department of Computer Science in the 

LCI laboratory under the ATUAV project. 
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analysis, described in the next sub-section). In order to keep the analysis at a 

reasonable number of features at the AOI level, only proportionate features were 

calculated and did not include features related to path angles (note that each added AOI 

feature actually increases the total number of AOI features by a factor of 5 since there 

are 5 AOIs). In total, there were 49 different features computed for this analysis (14 

Task-level and 35 AOI-level). 

Task level measures 

Overall Fixation rate 

Total Number of Fixations 

Sum, Mean, and Std. Dev. of  Fixation Durations 

Sum, Mean, and Std. Dev. of  Saccade Length 

Sum, Mean, and Std. Dev. of  Relative Saccade Angles 

Sum, Mean, and Std. Dev. of  Absolute Saccade Angles 

Table 5.2: Task level eye tracking features generated for analysis 

AOI level measures 

Proportion of Fixation Durations 

Proportion Total Number of Fixations 

Number of Transitions from High AOI to each other AOI (5 separate measures) 

Number of Transitions from Low AOI to each other AOI (5 separate measures) 

Number of Transitions from Labels AOI to each other AOI (5 separate measures) 

Number of Transitions from Question AOI to each other AOI (5 separate measures) 

Number of Transitions from Legend AOI to each other AOI (5 separate measures) 

Table 5.3: AOI level eye tracking features generated for analysis 

5.1.2 Areas of interest (AOI) 

A total of five AOIs were defined for each of the two visualizations. These regions were 

selected in order to capture the distinctive and typical components of these two 

information visualizations. Figure 5.2 and Figure 5.3 show how these AOIs map onto 

the bar graph and radar graph visualizations. The selection of these five AOIs is the 

result of a trade-off between having detailed information on user attention by measuring 

very specific areas that are salient for task execution, versus keeping the number of 

AOIs manageable for data interpretation and analysis. For example, initially the High 

and Low AOIs (described next), each consisted of 8 separate regions (i.e., one for each 

course), which resulted in 16 more AOI's instead of just 2. We did this because for 

transition analysis, which looks at how often a user transitioned from a given AOI to any 
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other AOI, we wanted to have very detailed transition features, but unfortunately the 

number of transitions to be included grows n-squared for each AOI we add. Therefore 

we opted to include fewer AOIs while still maintaining a granularity that captured 

distinctive and meaningful areas of an information visualization. The following is a 

description each of the five AOIs we chose to include: 

 

Figure 5.2: The five AOI regions defined over bar graph 

 High Area: covers the upper half of the data elements of each visualization. This 

area is the graphical portion of the information visualization that contains the 

relevant data values. On the bar graph, it corresponds to a rectangle over the top 

half of the vertical bars (region between 50 and 100, see Figure 5.2). For the 

radar graph, it corresponds to the combined area of the 8 trapezoidal regions 

covering the data lines between 50 and 100 (see Figure 5.3). 

 Low Area: is the graphical portion of the information visualization that contains 

the least useful data values. For our analysis, it covers the lower half of the data 

elements for each visualization (area between 0 and 50). 
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 Labels Area: covers all the data labels in each graph. For the bar graph, this AOI 

corresponds to the rectangle covering the labels just below the graph (see Figure 

5.2). For the radar graph, it corresponds to the combined areas of the individual 

rectangles each covering a different label around the outside of the graph circle 

(see Figure 5.3). 

 Question Text Area: covers the question text describing the task to be 

performed. 

 Legend Area: covers the legend showing the mapping between each student 

and the color of the visualization elements that represent that student’s 

performance in the visualization. 

 

Figure 5.3: Five AOI regions defined over radar graph 
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5.1.3 Eye tracking feature reduction: principal component analysis 

To account for possible correlations among eye tracking features, three principal 

component analyses (PCA) are performed on the set of 49 gaze features. A principal 

component analysis is a form of dimensional reduction that allows one to reduce a 

number of variables into potentially fewer components. This is useful because it allows 

one to both identify and combine groups of inter-related variables in order to identify 

their relationship with one-another, and to simplify the data by reducing the number of 

overall variables [Field 2009]. The 49 gaze features are grouped into three non-

overlapping families according to how the measures are intuitively related, namely (i) 

task-level features (e.g., fixation-rate), (ii) AOI transitions (e.g., number of transitions 

from one AOI to another), and (iii) AOI proportionate features (e.g., proportion of 

fixation durations in a given AOI).  One principal component analysis was performed for 

each of these three families and the resulting components will allows us to discuss any 

subsequent findings in terms of high-level related gaze components rather than many 

low-level features. 
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5.1.4 Task level family PCA 

The task level family consisted of 14 gaze features. Five components were generated8 

using PCA (𝑥2 = 15434.49,   df = 91, p < .001),  explaining 86.69% of the variance. 

Table 5.4 shows the breakdown of the original 14 features into the five components. 

The table also shows the coefficient values for each measure which gives some insight 

into the weighting of each measure within its respective component. Note that, for most 

components, it is quite easy to identify intuitive commonalities among its features, as 

reflected in the components’ names (e.g., all features of component 1 are based on 

sums, all features in component 2 relate to fixation measures, etc.). The same is true for 

the components resulting from PCA on the other two families of features. 

Measure Coefficient Component Name 

num_fixations .995 1 

Su
m

 M
easu

res 

sumrelpathangles .986 1 

sumabspathangles .985 1 
sumpathdistance .944 1 
sumfixationduration .929 1 
meanfixationduration .975 2 

Fixatio
n

 
R

ate
 

fixation_rate ** -.914 2 
stddevfixationduration .900 2 
meanpathdistance .919 3 

P
ath

 
D

ist. stddevpathdistance .919 3 
meanrelpathangles .790 4 

Std
.D

ev. 

P
ath

 
A

n
gles 

stddevrelpathangles .704 4 
stddevabspathangles .695 4 

meanabspathangles .941 5 

M
ean

A
b

s. 
P

ath
 

Table 5.4: Generated components for the task-level family. **fixation-rate is the 
only measure that inversely correlates with the other members of its component 

 

                                            
8
 The number of components generated is either determined by using the Catell scree test, or if this test 

results in an ambiguous scree plot, then Kaiser's criterion is checked to select only components with 
eigenvalues greater than 1 [Field 2009]. 
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5.1.5 AOI transitions family PCA 

The AOI transitions family consisted of 25 features and the PCA generated four 

components (see Table 5.5), (x² = 8506.86, df = 45, p < .001), which explained 45.24% 

of the variance. The PCA proved to be especially useful for reducing the many AOI 

transition features down to a small set of meaningful components, each including 

features mostly related to a specific AOI. 

 Measure Coefficient Component Name 
legend_to_legend .781 1 

L
e

g
e

n
d

 T
ra

n
s
itio

n
s
 

legend_to_high .768 1 
high_to_legend .763 1 
text_to_legend .690 1 
legend_to_text .608 1 
legend_to_low .606 1 
text_to_text .595 1 
low_to_legend .467 1 
legend_to_labels .434 1 
labels_to_legend .406 1 
high_to_low .813 2 L

o
w

 T
ra

n
s
. 

low_to_high .805 2 
text_to_low .536 2 
low_to_low .460 2 
low_to_text .421 2 
labels_to_labels .716 3 

L
a

b
e

l T
ra

n
s
. 

labels_to_low .697 3 
low_to_labels .635 3 
text_to_labels .590 3 
labels_to_text .446 3 

high_to_labels .776 4 

H
ig

h
 T

ra
n

s
. 

labels_to_high .737 4 
high_to_text .462 4 
high_to_high .409 4 

Table 5.5: Components generated for the AOI transitions family 
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5.1.6 AOI proportionate family PCA 

The AOI proportionate family consisted of 10 gaze features. Five components (see 

Table 5.6) were produced from the PCA (x²= 5706.32, df = 300, p < .001) and explained 

97.13% of the variance. The components generated indicate that both the amount of 

time and the number of fixations in each AOI is correlated, and as such the features 

have been grouped accordingly into 5 pairs, one for each AOI. 

Measure Coefficient Component Name 
low_prop_num_fix .981 1 Low 

Prop low_prop_time .980 1 
labels_prop_num_fix .976 2 Label 

Prop labels_prop_time .972 2 
legend_prop_num_fix .973 3 Legend 

Prop legend_prop_time .968 3 
text_prop_time .975 4 Text 

Prop text_prop_num_fix .975 4 
high_prop_num_fix .953 5 High 

Prop high_prop_time .945 5 

Table 5.6: Generated components for AOI proportionate measures 
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5.2 Task Difficulty 

We are also interested in looking at effects that task difficulty has when user 

characteristics are taken into consideration. Defining tasks as being easy or difficult a 

priori is challenging, since difficulty depends upon user expertise and perceptual 

abilities, which were varied on purpose in this study. Therefore, we define task difficulty 

a posteriori, based on four different measures (two objective and two subjective) that 

are then aggregated using a principal component analysis [Field 2009]. 

5.2.1 Four indicators of task difficulty 

Because there was a ceiling effect on task correctness, the first objective measure of 

task difficulty is task completion time (assuming that in general, more time is needed for 

more difficult tasks). However, longer completion times may also simply be an 

indication of a task requiring more time while not necessarily being more difficult. 

Therefore the second objective measure of difficulty is the standard deviation of 

completion time for each task, across all users. A high value of this metric indicates a 

high variability among completion times, meaning that the task may be difficult or 

confusing for some users. 

The two chosen subjective measures of task difficulty are based on the users’ reported 

confidence of their performance, which was elicited after each task. The first subjective 

measure is the average confidence reported by users on each task. Intuitively, less 

difficult tasks would have higher values for this average. However, we also want to take 

into account that some users may tend to be more confident overall than other users. 

Therefore, the second subjective measure is the average deviation of confidence for 

each task across all users, and is computed as follows. For each user, the average 

confidence across all of their tasks is used. Then, for each task, the deviation of 

confidence is computed as the difference between the user's reported confidence for 

that task and that user's average confidence across all tasks. Finally, for each task, the 

deviation of confidence across all users is averaged. This average indicates for which 

tasks users were giving confidence ratings that were above or below their typical input.  
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5.2.2 Principal component analysis of task difficulty 

The four measures of task difficulty described in the previous subsection are each used 

as input to four principal component analyses respectively. Bartlett's test of sphericity     

(𝑥2 = 73.35,  df = 6, p < .001), indicated that the principal component analysis was 

appropriate. Kaiser's sampling adequacy was 0.55 and all variables showed a 

communality > 0.52 which is above the acceptable limit of 0.5 [Field 2009]. One 

component was generated, and had an eigenvalue above Kaiser's criterion of 1, and 

explained 62.22% of the variance. Our measure of task difficulty is therefore the output 

component that is generated by this PCA. This measure will be used as a independent 

factor in the proceeding statistical analyses. Table 5.8 shows a detailed breakdown of 

the experiment tasks, ordered by task difficulty. What is interesting is that many of the 

hardest tasks have uniform distributions, whereas the easier tasks have spiky 

distributions. Even though no significant results were obtained in Chapter 4 regarding 

distribution type, this table does shed some light on the fact that uniform data 

distributions tend to be more difficult, likely due to the differences in adjacent data 

values being less pronounced, and therefore requires more effort to discern. 

Measure Coefficient Component Name 

task_completion_time 0.693 1 

Task 
Difficulty 

 

standard_deviation 
completion_time 

0.550 1 

average_confidence -0.905 1 

average_deviation 
from_confidence 

0.941 1 

Table 5.7: Resulting coefficient values of the four measures that were used in 
principal component analysis for task difficulty 
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Task Type 

(Amar) 
Visualization 

Type 
Task Scenario Distribution 

Type 
Task Difficulty 

Component Value 

Retrieve Value Bar single scenario  spiky -1.255 

Sort Bar single scenario  spiky -1.147 

Retrieve Value Bar double scenario n/a -1.069 

Find Extremum Bar single scenario  spiky -0.96 

Retrieve Value Radar double scenario n/a -0.793 

Filter Bar single scenario  spiky -0.775 

Filter Bar single scenario  uniform -0.718 

Sort Bar single scenario  uniform -0.641 

Filter Bar double scenario n/a -0.634 

Retrieve Value Radar single scenario  spiky -0.537 

Sort Radar single scenario  spiky -0.441 

Compute 

Derived Value 
Bar single scenario  spiky -0.438 

Retrieve Value Radar single scenario  uniform -0.436 
Compute Derived 

Value 
Radar single scenario  spiky -0.361 

Compute Derived 

Value 
Bar single scenario  uniform -0.322 

Compute Derived 

Value 
Radar single scenario  uniform -0.237 

Filter Radar single scenario  uniform -0.189 

Filter Radar single scenario  spiky -0.005 

Find Extremum Radar single scenario  spiky 0.01 

Filter Radar double scenario n/a 0.216 
Compute Derived 

Value 
Radar double scenario n/a 0.301 

Compute Derived 

Value 
Bar double scenario n/a 0.654 

Filter Radar double scenario n/a 0.872 

Find Extremum Radar single scenario uniform 1.05 

Filter Radar double scenario n/a 1.643 

Sort Radar single scenario uniform 1.725 

Retrieve Value Radar single scenario uniform 1.989 

Find Extremum Bar single scenario uniform 2.497 

Table 5.8: All 28 task combinations from the study, ordered from least difficult to 
most difficult according to our definition of task difficulty. 
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5.3 Mixed Model Analysis 

Since the study data involved repeated measures (e.g., each subject performed the 

same task type with each of the two different visualizations), a suitable means for 

analysis is a Mixed Model [7].  Mixed models can handle both repeated measures as 

well as the mix of categorical and continuous independent measures, which are both 

present in this study. An alternative model commonly used for repeated-measures 

analysis is a General Linear Model Repeated Measures analysis (GLM for short) [Field 

2009]. GLM, however, is less suitable than a Mixed Model for eye tracking analysis, 

because it is less resilient to missing data. This issue is due to the fact that GLM 

requires data to be in wide format (Figure 5.4-left), where all repeated measures (trials) 

for each participant are listed in one data entry row. When there is an invalid trial, GLM 

is forced to discard the entire data for that participant. This can be costly in an 

experiment with several invalid trials, as is often the case when using unobtrusive eye 

trackers that do not constrain subjects’ movements. By contrast, a Mixed Model uses 

data in long format (Figure 5.4-right), listing each trial as a different data entry, and 

discarded invalid trials do not interfere with valid ones. Thus, a Mixed Model analysis is 

able to leverage at best potentially noisy eye tracking data.  

 

Figure 5.4: Example of experimental data in wide format for GLM (left), and in long 
format for mixed model (right). 
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5.3.1 Mixed model setup 

For each of the three families of gaze features (i.e., Task Level, AOI Proportionate, and 

AOI transition) a mixed model is ran over each of the generated PCA components 

within that family.  Each mixed model is a 2 (visualization type) by 2 (visualization order) 

model, with  the user characteristics and task difficulty as the model's covariates.  Mixed 

Models are univariate analyses (ANCOVA) and do not support multivariate analysis, 

i.e., having more than one depended measure per model which is why we run a single 

mixed model for each dependent measure. The models must therefore be adjusted for 

family-wise error, (i.e., the problem that the more dependent measures that are tested, 

the higher the chance of finding something significant), by applying the Bonferroni 

adjustment to each family of results. Since there are three families of eye tracking 

measures, each model will be adjusted by applying the Bonferroni correction according 

to the number of components within that family. We report statistical significance at the 

0.05 level, and effect sizes are reported as small for r = 0.1, medium for r = 0.3, and 

large as r = 0.5 [Field & Hole 2003]. The next section describes the most salient results 

of the analysis. When going over the results involving directionality, keep in mind that 

the dependent measures are PCA components, each consisting of a single value that 

represents a much larger collection of underlying measures. Each component is 

generated by (i) calculating the weighted values of its underlying members; (ii) 

aggregating and scaling these values into one number typically ranging from -1 to +1. If 

an underlying member is positively correlated to its corresponding component the 

directionality will be the same, otherwise it will be opposite. 

 

5.4 Mixed Model Results & Discussion - User Characteristics 

In this section, results are presented to address the research question: which individual 

user characteristics influence a user’s eye gaze behavior? And is the effect modulated 

by visualization type and task difficulty? The results that follow are discussed per user 

characteristic. 
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5.4.1 Perceptual speed - main effects 

There was a main effects of perceptual speed on three PCA components (see Table 

5.9). 

Family Component F-Ratio Effect Size Sig. Value 

Task 

level 

Fixation 

Measures 
F(1,27) = 8.9 r = 0.37 p = 0.03 

AOI 

Legend 

Proportion 
F(1,21) = 25.2 r = 0.21 p < 0.001 

Legend 

Transitions 
F(1,26) = 10.25 r = 0.16 p = 0.016 

Table 5.9: Main effects of perceptual speed 

One main effect of perceptual speed was at the task level (first row in Table 5.9), 

showing that high perceptual speed users had lower values of Fixation Measures than 

low perceptual speed users. An analysis of the underlying members of this component 

further showed that users with high perceptual speed had a higher fixation-rate than low 

perceptual speed users, indicating that they were able to scan the screen more quickly. 

High perceptual speed users also had lower average and lower standard deviation of 

fixation durations, i.e. shorter and more consistently timed fixations. These combined 

findings closely match the definition of perceptual speed, and are interesting because 

they show that individual differences for this cognitive ability may be captured via eye 

tracking measures that are not related to information on specific elements of the 

visualization.  

The other two main effects of perceptual speed are at the AOI level (see bottom 2 rows 

of Table 5.9), showing that this cognitive ability also affects eye gaze measures relating 

to specific visualizations elements, namely the legend, in terms of Legend Proportion 

and Legend Transitions. We found that low perceptual speed users spent more of their 

time in the legend AOI and also transitioned to it more often compared to high 

perceptual speed users. This result indicates that users with low perceptual speed are 

taking more time to process/store legend-related information and are looking at the 

legend more frequently (possibly because they tended to forget the mapping of the 

information contained in the legend). 
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5.4.2 Perceptual speed - interaction with task difficulty 

We found two significant interactions of task difficulty and perceptual speed; one on the 

Legend Transitions and one on the Label Transitions component (see Table 5.10). 

Family Component F-Ratio 
Effect 

Size 

Sig. 

Value 

AOI 

Legend 

Transitions 
F(1,686)=6.85 r = 0.10 p < 0.05 

Label 

Transitions 
F(1,676)=7.97 r = 0.11 p = 0.02 

Table 5.10: Interaction effects for perceptual speed and task difficulty 

For Legend Transitions, all users generated more legend-related transitions with difficult 

tasks than with easy tasks (see Figure 5.5), likely due to the fact that an increased 

difficulty increases cognitive load and causes users to more easily forget some of the 

information in the legend. This effect, however, is higher for users with low perceptual 

speed. 

 

Figure 5.5: Interaction between perceptual speed and task difficulty on AOI 
legend transitions 
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As for the interaction between perceptual speed and task difficulty on Label Transitions, 

Figure 5.6 illustrates this finding. What we found is that all users have more label-

related transitions for easy tasks compared to difficult tasks, but the difference is much 

higher for low perceptual speed users. This effect is not as intuitive as the previous one 

found on Legend Transitions, but whatever it is that causes users to have more label-

related transitions for easy tasks, it seems to be affecting low perceptual speed users 

the most. 

 

 

Figure 5.6: Interaction between perceptual speed and task difficulty on AOI label 
transitions 
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5.4.3 Perceptual speed - interaction with visualization type 

There was one significant interaction effect between perceptual speed and visualization 

type in terms of the AOI High Transitions component, F(1,680)=22.2, r=0.18, p < 0.001, 

(see Figure 5.7). All users showed more High AOI related transitions with the radar 

graph than with the bar graphs, but the difference is much greater for low perceptual 

speed users. Given that the High AOI is the graphical portion of the information 

visualization that contains the relevant data values, this effect suggests that low-

perceptual speed users are more affected than high perceptual speed users by 

alternative forms of visualizing data. 

 

 

Figure 5.7: Interaction between perceptual speed and visualization type for AOI 
high transitions 
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5.4.4 Verbal working memory - main effects 

We found two main effects of verbal working memory: one on the Text Proportion 

component and one on Standard Deviation of Path Angles (see Table 5.11).  

Family Component F-Ratio Effect Size Sig. Value 

AOI Text Proportion F(1,28) = 7.24 r = 0.36 p = 0.04 

Task 

Level 

Std.Dev. 

PathAngles 
F(1,25) = 8.06 r = 0.32 P < 0.05 

Table 5.11: Main effects of verbal working memory 

The Text AOI relates to the most textual element of both visualizations, namely the 

question text. An analysis of the members of the Text Proportion component shows that 

the proportionate amount of time users spent looking at the text and the number of 

fixations within this AOI is significantly lower for users with high verbal working memory. 

This effect indicates that high verbal working memory users refer to the task question 

less often than their low verbal working memory counterparts, which is consistent with 

the definition of verbal working memory as a measure of storage and manipulation 

capacity of verbal information. This result is interesting because it shows that 

differences in users’ verbal working memory can be directly captured by eye tracking 

features related to the primary textual element of a visualization. 

The second main effect of verbal working memory is on the Standard Deviation of Path 

Angles. This component essentially captures the consistency of a user’s gaze patterns 

during a visualization task, because it is built upon features related to measuring the 

deviation of angles between consecutive saccades. We found that users with low verbal 

working memory had higher values for Std.Dev. Path Angles than users with high verbal 

working memory. Where these values are higher, it indicates that a user is frequently 

looking across different areas of the screen, rather than following more planned or 

consistent path directions. Therefore, the finding that users with low verbal working 

memory had higher values for Std.Dev. Path Angles is consistent with the finding that 

low verbal working memory users referred back to the question text more often. 

Additionally, Goldberg and Helfman [2010] attribute a higher sum of relative angles with 

uncertainty of the task. This suggests that users with low verbal working memory may 
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be more uncertain than users with high verbal working memory. This is an interesting 

finding because it provides evidence for a user characteristic that can impact a user's 

level of uncertainty independent of specific tasks or task characteristics. 

5.4.5 User expertise 

We found two non-significant main effects of both bar graph and radar graph expertise, 

which are discussed because of their large effect sizes. 

There was a main effect of Bar Graph Expertise for the AOI Label Proportion 

component, F(1,21) = 6.042, r = 0.80, p = 0.1, showing that users with high bar 

expertise spent a greater proportion of their time looking at labels compared to non-

experts. We also found a main effect of Radar Graph Expertise on the AOI Legend 

Proportion component, F(1,21) = 5.732, r = 0.78, p = 0.129, with radar experts spending 

less time looking at the legend compared to non-experts. The discrepancy between 

strong effect sizes for these two expertise-related measures and the lack of statistical 

significance is most plausibly due to a lack of statistical power. The power for Bar Graph 

expertise on Label AOI Prop is 0.67, and the power for Radar Graph expertise on 

Legend AOI Prop is 0.64. The recommended value of power to aim for is 0.8 [Field 

2009], and we would therefore have to add 17% (or 6) more users to reach this value.  

It may seem surprising that we did not find stronger influences of visualization expertise 

on gaze patterns. This result however, is consistent with findings in the previous 

chapter, which showed that bar and radar graph expertise may only have significant 

effects on user visualization preference, but not on performance, provided that 

preference has little to do with gaze behaviour. These findings suggest that there may 

not be easily detectable differences in the visualization processing behaviours of 

experts and novices, as defined by our self-rated measures of expertise. 

5.4.6 Visual working memory 

There were no significant effects to report for visual working memory. This lack of 

findings may be due to the fact that the study tasks were relatively easy and that the 

visualizations were static in nature. It is thus likely that users were not required to reach 

their maximum visual memory capacity, especially since they could easily get an 

overview of the whole graph in a single look. Moreover, individual tasks were 
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independent of each other, thus users were not required to store any successive visual 

information (one of the functions affected by visual working memory).  

 

5.5 Mixed Model Results - Task Difficulty & Visualization Type 

We also found results relating exclusively to main effects of visualization type, main 

effects of task difficulty, and interactions between these two independent measures. 

These findings do not relate to user characteristics, and therefore were not part of the 

main focus of this analysis. Nevertheless, these results may have some useful 

implications for information visualization design and also the understanding of 

visualization processing. We have opted to include and briefly discuss these findings in 

Appendix A - Additional Eye Tracking Results. 

 

5.6 Summary & Discussion 

In this chapter we presented research aimed at investigating the relationship between 

individual user characteristics, task difficulty, and user attention patterns when using 

different visualization techniques. The goal of the analysis on the eye tracking data was 

to investigate i) if user characteristics impact gaze patterns during visualization 

processing, and if the impact can be detected though eye tracking; ii) which eye gaze 

measures are influenced by which user characteristics, and if/how is this mediated by 

task difficulty and visualization type. The analyses we conducted revealed that there 

does in fact exist a set of user characteristics that sufficiently influence user gaze 

behavior, which is detectable through a variety of eye tracking metrics. Furthermore, the 

influence is sometimes mediated by non-user characteristic factors such as visualization 

type and task difficulty.  

5.6.1 Summary of results 

Given the user characteristics we investigated, Table 5.12 shows a full summary of the 

reported effects that were found (either statistically significant or with large effect sizes) 

on various eye gaze components which serves to confirm that user characteristics do in 

fact impact user gaze behaviour. We will next discuss selected results pertaining to 
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specific user characteristics that have an impact on gaze features and how these results 

could inform user-adaptive information visualization systems. 

User Characteristic Eye tracking Component 

Perceptual Speed 

Fixation Measures (main effect) 

Legend Proportion (main effect) 

Legend Transitions (main & interaction effect) 

Label Transitions (interaction effect) 

High AOI Transitions (interaction effect) 

Verbal WM 
Std. Dev. Path Angles (main effect) 

Text Proportion (main effect) 

Bar Expertise Label Proportion  ( p > 0.05,  but large effect size) 

Radar Expertise Legend  ( p > 0.05,  but large effect size) 

Visual WM None 

Table 5.12: Summary of reported results from analysis of eye tracking data 

5.6.2 Discussion of perceptual speed 

Perceptual speed is the cognitive ability with the highest number of effects. This finding 

provides encouraging evidence that perceptual speed is a user characteristic could be 

reliably detected in real time using gaze information. This result is particularly important 

for the long term goal of our research (i.e., informing the design user-adaptive 

visualizations), given that we already know that low perceptual speed can negatively 

affect task performance in terms of accuracy [Conati 2008] and task completion time 

(Chapter 4). In particular, we identified that perceptual speed influences AOI-specific 

gaze measures relating to the legend, labels, and High AOIs. These findings suggest 

that adaptive interventions could be particularly useful if they support the access and/or 

processing of these three AOIs for users with low perceptual speed given their lower 

performance. In addition, the interaction effects found for perceptual speed suggest that 

task difficulty and visualization type should also be taken into account, if known, when 

providing adaptive interventions. For instance, it was found that low perceptual speed 

users tended to access the visualization legend more than high perceptual speed users, 
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suggesting that they should be specifically supported in terms of legend processing. 

However, we also found that this effect is exacerbated in the presence of difficult tasks. 

Thus, while it may not be worthwhile disrupting a low speed user with a legend-related 

intervention for tasks known to be easy, it may be important to do so as task difficulty 

increases. 

5.6.3 Discussion of verbal working memory 

The results on verbal working memory indicate, intuitively, that this cognitive ability 

correlates with eye-tracking features related to the main textual element of a 

visualization, and thus may be detectable in real time by tracking these features. For our 

user study, the textual element was the question text, but in other settings this could be 

the visualization caption or the portion of text in which the visualization is embedded 

(e.g., possibly providing verbal descriptions of the displayed data). 

In terms of user-adaptation, it is plausible that users with low verbal working memory 

may benefit if textual elements of a visualization were given more emphasis than the 

purely graphical elements. However, because in Chapter 4 no results were obtained on 

verbal working memory and performance during information processing, it remains a 

topic for future research to investigate if and how adaptive interventions would impact 

visualization effectiveness for users with different levels of verbal working memory. 

5.6.4 Discussion of user expertise 

We reported two non-significant main effects of the expertise-related user 

characteristics that were included because of their large effect sizes. Bar expertise had 

a large effect on label access, while radar expertise had a large effect on legend 

access. These findings may be an indicator that we need to explore adaptive 

interventions relating to the legend and labels in order guide non-experts by 

encouraging them to access these elements in a way that is more similar to expert gaze 

behaviour (even though we are not necessarily able to link this to performance given 

our set of tasks). We would therefore need to run additional studies with more reliable, 

objective measures of expertise (the ones used in this study were self-reported) and 

relate them to performance before we can make any reliable decision on how to provide 

adaptive support for novice users. 
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5.6.5 Implications for information visualization design 

In summary, we have identified a set of user cognitive abilities that sufficiently impact 

gaze measures both in general and in relation to specific AOIs of a visualization. We 

discussed how adaptive interventions could be informed by certain user characteristics  

by targeting specific AOIs in order to influence a user’s experience with a given 

visualization. While our analysis has only investigated two simple visualization 

techniques, several of our results may be generalized to a wider array of information 

visualization designs because they involve components that are common to most types 

of information visualizations (i.e., graph labels or legend). Additionally, these findings 

may further generalize since many of our results are effects that are independent of a 

specific information visualization type. 
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Chapter 6 Task Difficulty -  Follow Up Analysis 

 

The purpose of this chapter is to present results from a short follow up analysis done in 

order to include task difficulty in the analysis of the impact of user characteristics on 

user performance and preference. At the time that the analysis of the impact of user 

characteristics on user performance and preference measures (Chapter 4) was done, 

task difficulty had not yet been considered. It was during the design of the analysis for 

the eye tracking data (Chapter 5) when the idea to define and test task difficulty arose. 

Since there were significant results (both main effects and interactions with user 

characteristics) relating to task difficulty for the eye tracking data, we decided to see if 

task difficulty would also produce any significant results with respect to user 

performance. 

It should be noted that it is not possible to analyze the effect of task difficulty on the 

subjective measures (user preference and ease-of-use). The reason for this is that the 

measure of task difficulty is defined for each task (repeated measures), whereas the 

subjective measures are given for the experiment as a whole. It is therefore not possible 

to run a statistical model that investigates task specific independent measures when the 

dependent measure is not task specific. 

6.1 Model for Analysis 

The goal of this analysis is to test whether task difficulty (see section 5.2 for an 

explanation of how task difficulty is derived) has any impact on user performance, and if  

this effect is mediated by user characteristics. In order to do this, a 2 (visualization type) 

by 2 (visualization order) mixed model was used, with the user characteristics and task 

difficulty as the model's covariates. As usual, significance is reported at the 0.05 level. 

 

6.2 Results and Discussion 

There were two results of task difficulty on user performance as follows. 
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6.2.1 Main effect of task difficulty 

There is a main effect of task difficulty on task completion time, F(1,883) = 9.389,           

r = 0.09, p < 0.01. This result shows that more difficult tasks take longer to complete. 

This is not too surprising, considering that task difficulty is a component generated 

measure that is partly made-up of completion time. The fact that this result was found is 

a good sanity-check. 

 

Figure 6.1: Shows the interaction effect that radar expertise and task difficulty 
has on task completion time 

6.2.2 Interaction effect - task difficulty & radar expertise 

There is a significant interaction effect between task difficulty and radar expertise on 

task completion time, F(1,883) = 7.66, r = 0.06, p < 0.01. As Figure 6.1 shows, radar 

experts are always taking longer to finish each task than users with low expertise. What 

this result suggests is that experts are perhaps more careful when providing answers 

since they are more concerned with not making a mistake, and they are even more 

careful as task difficulty increases. This explanation would be consistent with 

Lewandowsky & Spence [1989], where they found that domain experts completed a set 

of information visualization tasks more accurately but more slowly than non-experts. 
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However, given that there was a ceiling effect on task accuracy in our study, we are 

unable confirm this conclusion without conducting a future experiment with more 

complex or difficult tasks. 

 

6.3 Discussion 

The findings in the chapter show that there is in fact a significant correlation of task 

difficulty with completion time, which is an intuitive result given that a more difficult task 

should generally take more time to complete. The more interesting finding though is that 

this effect is mediated by user visualization (radar) expertise.  

As a further point of discussion, recall that we previously found an interaction effect of 

task difficulty and perceptual speed on legend transitions (Section 5.4.2). Given that 

perceptual speed (see Table 4.3) and now task difficulty have both been shown to relate 

significantly to task completion time, it is likely the case that increased legend transitions 

(see Figure 5.5) is a direct indicator of longer task time. This effect would be further 

mediated by perceptual speed (i.e., low perceptual speed users are transitioning even 

more and taking even longer to finish their tasks) and also task difficulty (i.e., users 

generate more legend transitions and take longer to complete more difficult tasks). A 

correlation between legend transitions and task completion time confirms this argument 

(r = 0.455, p < 0.001), showing that there is a significant correlation with a large effect 

size. 

It was also found that perceptual speed and task difficulty impact label transitions (see 

Figure 5.6), and we can make a similar argument as the one just made for legend 

transitions, only in this case increased labels transitions is an indicator of shorter task 

completion time and this effect is similarly mediated by both perceptual speed and task 

difficulty. Although the effect size is not as large, a correlation between label transitions 

and task completion time also confirms this argument (r = -0.088, p < 0.01), showing 

that there is a significant correlation with a small effect size. 
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Chapter 7 Conclusion and Future Work 

We presented and discussed a user study that investigates the impact of five different 

user characteristics (perceptual speed, visual/verbal working memory, radar/bar graph 

expertise) on the effectiveness of two common data visualization techniques: bar graph 

and radar graph. We also investigated how these factors influence a user's gaze 

behavior during the visualization tasks. The results of in this study confirm preliminary 

existing findings that individual differences do make a difference in visualization 

effectiveness, and thus should be taken into account in selecting suitable visualization 

support for each specific viewer. Furthermore, we have shown that user characteristics 

are detectible using eye tracking, suggesting that this technology could be used as a 

source for detecting user characteristics in real time. All of these findings offer insights 

into the design of user-adaptive intervention visualization systems. 

 

7.1 Satisfaction of Thesis Goals 

7.1.1 Impact of user characteristics on visualization performance & preference        

This objective entailed investigating the impact of user characteristics on task 

completion time, task accuracy, and user preferences for the two given information 

visualizations examined in this study. We employed the general linear model and 

multivariate statistical analyses in order to answer the following research questions: 

 

 i) Which user characteristics influence (i.e., correlate with) the performance and 

preference of users while using bar graphs and radar graphs?   

 

Results confirmed that perceptual speed is a user characteristic that correlates with 

completion time. Users with higher perceptual speed were significantly faster than those 

with lower perceptual speed. We also found results relating user characteristics to user 

visualization preference. Users with higher visual working memory gave higher 

preference ratings to radar graphs, as did users with higher radar graph expertise. 

These results are interesting because they show that while certain users characteristics 
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(i.e., perceptual speed) can influence task performance, other user differences such as 

expertise and visual working memory abilities impact user preferences. 

 

    ii) If there is an effect of user characteristics, how is this effect influenced by 

visualization type? 

 

We also found that was perceptual speed was mediated by visualization type with 

respect to its impact on task completion time. Users with low perceptual performed even 

more poorly with radar graphs and this supports the conclusion that perceptual speed is 

a cognitive ability that can impact the effectiveness of alternative visualizations. 

 

7.1.2 Additional findings: impact of visualization type on task completion time 

Even though it was not the primary focus of our investigation, we did find an impact of 

visualization type on task completion time. Our analysis indicated that users were faster 

on bar graphs for single scenario tasks, but this effect was not detected on the double 

scenario tasks. For single scenario tasks, questions involved one student and the class 

average, whereas double scenario tasks involved answering questions for two students 

and the class average. What this means is that visualization effectiveness can depend a 

great deal on the complexity or amount of amount of data presented. As data 

complexity is increased, certain visualizations such as radar graphs, can become just as 

effective as others. 

In terms of preferences, we found that more users gave a higher preference rating to 

bar graphs, whereas user preference for radar graphs was more evenly distributed 

across all preference values. The implication of this result is that it is important to 

consider the intended purpose for a given information visualization. Is it more important 

to design a system that users prefer, or one where they perform faster, or a balance of 

the two? Knowing that these questions are mediated by user characteristics can inform 

better design choices. 
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7.1.3 Impact of user characteristics on eye tracking measures 

This objective aimed to investigate the impact of user characteristics on user gaze 

behavior captured via eye tracking. Using principal component analyses and mixed 

models, we are able to answer the following two questions that were posed at the 

outset: 

 

 i) Do individual user characteristics influence (i.e., correlate with) a user's eye 

gaze behavior in a way that is detectable by eye tracking? 

 

User characteristics do in fact influence user gaze behaviour, and many examples of 

correlations were detected using eye tracking. Some of the most interesting results 

relate to perceptual speed, and verbal working memory which are discussed next. 

 

 ii) Which gaze features are influenced by which particular user characteristics? Is 

the effect modulated by task context  (e.g., task difficulty or visualization type)? 

 

Several instances of user characteristics influencing gaze features were found. For 

example, perceptual speed was linked to eye gaze features such as fixation rate, and 

legend use. These are both interesting findings because they give promising insight into 

how future systems could begin to detect user characteristics since we have identified 

eye tracking features that are potential candidates to monitor in real time. Additionally, 

because we also found that perceptual speed correlates with task completion time, 

features such as increased legend use or lower fixation-rate could also be monitored in 

real-time as indicators of poor performance. We also found that verbal working memory 

was linked to the amount of time users spent reading the task question. This too is an 

important finding since it shows that different user characteristics influence different 

elements of visualization processing, a finding that provides better understanding for  

both visualization design and user-adaptive interventions, especially within a fixed 

visualization type. 

Additionally, task difficulty and visualization type both had an interaction effect with 

perceptual speed for user gaze features relating to bar/radar graph legend and labels. 
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These results highlight that it is important to consider not only the impact of user 

characteristics, but also how task context can impact different users in conjunction with 

their individual differences. 

 

7.1.4 Additional contributions - mixed model analysis & task difficulty 

An additional contribution of this thesis is showing that a mixed model analysis can be 

used as a suitable method for analyzing potentially noisy eye tracking data.  Our 

analysis generated detailed results, linking a given set of user characteristics and 

factors to numerous eye tracking features. We also provide a novel way of defining task 

difficulty a posteriori, based on the aggregation of objective performance measures and 

subjective user confidence. Task difficulty also generates significant results, indicating 

that in addition to user characteristics, task difficulty can also impact both completion 

time and user gaze behaviour. 

 

7.2 Future Work 

There are several interesting ways in which this work could be extended.  

7.2.1 Run a similar study with more difficult tasks 

Possible future work would involve running a similar study but with more complex 

information visualization tasks. This could be achieved by some combination of harder 

questions, increasing the amount of data being visualized, and showing other types of 

visualizations beyond just bar and radar graphs. Our hypothesis is twofold: first, we 

would expect the impact of individual differences on time-based performance to be even 

more pronounced than what we found in this study; and second, because of the 

complexity of the associated tasks, we would expect to see effects on task accuracy in 

addition to just completion time 

7.2.2 Using eye tracking to infer user characteristics 

In order to apply our results to a user-adaptive information visualization system, the 

system must be able to acquire a model of the user characteristics. The next step would 

be to investigate how relevant user characteristics could be detected and classified in 
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real-time, in order to directly drive adaptive interventions. To this end, a future direction 

of research would be to investigate various machine learning techniques in order to infer 

user characteristics based on that user's eye tracking data. Some promising results 

have already been shown by Steichen et al. [2012].  

 

7.2.3 Adaptive interventions for a fixed visualization type 

Suitable adaptation strategies must also be devised in order for a system to know when 

to adapt and what sort of adaptation to deliver. We are currently designing an 

experiment that will test the impact of overlay type interventions, which are interventions 

that do not change the ordering or configuration of the visualization. These interventions 

will be in the form of visual cues, such as highlighting or adding arrows, with the 

intention of addressing the following questions. Which overlay interventions are best 

suited for which type of task?  When it the best time to intervene? How are these 

interventions mediated by user characteristics? 

 

7.3 Lessons Learned - Design Decisions For Future Studies 

The goal of this section is to highlight the 'lessons learned' regarding the experimental 

study design presented in this thesis. We present several design decisions that we 

would change if we had the ability to go back and re-design our study. These post hoc 

insights are intended to inform both other studies in general if applicable, as well as our 

own future studies relating to eye tracking, adaptive interventions, and individual 

differences in information visualization. 

 

Study design decisions worth changing: 

 Carefully and concisely document the rationale behind all design choices as soon 

as each choice is made, in order to have a clear reference for later reporting & 

publications. 

 Perform a power analysis a priori in order to estimate the minimum number of 

required participants necessary to achieve the desired power for a given effect 

size threshold. If the effect size of the experimental treatment is unknown (as it 
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was the case in this experiment), then a power analysis can be performed a priori 

for low, medium, and large effect sizes to ascertain how many participants would 

be needed for the desired power at each of these effect sizes. For example, if 

only a few extra participants are needed to obtain optimal experimental power for 

both large and small effects then it may be advantageous to simply add the extra 

participants. Alternatively, if many more participants are needed to achieve 

desired power for low effect sizes, then it may be advantageous not to run extra 

participants beyond the lowest amount needed since there would be little gain for 

lower effect sizes. 

 In the questionnaire, when asking users to rate preferences for individual items 

(i.e., visualization types), ensure to include additional questions that require 

participants to rank the items against each other, either by rating how much they 

prefer one item over the other using a Likert scale, or by asking them to place the 

items in order of preference (which is ideal if there are more than two items to 

compare). 

 When measuring expertise via a questionnaire, ensure to administer this prior to 

the user performing the main portion of the study. Furthermore, instead of (or 

possibly in addition to) measuring subjective self-reported expertise, be sure to 

ask more quantitative type questions regarding expertise, (i.e., units of time per 

month, per week, per day, etc.). 

 When requiring input from an answer box, ensure that all input methods are the 

same since we want to define meaningful AOIs. For example, having all the input 

boxes as radio boxes (as opposed to some being drop down menus) is better for 

eye tracking analysis because we can then define a static region over this area. 

 Avoid potential confounds resulting from grapheme placement. In our study, the 

legend was on the right for bar graphs, and on the left for radar graphs. This is 

not ideal since results relating to legend use and comparisons between 

visualization types are prone to this confound. In the future, ensure the legend is 

in the same location for all visualization types if possible. 
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7.4 Conclusion 

In summary, we have identified a set of user characteristics that have a strong impact 

on task completion time, visualization preference, and user gaze behaviour. Our 

research suggests that eye tracking could be used as a source for enabling user-

adaptive systems to detect user characteristics in real-time, and then provide 

interventions related to the user characteristics. These interventions could either 

suggest a more suitable visualization for the user, or provide support to improve user 

performance or experience with the current visualization. Our research has provided a 

rich set of results that can be used to inform the design of user-adaptive systems, by 

showing which user characteristics are worth considering and which visualization 

elements impact visualization processing. 
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Appendix A - Additional Eye Tracking Results 

 

We found many significant results on the main effects that both visualization type and 

task difficulty have on gaze features, independent of the user characteristics. The aim of 

this section is to show the impact that the two information visualization types examined 

in this study can have on gaze patterns. We also shed some insight toward the 

effectiveness of these visualizations when task difficulty is decreased or increased. The 

results presented here result from the same data set and analysis that is described in 

section 5.3. 

Main Effects of Visualization Type 

We found two main effects of visualization type (bar/radar), which are shown below in 

Table A.0.1. For each result, the directionality will be reported, along with a short 

discussion. 

Family Component F-Ratio Effect Size Sig. Value 

AOI 
Text Proportion F(1,678) = 7.20 r = 0.09 p < 0.05 

High Transitions F(1,681) = 21.56 r = 0.18 p < 0.001 

Table A.0.1: Main effects of visualization type 

AOI Text Proportion: The amount of time a user spent reading the main textual 

components on each task changes significantly based on the visualization type. In our 

study, we found that the proportionate amount of time users took to read the question 

text and also the quantity of fixations in the text AOI, were both lower when using radar 

graphs and both greater for bar graphs. Since the question text was in the same area 

for all tasks, it seems that there is an effect of information visualization layout on the 

amount of time a user spends reading the question text. This finding could be an 

indication that unfamiliar or more cluttered visualization layouts (i.e., radar graph) 

distract the user and may be one of the reasons that they spend less time reading the 

question text. 
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AOI High Transitions: We found that the total number of high transitions was greater 

when using radar graphs compared to bar graphs (bottom row of Table A.0.1). One 

possibility for this may be due to the circular shape of the radar graph which inherently 

requires more fixations to do comparisons (i.e., going back and forth between items 

multiple times), versus a more flat or horizontal layout of data values on the bar graph 

which requires fewer fixations to perform similar comparisons. 

 

Main Effect of Task difficulty 

There was one significant main effect of task difficulty for the AOI Label Transitions,  

F(1,681) = 6.37, r = 0.10, p < 0.05.  For this finding, users’ fixations transitioned over the  

label area more often on easy tasks than for difficult tasks. This is a possible indication 

that certain interventions should pertain to the labels of a graph, based on the difficulty 

of that task. For example, since we know that difficult tasks take more time to complete 

(see results in Chapter 6), and users transitioned over the labels more often for the less 

difficult tasks, then perhaps intervening on the labels in order to encourage users to 

notice them more could help reduce the time it takes to complete difficult tasks. 
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Interaction Effects involving Visualization Type & Task Difficulty 

This section looks at the interaction effects between task difficulty and visualization 

type. Table A.0.2 summarizes all of the significant results for these interaction effects. In 

general these findings are interesting because they all show that the amount of time a 

user spends in each of these different AOIs can differ significantly based on the 

interaction effect between visualization type and task difficulty.  

 

Family Component F-Ratio Effect Size Sig. Value 

Task 
Std.Dev. 

Path Angles 
F(1,681) = 13.95 r = 0.14 p < 0.001 

AOI 
Legend 

Transitions 
F(1,682) = 8.02 r = 0.11 p = 0.02 

AOI 

Legend 

Proportion 
F(1,694) = 9.27 r = 0.12 p = 0.01 

Labels 

Proportion 
F(1,670) = 7.53 r = 0.11 p = 0.03 

High Proportion F(1,678) = 10.65 r = 0.12 p < 0.01 

Table A.0.2: Results for interactions between visualization type and task 
difficulty. 
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Std.Dev. Path Angles: As reported in section 5.4.4, increased standard deviation of 

angles may be an indicator of uncertainty. In Figure A.0.1, we see that for all tasks, the 

standard deviation of angles is lower for radar graphs compared to bar graphs. This 

finding may be linked to the fact that the circular layout of the data elements within the 

radar graph visualization affords a more consistent visual work flow in terms of how a 

user's gaze traverses the data elements. Most notably, for difficult tasks, the standard 

deviation of path angles decreases for radar graphs but increases for bar graphs, 

indicating that radar graphs may be more suitable when tasks become more complex. 

This is consistent with the results we saw in Section 4.2.4, where radar graphs are 

potentially just as good as bar graphs for more complex tasks.  

 

 

Figure A.0.1: Interaction effect between visualization type and task difficulty for 
std.dev. path angles component 
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Figure A.0.2: Interaction effect between visualization type and task difficulty for 
AOI legend transitions component 

 

Legend Proportion & Legend Transitions: Both of these components generated similar 

directionalities and the interaction effect is shown in Figure A.0.2 for legend transitions 

which is representative of the directionality for both results. For easy tasks, users 

essentially spent the same proportion of time, and transitioned just as often regardless 

of the visualization type. The major difference occurs when using the bar graph on 

difficult tasks versus the radar graphs. In these cases, users are devoting a great deal 

more attention in terms of time spent and gaze transitions to the legend when they are 

looking at the bar graph. This may be another indication that with difficult tasks, bar 

graphs require some extra processing that makes them comparable in time with radar 

graphs (see Section 4.2.4). It should be noted however, that this result may be subject 

to confound since the placement of the legend in our study differs between the two 

visualization types (as shown in Figure 5.2 and Figure 5.3).  
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Label Proportion: As shown in Figure A.0.3, users always spend less time looking at 

labels for radar graphs compared to bar graphs. This may be an indicator that radar 

graphs are more effective at coding label information. Goldman and Helfman [2010] had 

a similar finding, and attributed it to the fact that bar graphs present a mass of parallel 

lines which may overload a user's visual system, thus making it more difficult for a user 

to associate labels to their values. As for the interaction effect, we also see that the 

difference in time spent looking at the labels between bar and radar is larger with easy 

tasks. 

 

Figure A.0.3: Interaction effect between visualization type and task difficulty for 
label proportion measures component 
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High AOI Proportion: Figure A.0.4 shows the interaction effect for this finding. Users 

always spent more of their time looking at the High AOI on bar graphs, compared to 

radar graphs. But, as task difficulty increases, the proportion of time spent in the High 

area of interest increases even more for bar graph. In other words, increased task 

difficulty impacts how much time a user spends looking at the main region where the 

data values are displayed within a visualization, and this changes significantly 

depending on which information visualization type is used.  

 

Figure A.0.4: Interaction effect between visualization type and task difficulty for 
AOI high proportion component 
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Summary 

This section has shown that there are significant effects that both visualization type and 

task difficulty can have on a user's eye gaze behaviour. We saw that users spend less 

time looking at the question text on radar graphs, and that this illustrates that there may 

be an impact from other elements within a given visualization. We also saw that task 

difficulty can significantly affect how much time and transitions a user devotes to 

specific areas of an information visualization. These findings are useful since they offer 

a more detailed insight into visualization processing related solely to elements of 

visualization type, layout, and task difficulty. 
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Appendix B - Post Questionnaire 
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