
Abstract 
Previous work has shown that some user cognitive 
abilities relevant for processing information visual-
izations can be predicted from eye tracking data. 
Performing this type of user modeling is important 
for devising user-adaptive visualizations that can 
adapt to a user’s abilities as needed during the in-
teraction. In this paper, we contribute to previous 
work by extending the type of visualizations con-
sidered and the set of cognitive abilities that can be 
predicted from gaze data, thus providing evidence 
on the generality of these findings. We also evalu-
ate how quality of gaze data impacts prediction.  

1 Introduction 
Information visualization (InfoVis) is a thriving area of re-
search that takes advantage of the strength of human percep-
tion to facilitate the analysis of complex data. There is 
mounting evidence that several cognitive abilities and traits 
can influence users’ visualization experience both in terms 
of overall task performance (e.g., [Ziemkiewicz et al. 2011; 
Toker et al. 2012]) as well as in how well users can process 
specific elements of a visualization (e.g., [Toker et al. 2013; 
Ooms et al. 2014; Iqbal et al. 2005]) These findings support 
the value of having user-adaptive visualizations, i.e., intelli-
gent interfaces that learn about their users (user modeling) 
and adapt the visualization to meet each user’s needs in real 
time [Conati et al. 2015]. 

Previous work has shown that some of the user cognitive 
abilities known to be relevant for processing information 
visualizations – perceptual speed, visual working memory 
(WM), and verbal WM – can be predicted in real time from 
eye tracking data [Gingerich and Conati 2015; Steichen et 
al. 2014]. These findings provided encouraging evidence on 
the feasibility of the user modeling necessary for user-
adaptive visualization. However, this previous work focused 
on users processing either bar graph or radar graph visuali-
zations, to perform fictional question-answering tasks ab-
stracted from any real usage context. We contribute to this 
previous work by replicating results on the real-time predic-
tion of perceptual speed and visual WM, for users working 

with two very different types of visualizations (a deviation 
chart and a map-based visualization), embedded in a com-
mercial application designed to engage the public in deci-
sion making related to urban planning. We also show that 
real-time prediction is feasible for two other cognitive abili-
ties (visual scanning and spatial memory), not previously 
considered and relevant for processing the new visualiza-
tions we investigated. These results are an important step for 
advancing research on user-adaptive visualizations from 
initial proof of concepts to more generalizable findings.  

We also evaluate how quality of eye tracking data im-
pacts prediction accuracy. There are promising results on 
the value of eye tracking data for predicting a variety of user 
states and abilities in user modeling (e.g., [Bednarik et al. 
2013; Kardan and Conati 2012; Jaques et al. 2014; Ooms et 
al. 2014; Gingerich and Conati 2015; Lallé et al. 2016]). 
However, eye tracking data can be rather noisy, due to sev-
eral factors such as user eye physiology (e.g., wearing 
glasses),excessive movement, design of the eye tracker, etc. 
[Holmqvist 2011]. Existing user-modeling research has 
mostly dealt with the problem either by adopting usually 
laborious procedures to increase data quality during data 
collection, or by discarding too-noisy data. In addition to 
being time consuming, these approaches provide results that 
have limited generalizability to real-world settings, where 
eye tracking data is bound to be noisy. In this paper, we 
show that relatively noisy eye tracking data can still be used 
for prediction, thus providing encouraging, albeit prelimi-
nary, evidence on the applicability of our findings to real-
world scenarios. 

The rest of the paper starts with an overview of related 
work, followed by a description of the study that generated 
the dataset we used for this research. Next, we illustrate the 
eye tracking features we leveraged, the classification exper-
iments we conducted, and their results.  

2 Related Work  
There is increasing interest in integrating AI and InfoVis 
research to devise user-adaptive visualizations that can sup-
port the specific needs on each individual user. Work to date 
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has focused on adapting to user suboptimal visualization 
usage [Gotz and Wen 2009], visualization preference 
[Grawemeyer 2006; Mouine and Lapalme 2012; Nazemi et 
al. 2014] and interest in the information to be visualized 
[Ahn and Brusilovsky 2013]. All these user properties were 
tracked based on user interface actions. There has also been 
research on predicting user cognitive abilities (namely per-
ceptual speed, visual working memory (WM), and verbal 
WM) that have been shown to be relevant for processing 
information visualizations based on bar and radar graphs, 
using user gaze data [Steichen et al. 2014; Gingerich and 
Conati 2015]. Other work has shown that these cognitive 
abilities impact the processing of specific elements of bar 
and radar graphs. For instance, lower levels of perceptual 
speed can result in slower processing of legend and labels in 
bar graphs [Toker et al. 2013], suggesting that these users 
might benefit from personalized interventions geared toward 
facilitating legends and labels processing if the visualization 
can detect in real-time that they have low perceptual speed.  

[Lallé et al. 2017] showed similar impact of cognitive 
abilities on how users process two different types of visuali-
zations in MetroQuest (MQ), a commercial system designed 
to support decision making for environmental problems. 
These results suggest that adaptive interventions based on 
user cognitive abilities could enhance user experience with 
MQ. In this paper, we investigate whether previous results 
on predicting cognitive abilities in real-time with eye track-
ing data can be reproduced on data collected with MQ, both 
for some abilities already seen in previous work and for new 
ones specific to [Lallé et al. 2017].  

Work in user modeling has typically handled noise in eye 
tracking data by discarding users or trials with too noisy 
data, e.g., [Steichen et al. 2014; Jaques et al. 2014; Bixler 
and D’Mello 2015]. An alternative approach adopted in 
[Kardan and Conati 2012] involved monitoring data gener-
ated by each participant in real-time and requesting adjust-
ments when noisy data was observed, e.g., asking the partic-
ipants to move less. There are techniques in eye tracking 
research designed to reduce noise without discarding data, 
such as removing artifacts responsible for noise, e.g., blinks 
[Holmqvist 2011], or smoothing noisy gaze datapoints 
based on the latest clean ones [Špakov 2012]. However, 
there is limited understanding on how well these techniques 
scale up with the increase of noise in the data. We provide a 
first investigation of how noise in eye tracking data affects 
the prediction in a user modeling task. 

3 Dataset  
The data used in this paper was collected during a user study 
(mentioned in the related work and fully described in [Lallé 
et al. 2017]) that investigated the impact of individual dif-
ferences on user experience and gaze behavior with 
MetroQuest (MQ). Here we provide a brief summary of MQ 
and of the study, sufficient for the purposes of this paper. 

3.1 MetroQuest (MQ)  
MQ supports rapid customization of a set of standardized 
screens that guide users through the process of learning 

about a target decision problem, defining their preferences 
over the decision factors, exploring various outcome scenar-
ios and generating their decision. 

The MQ interface used in this study (Figure 1) addresses 
the problem of building a new transportation system to our 
campus. This is a real project currently studied by the City, 
and it has generated substantial controversy on which of the 
proposed transit scenarios (light rail, rapid rail, or a combi-
nation of both) should be selected. MQ allows users to rank 
their priorities for seven factors that are affected by the 
transit decision (e.g., travel time saving to campus, wait 
time, frequency of stops, reduction in auto trips and pollu-
tion). Then MQ shows how each of the proposed transit 
scenarios affects the decision factors by displaying two 
complementary visualizations, a deviation chart and a map.  

The deviation chart (Fig. 1, upper right hand side of the 
screen) indicates whether the value of each factor improves 
(green arrow) or worsens (red arrow) compared to the cur-
rent situation. Arrow size shows the magnitude of the dif-
ference. The map (Fig. 1, bottom) displays factual infor-
mation on the planned transit scenario (e.g., the route, stop 
locations) as well as the actual values for factors by means 
of map keys (e.g., time savings are reported at stops along 
the route). A button allows opening the legend for the keys 
of the map. Users can view and compare the different sce-
narios by using the tabs shown at the top left of Figure 1. A 
short textual description of each scenario is provided below 
the tabs. Users can rate a scenario by using the scale shown 
below the textual description. 

 
Figure 1: MQ interface used in the study. 

3.2 User Study 
In the study, 166 participants were invited to use MQ to 
learn about and provide their preferences on the transit sce-
narios described in the previous subsection. This mimic how 
MQ is often used in public settings, such as in information 
kiosks, where target communities engage in one-time inter-
action with MQ. Participants were recruited among the pop-
ulation living or working on campus, and thus undoubtfully 
have a real interest in the task. During the interaction with 
MQ, participants’ gaze was tracked with the Tobii T120, a 
non-intrusive camera-based eye tracker embedded in the 
study monitor. Prior to engaging in the study task, each par-
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ticipant underwent a standard calibration phase with the eye 
tracker. The Tobii T120 also tracks pupil size, which we 
include in the dataset for predicting user characteristics (see 
Section 4.2). To compensate for physiological differences in 
pupil size among users, pupil diameter baselines were col-
lected for each participant by having them stare at a blank 
screen for ten seconds. To avoid possible confounds of pupil 
size due to lighting changes, the study was administered in a 
windowless room with uniform lighting. After completion 
of the task with MQ (mean completion time = 4min 45sec, 
st. dev. = 2min 01sec), participants filled a postquestion-
naire about their experience with MQ. Lastly, each partici-
pant took a battery of tests to measure 12 user characteris-
tics. In this paper, we focus on five of them: 
 Perceptual speed (PS), a measure of speed when per-

forming simple perceptual comparisons [Ekstrom et al. 
1976]);  

 Visual working memory (VisWM) a measure of storage 
and manipulation capacity of shapes and colors of visual 
objects [Fukuda and Vogel 2009]); 

 Spatial memory (SpM), a measure of storage and manipu-
lation of the spatial arrangement of objects [Ekstrom et 
al. 1976]);  

 Visual scanning (VisScan, a measure of the capacity to 
actively find relevant information in our surroundings 
quickly and efficiently [Ekstrom et al. 1976]).  

 Visualization literacy (VisLit, the “ability to use well-
established data visualizations to handle information in 
an effective and efficient manner” [Boy et al. 2014])1. 

We focus on these five characteristics because a previous 
analysis [Lallé et al. 2017] on this dataset has shown that 
they are the ones influencing user experience and gaze be-
havior with the MQ visualizations. Specifically, VisWM 
affects user preference between chart and maps, i.e., users 
with high visual WM preferred the deviation charts over the 
maps. SpM influenced perceived visualization usefulness, 
i.e., users with lower SpM found the deviation chart less 
useful than users with higher SpM. SpM, along with PS, 
VisScan, and VisLit, also influenced gaze behaviors related 
to making comparisons between visualizations across sce-
narios, i.e., users with lower levels of these characteristics 
made fewer visual comparisons than users with higher lev-
els. These results indicate that it could be beneficial to pre-
dict in real time whether MQ users have lower or higher 
levels of the aforementioned abilities and provide adaptive 
support accordingly. Such support could include for in-
stance, interventions designed to make deviation charts 
more useful for users predicted to have low SpM, or to facil-
itate comparisons between scenarios for users with low lev-
els for the relevant abilities. In the next sections, we discuss 
the eye tracking data and machine learning experiments we 
used to ascertain if making such predictions is possible. 

                                                 
1 PS, SpM, VisScan and visual WM were collected using the Kit of Factor-
Referenced Cognitive Tests [Ekstrom et al. 1976]. The Fukuda & Vogel’s 
test [Fukuda and Vogel 2009] was used for visual WM. VisLit was collected 
using a formal test that has been recently proposed [Boy et al. 2014]. 

 

4  Eye Tracking Data Processing 
We leverage the eye tracking data collected during the user 
study described in the previous section to build classifiers 
that can predict the five user characteristics reported in Sec-
tion 3.2 during interaction with MQ. 

4.1 Data Windows 
To simulate the real-time prediction of user characteristics, 
we generated ten data windows corresponding to incremen-
tal percentages (10%, 20%... up to 100%) of eye tracking 
data during interaction with MQ. This approach allows us to 
verify how early during the interaction with MQ the target 
user characteristics can be predicted. Investigating predic-
tion timing is of prime importance for our goal of providing 
adaptive support in real-time to users with specific charac-
teristics. Early adaptation is especially important in systems 
like MQ that typically target one-time users for a short peri-
od of time, and thus need to be quickly understandable. To 
predict user characteristics, we generated a battery of eye 
tracking features (described next.) at each data windows. 

4.2 Eye Tracking Features 
The Tobii eye tracker captures user’s gaze samples, i.e., 
where the user is looking on the screen, at 120 Hz. Then 
fixations (gaze maintained at one point on the screen) and 
saccades (quick eye movement between two fixations) are 
derived from gaze samples. For every recorded gaze sample, 
the eye tracker also captures pupil size and distance from 
user’s head to the screen. From all these measures (Gaze, 
Pupil, and Head Distance) we derived a set of features listed 
in Table  that we leveraged to predict user characteristics 
during interaction with MQ. We used EMDAT 
(https://github.com/ATUAV/EMDAT), an eye tracking data 
analysis toolkit, to generate these features. 

Gaze features: EMDAT generated the gaze features 
listed in Table  (part a) by calculating various summary sta-
tistics (e.g., sum, mean) over a user’s fixations and sac-
cades. These statistics are computed for gaze movements 
over the whole interface, generating the gaze features la-
belled as Overall Gaze Features in Table a, or they can be 
computed over specific areas of interest (AOI) in the MQ 
interface, generating the AOI Gaze Features in Table a. 
There are four AOIs defined over four regions of MQ 
(which is shown Figure 1): Description of the transit scenar-
io; Deviation chart; Map; Legend of the map. 

Pupil Features: Pupil sizes were adjusted using the pupil 
baseline collected during the study, following [Iqbal et al. 
2005]. Using EMDAT, we computed a set of summary sta-
tistics on user-adjusted pupil size, suitable for describing 
fluctuations of this measure over the course of the interac-
tion with MQ. These include min, max, mean, and std. dev. 
of users’ pupil sizes in each data window (see Table 1, part 
b). We also included the measure of a user’s pupil at the 
beginning and the end of the current data window (start and 
end pupil size in Table 1, b), as a way to capture pupil size 
variations between the start and the end of each window. 
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Head Distance Features: Head distance is obtained by 
averaging the distances from both eyes to the screen. We 
used EMDAT to compute the same set of statistics as for 
pupil size (see Table 1, part c), as described above. 

a) Gaze Features (68) 
 Overall Gaze Features (12): 
    Fixation rate 
    Mean & Std. deviation of fixation durations 
    Mean & Std. deviation of saccade length 
    Mean, Rate & Std. deviation of relative saccade angles 
    Mean, Rate & Std. deviation of absolute saccade angles 
    Mean saccade velocity 
 AOI Gaze Features for each AOI (56): 
    Fixation rate in AOI 
    Longest fixation in AOI, Time to first & last fixation in AOI 
    Proportion of time, Proportion of fixations in AOI 
    Number & Prop. of transitions from this AOI to every AOI  
b) Pupil Features (6) and c) Head Distance Features (6)  
    Mean, Std. deviation, Max., Min. of pupil width/head distance 
    Pupil width/head distance at the first and last fixation in the 
data window 

Table 1: Set of features considered for classification. 

4.3 Eye Tracking Data Validity Thresholds 
As described in the introduction, we want to investigate if 
and how quality of eye tracking data influences the real-time 
prediction of our target user characteristics. The Tobii eye 
tracker marks each gaze sample as valid or not. Too many 
invalid gaze samples may make the data for a given user 
unreliable to represent their gaze, pupil and head behaviors. 
However, there are no established guidelines to ascertain 
how many invalid samples are too many. One could be con-
servative and include only users with small percentages of 
invalid samples, but this can severely reduce the size of the 
dataset. To illustrate, Figure 2 shows the percentage of study 
participants in our dataset with a proportion of valid gaze 
samples higher than validity thresholds ranging from 0.5 to 
1. Setting a validity threshold of 0.9 (i.e., including partici-
pants with at least 90% of valid gaze samples) would ex-
clude about 40% of users in our dataset.  
  

 
Figure 2: Number of participants with valid eye tracking data as 
the strictness of validity threshold is increased from 0.5 to 1. 

We study the tradeoff between data quality and amount 
available for training by comparing the accuracy of classifi-
ers built on datasets with the following validity thresholds: 

 0.9, which is the last threshold in Fig. 2 that maintains 
high quality data without losing a large majority of partic-
ipants (97 participants retained, i.e., 58% of all users); 

 0.6, which includes rather noisy data but a large pool of 
users (144 participants retained, i.e., 86% of all users); 

 0.8, which is a compromise between the two other thresh-
olds (127 participants retained, i.e., 77% of all users). 

5 Classification Experiments and Results 
We evaluate the prediction of our five user characteristics 
(PS, SpM, VisScan, VisWM, VisLit) using a two-stage ap-
proach. The first stage ascertains whether we can build clas-
sifiers that can predict binary labels of the aforementioned 
user characteristics. The binary labels were generated by 
dividing participants into “High” and “Low” groups for each 
characteristic (e.g., High and Low perceptual speed), based 
on a median split on the test scores2 from the study. We 
compared against a majority-class baseline two classifica-
tion algorithms available in the CARET package [Kuhn 2008] 
in R: Boosted logistic regression (LB); and Random forest 
(RF). Classifier performance is measured by their accuracy 
(proportion of correct predictions). We focus on these algo-
rithms because in previous work they produced good results 
for predicting various user states during visualization pro-
cessing, e.g., [Steichen et al. 2014; Lallé 2016]. 

The second stage takes the best classifier identified in 
stage one, and investigates the impact of data quality on 
prediction accuracy, as well as how early during interaction 
with MQ we can obtain accurate predictions.  

5.1 Feasibility of Predicting User Characteristics 
In this first stage, we evaluate the performance of LB, RF, 
and majority-class baselines as predictors for the target bi-
nary labels. It should be noted that baselines are slightly 
different for datasets with different thresholds because they 
include different users. For all combinations of user charac-
teristics (5), window lengths (10) and validity thresholds (3), 
LB, RF and the appropriate baselines were trained and eval-
uated in 10-fold cross validation over users, namely at each 
fold users in the test set do not appear in the training set. 
The process was repeated 25 times (runs) to strengthen the 
stability and reproducibility of the results. The accuracy of 
each classifier is averaged over the 10 folds and the 25 runs.  

To formally compare the obtained accuracies, for each of 
the five user characteristics, and for each of the three 
thresholds, we run a univariate GLM [Field 2012] with clas-
sification algorithm (3 levels) as factor and classification 
accuracy averaged across windows as the dependent meas-
ure3. Results show significant4 main effects of classification 
algorithm for PS, SpM, VisWM, and VisScan, for all three 
                                                 

2 The ranges of the test scores in our data are: 13-63 for PS; 0-
23 for SpM; 0-40 for VisScan; 0-4.7 for VisWM; -1.67-1 for VisLit. 

3 We run a separate model for each threshold (as opposed to 
including threshold as factor in one model) because this approach 
is better to compare classifiers for each threshold with the baseline 
for that threshold. 

4 Statistical significance in this paper is reported at p < 0.05. 
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thresholds (F statistics are reported in the “F-statistic” col-
umns in Table 2). Pairwise comparisons for these main ef-
fects (Sidak correction applied to adjust for multiple com-
parisons [Field 2012]), indicate that LB always beats the 
baseline. RF always beats the baseline and also outperforms 
LB in all cases (see “Accuracy” in Table 2). We thus opt for 
RF as the algorithm to further investigate the effect of 
threshold in the second stage of analysis. Neither RF nor LB 
beat the baseline in predicting VisLit, thus this characteristic 
is dropped from the next stage (stage 2) of our analysis. 

5.2 Effects of Data Validity Threshold  
For each of the four user characteristics found to be predict-
able by RF in the previous subsection (Table 2), Figure 3 
includes a graph showing, for the 3 validity thresholds, clas-
sifier accuracy over the 10 windows. To formally compare 
the accuracies with different thresholds, for each of the 4 
user characteristics, we run a linear mixed-effects ANOVA 
[Field 2012] with validity threshold (3 levels) and window 
length (10 levels) as factors along with classification accu-
racy as the dependent variable. The last column of Table 3 
reports the see F-statistics for this models. 

There is a main effect of validity threshold for PS, VisS-
can and VisWM. The results of pairwise comparisons on 
validity threshold (Sidak correction applied) for these three 
characteristics are summarized in the second column of Ta-
ble 3. Thresholds are ordered by prediction accuracy, e.g., 
“0.6 > 0.9” indicates RF with data validity at 0.6 performed 
better than RF with data validity at 0.9. Underlining indi-
cates that the differences between thresholds underlined 
together are not statistically significant. 

 

User 
Char. 

Ranking of accuracy at  
different threshold 

Main Effect  
(F-Statistic) 

PS 0.8 > 0.6 > 0.9 F2,7470= 23.78† 
SpM 0.8 > 0.9 > 0.6 F2,7470= 1.02 
VisScan 0.6 > 0.8 > 0.9 F2,7470= 7.10† 
VisWM 0.9 > 0.8 > 0.6 F2,7470= 34.46† 

Table 3: Comparison of RF accuracy with different data validity 
thresholds. † indicates significant main effects. 

Table 3 shows that for PS, both 0.8 and 0.6 are the best 
thresholds (there is no significant difference between their 
accuacies). For VisScan, validity threshold 0.6 provides the 
best classification accuracies. For VisWM, the best validity 
threshold is 0.9. No main effect of validity threshold was 
found for SpM, meaning that there is no significant differ-

ences in classification accuracies among the three thresholds 
for this characteristic. 

It is notable that for PS, SpM, and VisScan, a validity 
threshold of 0.6 is either the best or is tied for the best. Re-
call that a threshold of 0.6 allows for more eye tracking data 
to be used for training our models, but the data is noisier. 
When 0.6 provides top predictive accuracies, it means that 
having more training data outweighs or compensates the 
need for having clean data. These findings provide prelimi-
nary evidence that accurate predictions can be made for 
users with rather noisy data, which is what will likely be 
available to the classifier if these predictions are to be used 
to guide adaptive support to users of MQ in real-world set-
tings. As Table 3 shows, VisWM is the only user characteris-
tic for which having more data is less important than having 
clean data, possibly because the patterns indicative of this 
ability are more subtle and thus more prone to be learned 
incorrectly by a classifier with noisier data. We will further 
discuss prediction of VisWM at the end of this section. 

In the rest of this section, we focus on the classifier with 
the winning validity threshold for each user characteristic, 
and discuss when it achieves its maximum accuracy over the 
ten data windows representing the availability of classifica-
tion data overtime during an interaction with MQ. For each 
classifier, we performed pairwise comparisons between its 
accuracy at each of the 10 windows and report in Table 4 
(third column) the set of windows (ordered by accuracy) 
where classification accuracy was statistically equivalent 
and outperformed the accuracy in all other windows.  

 

User 
Char 

Optimal Validity 
Threshold 

Best Window 
Lengths 

Accuracy at Earli-
est Best Window 

PS .6 40>10>50 63.9% 
SpM .6 80>60>70>90 67.4% 
VisScan .6 30 64.0% 
VisWM .9 30 68.2% 

Table 4: Windows for which the highest accuracies are achieved 
for the given validity thresholds. 

The last column in Table 4 reports the accuracy at the earli-
est window reported in the previous column. For instance, 
for PS, windows 10, 40, and 50 have statistically equivalent 
accuracy and outperform all other windows. Thus the earli-
est optimal prediction for PS can be obtained after only 10% 
of a user’s interaction with the MQ task (only 15 seconds of 
interaction on average), with an accuracy close to 63.9%. 
Overall, Table 4 shows that the best predictions occur early 

 Threshold  0.6 Threshold  0.8 Threshold  0.9 

User 

Char 

Accuracy (%) 
 

Accuracy (%) 
F-Statistic 

Accuracy (%) 
F-Statistic 

RF LB Baseline RF LB Baseline RF LB Baseline 

PS 60.3† 55.8† 50.8 F2,7497=496.2 60.6† 56.3† 50.8 F2,7497=523.436 58.1† 54.1† 51.5 F2,7497=194.1 

SpM 60.9† 58.2† 50.6 F2,7497=587.08 61.3† 58.7† 50.4 F2,7497=663.93 61.2† 57.5† 50.4 F2,7497=504.99 

VisScan 57.3† 55.4† 52.5 F2,7497=125.469 56.7† 54.9† 51.8 F2,7497=124.778 56.2† 53.7† 51.9 F2,7497=82.02 

VisWM 57.5† 54.7† 50.1 F2,7497=282.09 58.8† 55.5† 50.5 F2,7497=354.177 60.3† 55.7† 52.9 F2,7497=225.75 

Table 2: Accuracies (averaged across data windows) and F-statistics for the main effects of classification algorithm (RF, LF and baseline) 
for each of PS, SpM, VisScan and VisWM, and for each data validity threshold tested. † indicates that RF or LB significantly beat the 
corresponding baseline. Bold indicates that RF significantly beat LB. 
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not just for PS, but also for VisScan and VisWM (window 
30). For SpM, the earliest best window is 60, i.e., slightly 
more than halfway in the task, which still leave substantial 
time to provide adaptation. 

5.3 Further Results for VisWM 
The previous subsection showed that unlike the other user 
characteristics, the best predictions for VisWM are obtained 
using data with a high validity threshold of 0.9. Here, we 
investigate whether a VisWM classifier trained using this 
high quality data can still make good predictions on users 
with noisier (and thus more realistic) data. Specifically, we 
evaluated a RF classifier using 25-runs of 10-fold cross val-
idation, where at each fold the training set included only 
users with data at the 0.9 validity threshold, and the test set 
included unseen users with data at the 0.6 validity threshold. 
A statistical analysis similar to the one in the previous sub-
section shows that this combined classifier and the VisWM 
classifier evaluated on data at the 0.9 threshold are not sta-
tistically different and both are significantly better than the 
model evaluated on data at the 0.6 threshold. In terms of 
actual accuracies and when they peak during interaction, the 
best (statically equivalent) windows for the combined classi-
fier are 30, 80, and 70. The earliest of these windows (30), 
is the same as for the classifier with 0.9 validity and the 
accuracy at this window is 66.1%, which is comparable to 
the best accuracies for the other three user characteristics.   

6 Conclusion 
In this paper, we investigated if a user’s cognitive abilities 
relevant for processing information visualizations can be 
predicted solely from eye tracking during interaction with 
MetroQuest (MQ), a visualization-based system designed to 
engage the public in environmental decision making. We 
showed that a Random Forest classifier outperforms a ma-

jority-class baseline in predicting four of the five user cogni-
tive abilities we tested: perceptual speed (PS), visual WM 
(VisWM), spatial memory (SpM), and visual scanning (VisS-
can). Our results are important because previous findings on 
predicting user abilities during visualization processing 
were obtained for fictitious tasks done on bar and radar 
charts, whereas here we consider two different visualiza-
tions used for a task resembling how MQ is used in real-life 
settings. Moreover, previous findings pertained only to PS 
and VisWM; here, we replicated those findings with similar 
accuracies, but also showed the feasibility of predicting two 
additional cognitive abilities. Thus, our findings are a step 
toward showing the generality of predicting a variety of user 
cognitive abilities during visualization processing. These 
predictions are motivated by the long-term goal of devising 
user-adaptive visualizations that can recognize and adapt to 
the specific abilities of their users. 

We also investigated how noise in eye tracking data in-
fluences our prediction. For PS, SpM, and VisScan we found 
that training our classifiers with noisier but larger datasets 
worked better that having cleaner but fewer data. These re-
sults suggest that further investigation on the impact of gaze 
data validity in user-modeling is worthwhile, because it may 
eventually reduce the efforts researchers have to put in ob-
taining high validity data, at least for specific user modeling 
tasks. As for VisWM, the best accuracies were obtained with 
a classifier trained with high validity data. However, we 
showed that this classifier can still make good predictions 
on noisier data containing up to 40% invalid samples per 
user. Investigating prediction on noisy data is important to 
gauge the applicability of eye-tracking-based user models in 
real-world settings. Thus, as part of future work, we plan to 
continue experimenting with eye tracking data collected in 
realistic settings. We also plan to examine ways to increase 
the performance of our classifiers, for instance by leverag-
ing additional data sources such as interaction data. 

 
Figure 3: Accuracy of RF classifiers using data with three different validity thresholds for: PS, SpM, VisScan and VisWM. 
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