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Abstract. We present an analysis of user gaze data to understand if and how 
user characteristics impact visual processing of bar charts in the presence of dif-
ferent highlighting interventions designed to facilitate visualization usage.  We 
then link these results to task performance in order to provide insights on how 
to design user-adaptive information visualization systems. Our results show 
how the least effective intervention manifests itself as a distractor based on gaze 
patterns. The results also identify specific visualization regions that cause  poor 
task performance in users with low values of certain cognitive measures, and 
should therefore be the target of personalized visualization support.   
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1 Introduction 

Information visualization (Infoviz) systems are widely used across many domains and 
applications in order to explore, manage, and better understand data. Despite their 
increasing frequency of use and the rise of big data, these systems have typically con-
tinued to follow a one-size-fits-all approach in terms of how they account for their 
users. An ever increasing body of research however, has shown that individual user 
differences can play a role in user performance or preference for a given infoviz sys-
tem [1–5]. These findings suggest that visualization effectiveness may be improved 
by having Infoviz systems that can detect relevant user differences during visualiza-
tion processing, and adapt accordingly. Researchers have already started looking at 
adaptation approaches that recommend alternative visualizations based on detected 
user needs (e.g., [6, 7]). By contrast, in this paper we focus on exploring the potential 
of adaptive interventions aimed at improving the effectiveness of the visualization 
currently used. In particular, we use eye-tracking to evaluate the impact on visualiza-
tion processing of four highlighting interventions which could eventually be used to 
provide adaptive support by dynamically redirecting the user's attention to different 
subsets of the visualized data as needed (e.g., when the visualization is used together 
with a verbal description that discusses different aspects of a dataset [1]). Previous 
work has already looked at the impact of these interventions on user task performance 
[1]. In this paper however, we analyze user gaze behavior based on eye tracking data 
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collected during the study in [1], in order to gain a more fine-grained understanding of 
how the study factors (e.g., interventions, user differences, task complexity) impact 
visualization processing. For gaze data analysis, we employ the same methodology 
proposed in [8], consisting of several stages of data preprocessing and statistical mod-
eling. The work in [8] looked at a simple gaze data set to understand how a set of 
individual differences affect visualization processing while performing a variety of 
tasks with two different visualizations (bar graphs and radar graphs). In this paper, we 
focus on bar graphs only, and extend the work in [8] by looking at (i) a larger set of 
individual differences; (ii) more complex data sets, and (iii)  if/how the related visual 
processing is impacted by different highlighting interventions. We also include a new 
region of visualization processing (answer input area of interest), to track gaze beha-
viors within the region where users input their answers to the study tasks. The re-
search questions we investigate here in this paper are as follows:  

Q1. How do the tested sets of user characteristics, highlighting interventions, and 
task complexity impact gaze behavior during bar graph visualization processing? 
Q2. How do results in Q1 relate to results on the impact of these factors on task per-
formance reported in [1], and what are the implications for adaptive visualizations?  

In answering these research questions, our objective is to inform the next stages of 
design for a real-time user-adaptive information visualization system. Our results do 
in fact show significant impacts of user characteristics, task type, and interventions on 
gaze behaviors. These results are then used to shed light on why significant perfor-
mance differences occurred during visualization processing as reported in [1]. Based 
on these outcomes, we offer design recommendations for providing adaptive visuali-
zation support for bar graph processing using highlighting interventions.  

2 Related Work 

Recent work has begun to evaluate the benefits of user-adaptation for information 
visualization systems. Both Grawemeyer [7], and Gotz & Wen [6] found positive 
results when evaluating systems that provide recommendations on a set of available 
visualizations based on a user's tasks, prior knowledge, and performance. While these 
systems adapt only to user features such as domain knowledge or performance 
tracked via interface-related behaviors, several studies have shown that other user 
characteristics can impact visualization performance. Various cognitive abilities such 
as perceptual speed, verbal working memory, and visual working memory have been 
shown to impact user performance and/or user subjective experience with Infoviz 
tasks [1, 2, 4, 5]. Researchers have also shown that personality traits (e.g., locus of 
control) can have similar impacts on performance [3]. Given this increasing evidence 
on the impact of user differences in visualization performance, researchers have been 
investigating ways to capture the relevant user traits in real-time so as to inform adap-
tive information visualization systems, with substantial attention being devoted to 
approaches leveraging gaze data. For example, Gridinger et al. [9] used  group-wise 
similarity of gaze patterns to predict domain expertise in processing visualizations of 
weather patterns. Steichen et al. [10] and Toker et al. [11] predict, respectively, user 
characteristics and skill acquisition based solely on tracking a large set of aggregate 
gaze features collected during infoviz tasks. Eye-tracking has also been investigated 
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as a promising source of information for understanding how to adapt to specific user 
traits for supporting effective visualization processing. For instance, several studies 
have shown significant differences in gaze patterns of experts and novices during 
visualization tasks in a variety of domains, including chemistry (e.g., [12, 13]) and 
general information search [14]. It should be noted however, that little work has been 
done to formally connect differences in gaze behaviors due to user characteristics, to 
objective measures of task performance. Building this connection is key in order to 
understand how to improve visualization performance by tailoring support to specific 
user traits. Toker et al. [8] have begun to address this gap by running a formal analy-
sis of eye gaze behaviors with bar and radar graph visualizations. In a previous study 
with these visualizations, users with low values for perceptual speed had been found 
to perform poorly compared to users with high perceptual speed [4]. By then analyz-
ing the gaze data, [8] explains this performance difference in terms of the higher 
processing time that low perceptual speed users need to devote to the visualization's 
legend. Based on these findings, [8] recommended that low perceptual speed users 
ought to be supported by designing interventions that target the legend region. In this 
paper, we apply the same methodology as [8] towards the performance results from 
the study reported in [1] in order to gain a better understanding of how user differenc-
es impact visualization processing when highlighting interventions are available. 

 

Fig. 1. Sample bar graph visualization and task administered in the study 

3 User Study 

The study that generated the data used in this paper investigated the effectiveness of 
four highlighting interventions designed to help the processing of bar graphs, as well 
as how this effectiveness is impacted by both task complexity and different user traits. 
The study was a single session, within-subjects design, lasting at most 90 minutes. 62 
participants performed tasks using bar graphs (Fig.1) with a fully-automated interface. 
Gaze was tracked using a Tobii T120 eye-tracker and calibration was taken twice: 
once at the start and once at the mid-point of the study. Bars graph were chosen be-
cause they are a common visualization for which there is already evidence of the im-
pact of individual differences and the need for adaptive support [4].  

Task complexity was varied by having subjects perform 2 different types of tasks, 
chosen from a standard set of primitive data analysis tasks in Amar et al. [15]. The 
first task type was Retrieve Value (RV), one of the simplest task types in [15], which 
in the study consisted of retrieving the value for a specific individual in the dataset 
and comparing it against the group average (e.g., "Is Michael's grade in Chemistry 
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above the class average?"). The second, more complex task type, was Compute De-
rived Value (CDV) which in the study required users to first perform a set of compar-
isons, and then compute an aggregate of the comparison outcomes (e.g., "In how 
many cities is the movie Vampire Attack above the average revenue and the movie 
How to Date Your Friends below it?"). All tasks involved the same number of data 
points (6), and series elements (8). It should be noted that these datasets were more 
complex than those used in a previous study on the impact of individual differences 
on bar graph processing [8], which involved at most three data points per series. 

 
Fig. 2. The four highlighting interventions evaluated in the study 

Each intervention evaluated in the study (shown in Fig. 2) was designed to high-
light graph bars that were relevant to answer the current question, to guide a user's 
focus to a specific subset of the visualized data while still retaining the overall context 
of the data as a whole [16]. The Bolding intervention draws a thickened box around 
the relevant bars; De-Emphasis fades all non-relevant bars; Average Reference Lines 
draws a horizontal line from the top of the left-most bar (representing the average) to 
the last relevant bar; Connected Arrows involves a series of connected arrows point-
ing downwards to the relevant bars. Participants began by completing a set of tests 
that measured the 5 user characteristics evaluated in the study which included: (1) 
Perceptual speed, a measure of speed when performing simple perceptual tasks [17]; 
(2) Visual Working Memory, a measure of storage and manipulation capacity of visual 
and spatial information [18]; (3) Verbal Working Memory, a measure of storage and 
manipulation capacity of verbal information [19]; (4) Bar Graph Expertise, a self-
reported measure of a user's experience with using bar graphs; (5) Locus of Control, a 
personality trait measuring whether individuals tend to take responsibility for their 
circumstances or blame them on external factors. These measures were selected be-
cause they had been previously shown to influence user performance or satisfaction in 
bar graph studies [1, 2, 4, 5] or other visualizations [3]. Next, each participant per-
formed each of the two task types (RV & CDV) with each of the 4 interventions as 
well as No Intervention as a baseline for comparison, in a fully randomized manner, 
yielding a total of 80 trials per participant.  

4 Eye Tracking Pre-processing and Analysis 

Following the same approach in [8], the eye tracking data is processed in three stages. 
First, we generate a set of gaze features from the raw data. Next, principal component 
analysis (PCA) is performed on these features to obtain a set of factors which will act 
as the dependent measures for statistical analysis. Lastly, linear mixed-effect models 
(mixed models) are used to evaluate the impact of  the study factors and  user cha-
racteristics on the eye tracking components.  
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4.1 Generate Low-Level Eye Tracking Features 

Eye tracking data consists of fixations (i.e., gaze points on the screen), and saccades 
(i.e., paths between fixations). We processed the raw gaze data from the study using 
EMDAT, an open-source toolkit1 which computes gaze features including sums, av-
erages, and standard deviations of a variety of gaze measures, such as fixation rate 
and duration, saccade length, and absolute/relative saccade angles. These features can 
be computed with respect to the overall screen, using no information on the displayed 
content (e.g., mean fixation duration, sum lengths of saccades, average angles of  
saccades), and there are 14 such features, called High-level features, from now on. 
Features can also be computed for specific areas of interest (AOI) in the interface 
(AOI-level features). These include both proportionate measures indicating relative 
attention to each AOI (e.g., proportion of time/fixations spent looking at an AOI), as 
well as transition measures indicating how a user’s attention shifts between two AOIs 
(e.g., transition from AOI x to AOI y). This ensemble of  features constitute the 
building blocks for comprehensive gaze processing [20]. The set of AOIs for the bar 
graph used in the study consists of: (1) 'High' AOI,  a rectangular area that covers the 
top half of the vertical bars; (2) 'Low' AOI  covers the lower half of the vertical bars, 
(3) 'Labels' AOI: covers the series elements labels, (4) 'Legend' AOI: covers the le-
gend, (5) 'Question' AOI: covers the text describing the task to be performed, and (6) 
'Input' AOI: covers the radio buttons and submit button, (refer to Fig. 1). 

4.2 Generate Components Using Dimensional Reduction  

The goal of this step is to use principal component analysis (PCA) in order to identify 
and combine groups of inter-related gaze features into components more suitable for 
data analysis [21]. We first group the gaze features into three non-overlapping fami-
lies according to how the measures are intuitively related: High-level family, AOI-
proportionate family, and AOI-transitions family. We then conduct a separate PCA on 
each family, of which the results are described next. In the subsequent tables, ‘**’ 
indicates features that are negatively correlated to the component they are member to. 
Since [8] used the same families of gaze features for their PCAs, we will comment on 
the similarities and differences with our results to show where the consistencies exist 
across different visualization contexts.         

Performing PCA on the 14 high-level gaze features generated five components  (x² 
= 22035.01, df = 91, p < .001, explained variance 88.31%), shown in Table 1. The 
names for the components are based on commonalities among their features. These 5 
components are identical to those found in [8], even though the underlying gaze fea-
tures were generated from two different studies (one using radar graphs and bar 
graphs, and one using only bar graphs and interventions). This is initial yet strong 
evidence that the relationships between the 14 High-level gaze features may be con-
sistent regardless of the visualization context. 

Performing PCA on the 12 features in the AOI-proportionate family  produced 
five components (x²= 15271.10, df = 66, p < .001, explained variance 93.71%), 
shown in Table 2. Although the 'Input' AOI was not examined in [8], there are still 
strong similarities between their PCA results and ours. In both PCAs, proportionate 
 

                                                           
1 Eye Movement Data Analysis Toolkit, available at:  
  http://www.cs.ubc.ca/~skardan/EMDAT/ 
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Table 1. PCA results for high-level family.    

Component Name High-level family gaze features 

Sum-Measures 
Total-num-fixations,   Sum-rel.-saccade-angles,  Sum-abs-saccade-
angles,   Sum-saccade-length,   Sum-fixation-durations 

Fixation-Measures Mean-fixation-durations,  Std-dev-fixation-durations,  Fixation-rate** 
Saccade-Length Mean-saccade-length,   Std-dev-saccade-length 

Saccade-Angles 
Mean-rel.-saccade-angles,  Std-dev-rel.-saccade-angles,  
Std-dev-abs-saccade-angles 

Mean-Abs-Saccade-Angles Mean-abs-saccade-angles 

measures of total-duration and total-fixations for any AOI always appear together in 
some component, indicating that these features are strongly correlated. Furthermore, 
the components related to proportionate attention to ‘Label’, ‘Low’, and ‘Legend’ AOI 
are identical to those in [8]. One obvious difference with [8] is that here we included an 
additional AOI, whose  proportionate features were grouped by PCA in the same 
component (prop-Input in Table 2). A second difference is that in [8] the 'Question' and 
'High' AOI-proportionate gaze features produced separate components, whereas here 
they were  combined into one component (prop-Question/High in Table 2). This is an 
indication that unlike High-level gaze features, certain AOI related gaze behaviors are 
likely dependent on interaction contexts (e.g., visualization type, task complexity). 

Table 2. PCA results for AOI-proportionate family 

Component Name AOI-proportionate family gaze features 

prop-Question/High 
Question-prop-total-duration,   Question-prop-total-fixations, 
High-prop-total-duration**,    High-prop-total-fixations** 

prop-Low Low-prop-total-duration,   Low-prop-total-fixations 
prop-Labels Labels-prop-total-duration,   Labels-prop-total-fixations 
prop-Input Input-prop-total-duration,   Input-prop-total-fixations 
prop-Legend Legend-prop-total-duration,   Legend-prop-total-fixations 

Table 3. PCA resutls for AOI transitions faimly 

Component Name AOI-transitions family gaze features 

trans-Label/Low 
Low՜label,  Label՜low,  Label՜labels, Question՜label, Label՜question,  
Label՜legend,  Legend՜label,  Legend՜low,  Low՜low,  Low՜legend,   
Question՜low,  Question՜question,  Low՜question 

trans-High/ 
Legend/Question 

High՜legend, Legend՜high,  Legend՜question, Question՜legend, High՜ question, High՜high, Question՜question, Question՜high, Legend՜legend 

trans-Input 
Legend ՜input,  Input՜legend,  Input՜input,  Question՜input,  
Input՜question,  Input՜low,  Low՜input 

trans-Low Low՜high,  High՜low,  Low՜low,  Question՜low,  Low՜question 

trans-Label/Question  
Input՜label,  Label՜high, Label՜input, High՜high,  Label՜question,   
Question՜label,  Input՜question 

 
Performing PCA on the 36 gaze features in the AOI-transition family generated 

five components (x² = 22755.8, df = 630, p < .001, explained variance 48.2%), shown 
in Table 3. Unlike [8], where each transition component included features related 
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mostly to one specific AOI, here the transition components are a lot more noisy, 
meaning that there is more overlap between which AOI(s) primarily comprise a given 
component. These findings indicate that of the 3 families of gaze features examined, 
transitions features are the least similar across interaction contexts, which is likely due 
to the finer granularity of interaction with the visualization that they capture. 

4.3 Mixed Model Analysis 

The final step of our analysis involves running a formal statistical model (mixed-
model) to evaluate the impact of our study parameters (task complexity, interven-
tions) and user characteristics on gaze components. For each of the three families of 
gaze features described in the previous section, we run a set of mixed models on each 
component (for a total of 15 sets of mixed models). Each mixed model is a 2 (task 
type) by 5 (intervention) with the respective component as the dependent measure. 
Additionally, as was done in [1], each of the five covariates (perceptual speed, ver-
balWM, visualWM, expertise, locus of control) are separately analyzed by running an 
additional mixed model for each covariate and the experimental factors. Given the 
high number of covariates, this approach ensures that we do not over-fit the models. 
To account for multiple comparisons within each family of gaze features, each mixed 
model is adjusted using a Bonferroni correction with value equal to the number of 
components in each family (i.e., 5), resulting in an overall total of 15 corrections. 
Statistical significance is thus reported post-correction at the .05 level. 

5 Results  

In this section, we report a selection of results from the gaze analysis, organized into 
three parts: results on effects relating to user characteristics; results relating to hig-
hlighting interventions; and results relating to task type (i.e., Compute Derived Value 
& Retrieve Value) that that do not directly involve user characteristics. All reported 
results are statistically significant (p < .05), however due to space limitations only the 
effect sizes (R²) are shown. 

5.1 Impact of User Characteristics on Gaze Patterns 

The user differences for which we found significant effects on gaze data are percep-
tual speed (PS), visual working memory (VisualWM), and verbal working memory 
(VerbalWM). These are also the user characteristics that were found to significantly 
impact user performance in [1]. In particular, users with low measures of PS and  
VisualWM were significantly slower when completing harder tasks (CDV) than users 
with high VerbalWM. Users with low VerbalWM were significantly slower than high 
VerbalWM users regardless of task type. In the following sections, we link differenc-
es in task performance (previous results presented in [1]) to gaze behaviors (new  
results in this paper), which together offer explanations as to where/how poor perfor-
mance is occurring within a task, as well as how this knowledge can inform the  
design of user-adaptive support. Results for user characteristics are presented based 
on a median split of users along these measures (e.g., low vs. high perceptual speed). 
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Fig. 3. Interaction effect between PS and TaskType on prop_Labels 

Interaction Effect - PerceptualSpeed * TaskType. We found an interaction effect 
between PS and TaskType on prop-Labels (R² = .009), shown in Fig 3. This effect 
indicates that, for harder tasks (CDV), users with low PS are spending more of their 
time looking at the labels of the bar graph. Similar results were also reported in [8], 
where they found that users with low PS transitioned more often to the labels when 
working on harder tasks. Given that low PS users showed poorer performance in 
harder tasks [1], these results reinforce the need to consider offering adaptive inter-
ventions that can help low PS users to process graph labels. For instance, we may 
want to extend our set of highlighting interventions to apply to labels. 
 
Interaction Effect - VisualWM * TaskType. We found interaction effects for   
visualWM*TaskType on features in both the AOI-proportionate and AOI-transitions 
families: prop-Input (R ²= .014)  and  trans-Input (R  = .016), shown in Fig. 4.  

 

Fig. 4. Interaction between visualWM and TaskType for two 'Input' AOI related components 

These effects indicate that for harder tasks, users with low visualWM spend more 
of their time looking at the 'Input' AOI and are also transitioning more frequently to it, 
compared to users with high visualWM. The latter finding on transition frequency 
specifically suggests that low visualWM users likely have difficulty connecting the 
answer options in the input area with the information in the graph, which causes them 
to go back and forth between the input and the other graph areas more often than high 
visualWM users do. This behavior can explain why in [1] low visualWM users were 
found to be slower at solving the tasks than their high visualWM counterparts. This 
combination of findings suggest that we may want to experiment with designing 
adaptive support for low visualWM users that focuses on facilitating processing of the 
input options in relation to the task (e.g., experiment with different input methods or 
visual representations of radio buttons).  
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We also found an interaction effect between visualWM and TaskType on the Sac-
cade-Length component (R² = .008) indicating that, for harder tasks, users with low 
visualWM had longer saccades and a greater standard deviation of saccade lengths. 
This is akin to these users taking 'broader strokes' as they look about the screen, as 
well as having less consistently sized saccades. This finding may be an additional 
manifestation of the difficulty these users experience with harder tasks, further ex-
plaining why they were slower at completing them. Interestingly, no links between 
visualWM and gaze behaviors were found in [8]. One explanation is that the more 
complex datasets used for the visualizations targeted in this paper provided an in-
crease in visual complexity which drew out  the impact of visualWM capacity. 

Main Effect - VerbalWM. We found a main effect of verbalWM on the AOI-
transitions family, specifically on the trans-High/Legend/Question component  
(R² = .005). This effect indicates that users with low verbalWM transitioned over the 
'High', 'Legend', and 'Question' AOIs more often than users with high verbalWM. 
Both legend and question are textual elements, thus this finding is consistent with the 
fact that users with lower verbal capacity may need to review these textual elements 
more often. Similarly, [8] reported a main effect of verbalWM on the proportion of 
time users spent looking at the main textual elements of the visualization. They were, 
however, unable to establish whether these behaviors affected performance and may 
warrant adaptive interventions. In contrast, we can link the main effect discussed here 
to the increase in task completion time for low VisualWM reported in [1], indicating 
that it is worthwhile to investigate adaptive interventions that aid the processing of a 
visualization’s textual component for these users. 

5.2 Impact of Interventions on Visualization Processing 

Previous results in [1] show that three of the four highlighting interventions described 
in Section 3 led to better task performance compared to having no interventions, whe-
reas  the Avg.Ref.Line intervention did not. The eye tracking results in this subsec-
tion may help shed some light on this finding.  

 
Fig. 5. Main effect of intervention on three different gaze components 

We found main effects of intervention type on three different gaze components: 
Sum-Measures (a component of the High-level family consisting of sums over  
measures for overall fixations and saccade angles, R² = .102), as well as two  
components of the AOI-transitions family: trans-Label/Low (R² = .056) and trans-
High/Legend/Question (R² = .049). Pairwise comparisons of the interventions  
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indicated that for all three gaze components, Avg.Ref.Line has significantly higher 
values than ConnectedArrow and DeEmphasis (see Fig. 5). In [1], Avg.Ref.Line was 
suggested to be a visual distractor that interferes with visualization processing be-
cause to its poor performance. Our results seem to confirm this suggestion, by show-
ing that this intervention generated significant additional visual work (i.e., increased 
sum measures and gaze transitions). It is interesting to note that, even though in [1] 
Avg.Ref.Line is comparable to No Intervention in terms of task performance, pair-
wise comparisons also indicated that the three gaze components values for No Inter-
vention are significantly lower than Avg.Ref.Line, and are in fact more comparable to 
the other 3 interventions. Thus, it appears that for No Interventions, users still perform 
poorly, but not because of visual distraction. Since no other significant results were 
found based on the interventions, this eye-gaze analysis cannot account for why [1] 
found that three of the interventions were better than No Intervention. 

5.3 Impact of TaskType on AOI Processing 

In this subsection, we report the most compelling results relating exclusively to main 
effects of TaskType. These results are interesting because under some conditions, an 
adaptive system may not have reliable information on its user’s cognitive abilities. 
Our results show that gaze behavior may help an adaptive system ascertain the com-
plexity of the task at hand (e.g., easier vs. harder task), which by itself can be a valua-
ble basis for providing adaptive support. 

 
Fig. 6. Main effect of TaskType on four of the five AOI-proportionate family components 

There are significant main effects of TaskType on four of the five components 
from the AOI-proportionate family (Fig. 6). For three of these components: prop-
Question/High (R² = .133), prop-Labels (R² = .305), and prop-Legend (R² = .149); 
values are higher for easier (RV) than for harder (CDV) tasks. Recall that the prop-
Question/High component includes 'High' AOI features with a negative correlation 
(see Table 2) implying that the less time a users spends in the 'Question' AOI, the 
more time they spent in the 'High' AOI. Thus in terms of attention to the correspond-
ing AOIs, these effects indicate that when performing harder tasks, users spend less 
time (in proportion) in the 'Legend', 'Label', and 'Question' AOIs, and more time in the 
'High' AOI. This result is quite intuitive considering that this is the region were the 
actual data values are displayed, and thus users may need more time to process this 
information for more complex tasks. Adaptive interventions like the ones targeted in 
these papers may help alleviate this problem. For the fourth component: prop-Input 
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(R² = .114), values increase during harder tasks, indicating that for these tasks users 
also devote a higher proportion of their attention to the 'Input' AOI, as they do for  
the 'High' AOI. These findings offer further evidence that the response input region 
may play an important role in supporting optimal user performance, thus making it 
worthwhile to investigate forms of adaptations that target not only user differences (as 
discussed in a previous section), but also task complexity. 

6 Conclusions and Future Work 

We presented an analysis of user gaze data to understand if and how user characteris-
tics impact visual processing of bar charts in the presence of different highlighting  
interventions designed to facilitate visualization usage. We then linked these results to 
task performance, obtained from a previous study, in order to provide insights on how 
to design user-adaptive information visualization systems. 

Our first research question (Q1) asked if and how our tested sets of user differenc-
es, highlighting interventions, and task complexity impact gaze behavior during bar 
graph visualization processing. We found several positive answers. For instance, with 
harder tasks, users with low perceptual speed (PS) spent more time processing the 
'Label' AOI, whereas users with low visualWM spent more time looking at the 'Input' 
AOI and transitioning between that AOI and other parts of the screen. Similarly, users 
with low verbalWM spend more time processing some of the textual elements of the 
graph. Similar results for PS were obtained in [8], however, the findings related to 
verbalWM and visualWM are unique of our work. All users, regardless of cognitive 
abilities, spent more time processing the 'High' AOI as well as the 'Input' AOI when 
dealing with harder tasks. As for the highlighting interventions, Avg.Ref.Line caused 
significantly more transitions as well as an increase in fixations and saccades. 

Our second research question (Q2) asked how the above findings can be related to 
user performance results reported in [1], and the implications for adaptive visualiza-
tions. We found that most of our significant effects on gaze behaviors mirrored effects 
found on task performance in [1], allowing us to explain poor performance in terms of 
both specific gaze patterns, as well as the user differences that caused them. These 
connections indicate several new avenues of investigation for adaptive interventions, 
in addition to those discussed, for instance, in [8]. In particular, adaptive support may 
benefit users with low visualWM on harder tasks by targeting the input regions of bar 
graphs. Low verbalWM users may benefit from interventions that facilitate processing 
the textual information related to the task questions and legend. We also discussed 
evidence as to why the Avg.Ref.Line intervention was distracting and did not improve 
performance, which provides preliminary abstract guidelines on what constitutes a 
distraction (e.g., increased Sum-Measures and AOI-transitions). 

In future work, we will evaluate pupil dilation data from the same study to under-
stand how the study factors and user differences affect cognitive load. We will also 
design and evaluate adaptive interventions based on the results in this paper (e.g., 
various types of support for the input AOI and labels AOI). 
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