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• Given , predict  for any arbitrary xt ̂yt = h(xt) h ∈ Vt
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• Have mistake bound M()*+,+-.*-(ℋ) ≤ |ℋ| − 1
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• If we were wrong, we removed at least half of Vt

•  – way better boundM1234,*5(ℋ) ≤ log2|ℋ|
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Online learnability
• Think about the game tree for the learner and the adversary
• Put points  into a full binary treext ∈ 6
• Start at the root, move left if learner predicts 0, right if it predicts 1

7

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Online learnability
• Think about the game tree for the learner and the adversary
• Put points  into a full binary treext ∈ 6
• Start at the root, move left if learner predicts 0, right if it predicts 1

•  shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ

7



Online learnability
• Think about the game tree for the learner and the adversary
• Put points  into a full binary treext ∈ 6
• Start at the root, move left if learner predicts 0, right if it predicts 1

•  shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ
• The Littlestone dimension  is the max depth of any tree  shattersLdim(ℋ) ℋ

7



Online learnability
• Think about the game tree for the learner and the adversary
• Put points  into a full binary treext ∈ 6
• Start at the root, move left if learner predicts 0, right if it predicts 1

•  shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ
• The Littlestone dimension  is the max depth of any tree  shattersLdim(ℋ) ℋ
• Any algorithm  must have A MA(ℋ) ≥ Ldim(ℋ)

7



Online learnability
• Think about the game tree for the learner and the adversary
• Put points  into a full binary treext ∈ 6
• Start at the root, move left if learner predicts 0, right if it predicts 1

•  shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ
• The Littlestone dimension  is the max depth of any tree  shattersLdim(ℋ) ℋ
• Any algorithm  must have A MA(ℋ) ≥ Ldim(ℋ)
• If  can shatter a set, it can shatter any tree from that setℋ

7



Online learnability
• Think about the game tree for the learner and the adversary
• Put points  into a full binary treext ∈ 6
• Start at the root, move left if learner predicts 0, right if it predicts 1

•  shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ
• The Littlestone dimension  is the max depth of any tree  shattersLdim(ℋ) ℋ
• Any algorithm  must have A MA(ℋ) ≥ Ldim(ℋ)
• If  can shatter a set, it can shatter any tree from that setℋ
• VCdim(ℋ) ≤ Ldim(ℋ)

7

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Littlestone dimension examples
• If  is finite, can’t shatter a full tree deeper than ℋ log2|ℋ|
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• If  is finite, can’t shatter a full tree deeper than ℋ log2|ℋ|
• If , , have 6 = [d] ℋ = {x ↦ 9(x = i) : i ∈ [d]} Ldim(ℋ) = 1
• If  and , have  (!)6 = [0,1] ℋ = {x ↦ 9(x ≤ a) : a ∈ [0,1]} Ldim(ℋ) = ∞
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Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}
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• If not, Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})
• Then combine shattered trees into one shattered tree of depth Ldim(Vt) + 1
• But then …contradictionLdim(Vt) = Ldim(Vt) + 1

• Thus , the best possible mistake boundM:;<(ℋ) = Ldim(ℋ)
• But SOA is not necessarily easy to compute!
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You could use this time to do
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(if you want)
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Unrealizable online learning
• In the batch setting:
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∑
t=1

|h(xt) − yt|]
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• Ideally, we want sublinear regret: 1
T RegretA(ℋ, T) T→∞ 0
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2
• So regret would be at least T− T

2 = T
2

• To avoid this:
• Learner has random prediction, Pr( ̂yt = 1) = pt
• Adversary commits to  without knowing the rollyt
• Measure expected loss Pr( ̂yt ≠ yt) = |pt − yt|
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Low regret for online classification

• For every , there’s an algorithm with  
 

• Also a lower bound of  

• Based on Weighted-Majority algorithm for learning with expert advice

ℋ
RegretA(ℋ, T) ≤ 2 min (log|ℋ|, (1 + log T) Ldim(ℋ)) T

Ω ( Ldim(ℋ) T)
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• Start with ;  w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…
• Follow with probabilities wt = w̃t / ∥wt∥1
• Update based on costs  as      (exp is elementwise)vt w̃t+1 = w̃t exp(−ηvt)

• Theorem (SSBD 21.11):    if ∑T
t=1 ⟨wt, vt⟩ − mini∈[d] ∑T

t=1 (vt)i ≤ 2 log(d) T T > 2 log d

• Can avoid knowing  by doubling trick: run for , , , … sequentiallyT T = 1 T = 2 T = 4
• Only blows up regret by x (SSBD exercise 21.4)< 3.5
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• For finite , we can just run Weighted-Majority with each ℋ h ∈ ℋ
• Plugging in previous theorem, RegretEF(ℋ, T) ≤ 2 log|ℋ| T

• For infinite , we need a not-too-big set of experts where one is still goodℋ
• Expert( ) runs SOA on , 

but takes choice with smaller Ldim on indices 
i1, i2, …, iL x1, …, xT

i1, i2, …, iL
• Can show (21.13-14) that one expert is as good as the best , 

and there aren’t too many of them,  
giving 

h ∈ ℋ

RegretA(ℋ, T) ≤ 2(1 + log T) Ldim(ℋ) T
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2
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∑
t=1

∥vt∥2 vt ∈ ∂ℓt(wt)

•    if  are -Lipschitz, Regret(w*, T) ≤ 1
2 (∥w*∥2 + ρ2) T ℓt ρ η = 1/ T

•    if  are -Lipschitz,  is -bounded, Regret(w*, T) ≤ Bρ T ℓt ρ ℋ B η = B/(ρ T)
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Online Perceptron

• You learned about Batch Perceptron in HW3

• Original algorithm is online

• Essentially identical, just only update on mistake

• Corresponds to online gradient descent on hinge loss

• Get same  margin-based mistake bound

• Ldim =  without the margin condition

(R/γ)2

∞

17



Online-to-batch conversion
• If we have a good online algorithm, we have a good batch algorithm:  

just run it on the batch
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• MRT Lemma 8.14: If  gives  for , 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T

T

∑
t=1

L#(ht) ≤ 1
T
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∑
t=1

ℓ(ht(xt), yt) + M
2
T

log 1
δ

• MRT Theorem 8.15: if  is also convex, 
              

ℓ( ⋅ , z)

L# ( 1
T

T

∑
t=1

ht) ≤ inf
h∈ℋ

L#(h) + 1
T

RegretA(ℋ, T) + 2M
2
T

log 2
δ
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(pause)

19

You could use this time to do

https://seoi.ubc.ca/surveys


(if you want)

https://seoi.ubc.ca/surveys
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• Can be thought of as a particular form of stability
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DP and online learning
• Feldman and Xiao 2014:  

Pure private PAC learning takes 
 samples


• Related to communication complexity
Ω(Ldim(ℋ))
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• Related to communication complexity
Ω(Ldim(ℋ))

• Alon, Livni, Malliaris, Moran 2019:  
Approximate private PAC learning takes  

 samplesΩ(log*(Ldim(ℋ)))
• Bun, Livni, Moran 2020:  

Approximate private PAC learning in  
 samples


• analysis via “global stability”
2K(Ldim(ℋ))
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DP and online learning

• Can learn differentially privately iff can learn online

• Close connections via stability

• But huge gap in sample and time complexity

• Indications (Bun 2020) that converting one to the other isn’t possible 

with polynomial time + sample complexity

• Still a lot to understand here

22

https://arxiv.org/abs/2007.05665


Some of the stuff we didn’t cover
• Multiclass learning: can use same techniques, need right loss

• Ranking: which search results are most relevant? 
• Boosting: combine “weak learners” to a strong one (kind of like A3 Q3 b)

• Transfer learning / out-of-domain generalization / …: train on , test on 

• Do ImageNet Classifiers Generalize to ImageNet? / The Ladder mechanism

• Robustness: what if we have some adversarially-corrupted training data?

• Unsupervised learning (just the PCA question on A1) 

  “How well can we ‘understand’ a data distribution?”

• Semi-supervised learning (just the algorithm from A4)

• Active learning: if s are available but labeling them is expensive,  

                            can we choose which to label?

• Multi-armed bandits: which action should I take?

• Reinforcement learning: interacting with an environment with hidden state

• …

! !′ 

x
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https://arxiv.org/abs/1902.10811
https://arxiv.org/abs/1502.04585

