
Online learning
CPSC 532S: Modern Statistical Learning Theory

4 April 2022

cs.ubc.ca/~dsuth/532S/22/

1

https://www.cs.ubc.ca/~dsuth/532S/22/

Admin
• Project presentations in class on Wednesday; see Piazza

• Grade component will be based mainly on clarity

• Zoom setup probably jankier than I was hoping; come in person if you can

2

Admin
• Project presentations in class on Wednesday; see Piazza

• Grade component will be based mainly on clarity

• Zoom setup probably jankier than I was hoping; come in person if you can

• Project reports due Friday, with usual late policy (-5 Saturday, -10 Sunday)

• Grade a combination of presentation + “technical content”

• Not going to be harsh, just looking to see you did something

2

Admin
• Project presentations in class on Wednesday; see Piazza

• Grade component will be based mainly on clarity

• Zoom setup probably jankier than I was hoping; come in person if you can

• Project reports due Friday, with usual late policy (-5 Saturday, -10 Sunday)

• Grade a combination of presentation + “technical content”

• Not going to be harsh, just looking to see you did something

• A4 also due Friday, but extended late policy: only -1 point per day late

• Hard deadline of next Friday the 15th

2

Admin
• Project presentations in class on Wednesday; see Piazza

• Grade component will be based mainly on clarity

• Zoom setup probably jankier than I was hoping; come in person if you can

• Project reports due Friday, with usual late policy (-5 Saturday, -10 Sunday)

• Grade a combination of presentation + “technical content”

• Not going to be harsh, just looking to see you did something

• A4 also due Friday, but extended late policy: only -1 point per day late

• Hard deadline of next Friday the 15th

• Final: take-home, available over most of the finals period

• Available to “check out” when it’s done (probably ~April 12/13)

• Will target a couple hours of work (an assignment)

• Will have at least 12 hrs to do, maybe 1-2 days (TBD); must hand in by April 25

≪

2

Admin
• Project presentations in class on Wednesday; see Piazza

• Grade component will be based mainly on clarity

• Zoom setup probably jankier than I was hoping; come in person if you can

• Project reports due Friday, with usual late policy (-5 Saturday, -10 Sunday)

• Grade a combination of presentation + “technical content”

• Not going to be harsh, just looking to see you did something

• A4 also due Friday, but extended late policy: only -1 point per day late

• Hard deadline of next Friday the 15th

• Final: take-home, available over most of the finals period

• Available to “check out” when it’s done (probably ~April 12/13)

• Will target a couple hours of work (an assignment)

• Will have at least 12 hrs to do, maybe 1-2 days (TBD); must hand in by April 25

≪

• Optional bonus assignment: when it’s done, probably ~April 12/13, due April 25
2

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ #n h #

3

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ #n h #

• Today: the online setting

3

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ #n h #

• Today: the online setting
• See an , make a prediction , see true label , repeatxt ̂yt yt

3

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ #n h #

• Today: the online setting
• See an , make a prediction , see true label , repeatxt ̂yt yt
• We learn how to predict as we go

3

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ #n h #

• Today: the online setting
• See an , make a prediction , see true label , repeatxt ̂yt yt
• We learn how to predict as we go
• Focusing on binary classification to start

3

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ #n h #

• Today: the online setting
• See an , make a prediction , see true label , repeatxt ̂yt yt
• We learn how to predict as we go
• Focusing on binary classification to start
• Usual analysis does not assume a fixed distribution #

3

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ #n h #

• Today: the online setting
• See an , make a prediction , see true label , repeatxt ̂yt yt
• We learn how to predict as we go
• Focusing on binary classification to start
• Usual analysis does not assume a fixed distribution #
• Labels can even be chosen adversarially

3

Online learning
• Class so far has been in the (passive) batch setting:
• Observe training set , pick , test on new examples from  S ∼ #n h #

• Today: the online setting
• See an , make a prediction , see true label , repeatxt ̂yt yt
• We learn how to predict as we go
• Focusing on binary classification to start
• Usual analysis does not assume a fixed distribution #
• Labels can even be chosen adversarially

3

Realizable online setting
• Realizable setting: labels have to be consistent with some yt h* ∈ ℋ

4

Realizable online setting
• Realizable setting: labels have to be consistent with some yt h* ∈ ℋ

4

Realizable online setting
• Realizable setting: labels have to be consistent with some yt h* ∈ ℋ

4

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))

5

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S

5

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ

5

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ
• is online learnable if there’s an with  ℋ A MA(ℋ) < ∞

5

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ
• is online learnable if there’s an with  ℋ A MA(ℋ) < ∞

• If is finite, consider the algorithm Consistent (basically ERM):ℋ

5

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ
• is online learnable if there’s an with  ℋ A MA(ℋ) < ∞

• If is finite, consider the algorithm Consistent (basically ERM):ℋ
• Start with the version space V1 = ℋ

5

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ
• is online learnable if there’s an with  ℋ A MA(ℋ) < ∞

• If is finite, consider the algorithm Consistent (basically ERM):ℋ
• Start with the version space V1 = ℋ
• Given , predict for any arbitrary xt ̂yt = h(xt) h ∈ Vt

5

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ
• is online learnable if there’s an with  ℋ A MA(ℋ) < ∞

• If is finite, consider the algorithm Consistent (basically ERM):ℋ
• Start with the version space V1 = ℋ
• Given , predict for any arbitrary xt ̂yt = h(xt) h ∈ Vt
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

5

Mistake bounds
• Take a sequence S = ((x1, h*(x1)), …, (xT, h*(xT)))
• is the number of mistakes the algorithm makes on MA(S) A S
• is the worst-case number of mistakes for any with labels in MA(ℋ) S ℋ
• is online learnable if there’s an with  ℋ A MA(ℋ) < ∞

• If is finite, consider the algorithm Consistent (basically ERM):ℋ
• Start with the version space V1 = ℋ
• Given , predict for any arbitrary xt ̂yt = h(xt) h ∈ Vt
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Have mistake bound M()*+,+-.*-(ℋ) ≤ |ℋ| − 1

5

A smarter algorithm for finite, realizable ℋ
• If Consistent made a mistake, we might only remove one from h Vt
• Better algorithm can always either (a) be right or (b) make lots of progress

6

A smarter algorithm for finite, realizable ℋ
• If Consistent made a mistake, we might only remove one from h Vt
• Better algorithm can always either (a) be right or (b) make lots of progress
• Halving:

• Start with the version space

• Given , predict

• Seeing , update

V1 = ℋ
xt ̂yt ∈ argmaxr∈{0,1} {h ∈ Vt : h(xt) = r}
yt Vt+1 = {h ∈ Vt : h(xt) = yt}

6

A smarter algorithm for finite, realizable ℋ
• If Consistent made a mistake, we might only remove one from h Vt
• Better algorithm can always either (a) be right or (b) make lots of progress
• Halving:

• Start with the version space

• Given , predict

• Seeing , update

V1 = ℋ
xt ̂yt ∈ argmaxr∈{0,1} {h ∈ Vt : h(xt) = r}
yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• If we were wrong, we removed at least half of Vt

6

A smarter algorithm for finite, realizable ℋ
• If Consistent made a mistake, we might only remove one from h Vt
• Better algorithm can always either (a) be right or (b) make lots of progress
• Halving:

• Start with the version space

• Given , predict

• Seeing , update

V1 = ℋ
xt ̂yt ∈ argmaxr∈{0,1} {h ∈ Vt : h(xt) = r}
yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• If we were wrong, we removed at least half of Vt

• – way better boundM1234,*5(ℋ) ≤ log2|ℋ|

6

Online learnability
• Think about the game tree for the learner and the adversary
• Put points into a full binary treext ∈ 6
• Start at the root, move left if learner predicts 0, right if it predicts 1

7

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Online learnability
• Think about the game tree for the learner and the adversary
• Put points into a full binary treext ∈ 6
• Start at the root, move left if learner predicts 0, right if it predicts 1

• shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ

7

Online learnability
• Think about the game tree for the learner and the adversary
• Put points into a full binary treext ∈ 6
• Start at the root, move left if learner predicts 0, right if it predicts 1

• shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ
• The Littlestone dimension is the max depth of any tree shattersLdim(ℋ) ℋ

7

Online learnability
• Think about the game tree for the learner and the adversary
• Put points into a full binary treext ∈ 6
• Start at the root, move left if learner predicts 0, right if it predicts 1

• shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ
• The Littlestone dimension is the max depth of any tree shattersLdim(ℋ) ℋ
• Any algorithm must have A MA(ℋ) ≥ Ldim(ℋ)

7

Online learnability
• Think about the game tree for the learner and the adversary
• Put points into a full binary treext ∈ 6
• Start at the root, move left if learner predicts 0, right if it predicts 1

• shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ
• The Littlestone dimension is the max depth of any tree shattersLdim(ℋ) ℋ
• Any algorithm must have A MA(ℋ) ≥ Ldim(ℋ)
• If can shatter a set, it can shatter any tree from that setℋ

7

Online learnability
• Think about the game tree for the learner and the adversary
• Put points into a full binary treext ∈ 6
• Start at the root, move left if learner predicts 0, right if it predicts 1

• shatters a tree if everywhere in the tree is reached by some ℋ h ∈ ℋ
• The Littlestone dimension is the max depth of any tree shattersLdim(ℋ) ℋ
• Any algorithm must have A MA(ℋ) ≥ Ldim(ℋ)
• If can shatter a set, it can shatter any tree from that setℋ
• VCdim(ℋ) ≤ Ldim(ℋ)

7

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Littlestone dimension examples
• If is finite, can’t shatter a full tree deeper than ℋ log2|ℋ|

8

Littlestone dimension examples
• If is finite, can’t shatter a full tree deeper than ℋ log2|ℋ|
• If , , have 6 = [d] ℋ = {x ↦ 9(x = i) : i ∈ [d]} Ldim(ℋ) = 1

8

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Littlestone dimension examples
• If is finite, can’t shatter a full tree deeper than ℋ log2|ℋ|
• If , , have 6 = [d] ℋ = {x ↦ 9(x = i) : i ∈ [d]} Ldim(ℋ) = 1
• If and , have (!)6 = [0,1] ℋ = {x ↦ 9(x ≤ a) : a ∈ [0,1]} Ldim(ℋ) = ∞

8

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

9

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1

9

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1
• If not, Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})

9

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1
• If not, Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})
• Then combine shattered trees into one shattered tree of depth Ldim(Vt) + 1

9

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1
• If not, Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})
• Then combine shattered trees into one shattered tree of depth Ldim(Vt) + 1
• But then …contradictionLdim(Vt) = Ldim(Vt) + 1

9

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1
• If not, Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})
• Then combine shattered trees into one shattered tree of depth Ldim(Vt) + 1
• But then …contradictionLdim(Vt) = Ldim(Vt) + 1

• Thus , the best possible mistake boundM:;<(ℋ) = Ldim(ℋ)

9

Standard Optimal Algorithm
• Like Halving, but tries to reduce Littlestone dimension instead of cardinality:
• Start with the version space V1 = ℋ
• Given , predict xt ̂yt ∈ argmaxr∈{0,1} Ldim ({h ∈ Vt : h(xt) = r})
• Seeing , update yt Vt+1 = {h ∈ Vt : h(xt) = yt}

• Whenever we make a mistake, :Ldim(Vt+1) ≤ Ldim(Vt) − 1
• If not, Ldim ({h ∈ Vt : h(xt) = 0}) = Ldim(Vt) = Ldim ({h ∈ Vt : h(xt) = 1})
• Then combine shattered trees into one shattered tree of depth Ldim(Vt) + 1
• But then …contradictionLdim(Vt) = Ldim(Vt) + 1

• Thus , the best possible mistake boundM:;<(ℋ) = Ldim(ℋ)
• But SOA is not necessarily easy to compute!

9

(pause)

10

You could use this time to do

https://seoi.ubc.ca/surveys

(if you want)

https://seoi.ubc.ca/surveys

Unrealizable online learning
• In the batch setting:
• Realizable PAC assumes labels come from h* ∈ ℋ
• Agnostic PAC just has us compete with best h* ∈ ℋ

• In the online setting:
• Realizable assumes labels come from h* ∈ ℋ

11

Unrealizable online learning
• In the batch setting:
• Realizable PAC assumes labels come from h* ∈ ℋ
• Agnostic PAC just has us compete with best h* ∈ ℋ

• In the online setting:
• Realizable assumes labels come from h* ∈ ℋ
• Unrealizable has us compete with best h* ∈ ℋ

11

Unrealizable online learning
• In the batch setting:
• Realizable PAC assumes labels come from h* ∈ ℋ
• Agnostic PAC just has us compete with best h* ∈ ℋ

• In the online setting:
• Realizable assumes labels come from h* ∈ ℋ
• Unrealizable has us compete with best h* ∈ ℋ

RegretA(h, T) = sup
(x1,y1),…,(xT,yT) [

T

∑
t=1

| ̂yt − yt| −
T

∑
t=1

|h(xt) − yt|]

11

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Unrealizable online learning
• In the batch setting:
• Realizable PAC assumes labels come from h* ∈ ℋ
• Agnostic PAC just has us compete with best h* ∈ ℋ

• In the online setting:
• Realizable assumes labels come from h* ∈ ℋ
• Unrealizable has us compete with best h* ∈ ℋ

RegretA(h, T) = sup
(x1,y1),…,(xT,yT) [

T

∑
t=1

| ̂yt − yt| −
T

∑
t=1

|h(xt) − yt|]
RegretA(ℋ, T) = sup

h∈ℋ
RegretA(h, T)

11

Unrealizable online learning
• In the batch setting:
• Realizable PAC assumes labels come from h* ∈ ℋ
• Agnostic PAC just has us compete with best h* ∈ ℋ

• In the online setting:
• Realizable assumes labels come from h* ∈ ℋ
• Unrealizable has us compete with best h* ∈ ℋ

RegretA(h, T) = sup
(x1,y1),…,(xT,yT) [

T

∑
t=1

| ̂yt − yt| −
T

∑
t=1

|h(xt) − yt|]
RegretA(ℋ, T) = sup

h∈ℋ
RegretA(h, T)

• Ideally, we want sublinear regret: 1
T RegretA(ℋ, T) T→∞ 0

11

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}

12

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT

12

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT

12

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2

12

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

12

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

• To avoid this:

12

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

• To avoid this:
• Learner has random prediction, Pr(̂yt = 1) = pt

12

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

• To avoid this:
• Learner has random prediction, Pr(̂yt = 1) = pt
• Adversary commits to without knowing the rollyt

12

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

• To avoid this:
• Learner has random prediction, Pr(̂yt = 1) = pt
• Adversary commits to without knowing the rollyt

12

Regret: impossible to avoid
• Regret: “how much better it would have been to just play every time”h(xt)
• Consider ℋ = {x ↦ 0, x ↦ 1}
• Adversary could always just say “no, you’re wrong” and get mistakesT
• For any sequence of true , either or has mistakesyt x ↦ 0 x ↦ 1 ≤ T

2
• So regret would be at least T− T

2 = T
2

• To avoid this:
• Learner has random prediction, Pr(̂yt = 1) = pt
• Adversary commits to without knowing the rollyt
• Measure expected loss Pr(̂yt ≠ yt) = |pt − yt|

12

Low regret for online classification

• For every , there’s an algorithm with  
 

• Also a lower bound of  

• Based on Weighted-Majority algorithm for learning with expert advice

ℋ
RegretA(ℋ, T) ≤ 2 min (log|ℋ|, (1 + log T) Ldim(ℋ)) T

Ω (Ldim(ℋ) T)

13

Learning from expert advice
• There are available experts who make predictionsd

14

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i

14

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩

14

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:

14

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T

14

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…

14

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…
• Follow with probabilities wt = w̃t / ∥wt∥1

14

Mobile User

Mobile User

Mobile User

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…
• Follow with probabilities wt = w̃t / ∥wt∥1
• Update based on costs as (exp is elementwise)vt w̃t+1 = w̃t exp(−ηvt)

14

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…
• Follow with probabilities wt = w̃t / ∥wt∥1
• Update based on costs as (exp is elementwise)vt w̃t+1 = w̃t exp(−ηvt)

• Theorem (SSBD 21.11): if ∑T
t=1 ⟨wt, vt⟩ − mini∈[d] ∑T

t=1 (vt)i ≤ 2 log(d) T T > 2 log d

14

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…
• Follow with probabilities wt = w̃t / ∥wt∥1
• Update based on costs as (exp is elementwise)vt w̃t+1 = w̃t exp(−ηvt)

• Theorem (SSBD 21.11): if ∑T
t=1 ⟨wt, vt⟩ − mini∈[d] ∑T

t=1 (vt)i ≤ 2 log(d) T T > 2 log d

• Can avoid knowing by doubling trick: run for , , , … sequentiallyT T = 1 T = 2 T = 4

14

Learning from expert advice
• There are available experts who make predictionsd
• At time , learner chooses to follow expert with probability t i (wt)i
• Sees potential costs ; pays expectation vt ∈ ℝd ⟨wt, vt⟩
• Weighted-Majority algorithm:
• Start with ; w̃1 = (1,…,1) η = 2 log(d) / T
• For t = 1,2,…
• Follow with probabilities wt = w̃t / ∥wt∥1
• Update based on costs as (exp is elementwise)vt w̃t+1 = w̃t exp(−ηvt)

• Theorem (SSBD 21.11): if ∑T
t=1 ⟨wt, vt⟩ − mini∈[d] ∑T

t=1 (vt)i ≤ 2 log(d) T T > 2 log d

• Can avoid knowing by doubling trick: run for , , , … sequentiallyT T = 1 T = 2 T = 4
• Only blows up regret by x (SSBD exercise 21.4)< 3.5

14

Low regret for online classification

• For finite , we can just run Weighted-Majority with each ℋ h ∈ ℋ

15

Low regret for online classification

• For finite , we can just run Weighted-Majority with each ℋ h ∈ ℋ
• Plugging in previous theorem, RegretEF(ℋ, T) ≤ 2 log|ℋ| T

15

Low regret for online classification

• For finite , we can just run Weighted-Majority with each ℋ h ∈ ℋ
• Plugging in previous theorem, RegretEF(ℋ, T) ≤ 2 log|ℋ| T

• For infinite , we need a not-too-big set of experts where one is still goodℋ

15

Low regret for online classification

• For finite , we can just run Weighted-Majority with each ℋ h ∈ ℋ
• Plugging in previous theorem, RegretEF(ℋ, T) ≤ 2 log|ℋ| T

• For infinite , we need a not-too-big set of experts where one is still goodℋ
• Expert() runs SOA on , 

but takes choice with smaller Ldim on indices
i1, i2, …, iL x1, …, xT

i1, i2, …, iL

15

Low regret for online classification

• For finite , we can just run Weighted-Majority with each ℋ h ∈ ℋ
• Plugging in previous theorem, RegretEF(ℋ, T) ≤ 2 log|ℋ| T

• For infinite , we need a not-too-big set of experts where one is still goodℋ
• Expert() runs SOA on , 

but takes choice with smaller Ldim on indices
i1, i2, …, iL x1, …, xT

i1, i2, …, iL
• Can show (21.13-14) that one expert is as good as the best , 

and there aren’t too many of them,  
giving

h ∈ ℋ

RegretA(ℋ, T) ≤ 2(1 + log T) Ldim(ℋ) T

15

Online convex optimization
• Online convex optimization is
• Convex hypothesis class ℋ
• At each step: learner picks , environment picks convex loss wt ∈ ℋ ℓt(wt)

16

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Online convex optimization
• Online convex optimization is
• Convex hypothesis class ℋ
• At each step: learner picks , environment picks convex loss wt ∈ ℋ ℓt(wt)

• , Regret(w*, T) =
T

∑
t=1

ℓt(wt) −
T

∑
t=1

ℓt(w*) Regret(ℋ, T) = sup
w*∈ℋ

Regret(w*, T)

16

Online convex optimization
• Online convex optimization is
• Convex hypothesis class ℋ
• At each step: learner picks , environment picks convex loss wt ∈ ℋ ℓt(wt)

• , Regret(w*, T) =
T

∑
t=1

ℓt(wt) −
T

∑
t=1

ℓt(w*) Regret(ℋ, T) = sup
w*∈ℋ

Regret(w*, T)

• Online gradient descent (exactly like SGD) has:

16

Online convex optimization
• Online convex optimization is
• Convex hypothesis class ℋ
• At each step: learner picks , environment picks convex loss wt ∈ ℋ ℓt(wt)

• , Regret(w*, T) =
T

∑
t=1

ℓt(wt) −
T

∑
t=1

ℓt(w*) Regret(ℋ, T) = sup
w*∈ℋ

Regret(w*, T)

• Online gradient descent (exactly like SGD) has:

• where are step directionsRegret(w*, T) ≤ ∥w*∥2

2η
+ η

2
T

∑
t=1

∥vt∥2 vt ∈ ∂ℓt(wt)

16

Online convex optimization
• Online convex optimization is
• Convex hypothesis class ℋ
• At each step: learner picks , environment picks convex loss wt ∈ ℋ ℓt(wt)

• , Regret(w*, T) =
T

∑
t=1

ℓt(wt) −
T

∑
t=1

ℓt(w*) Regret(ℋ, T) = sup
w*∈ℋ

Regret(w*, T)

• Online gradient descent (exactly like SGD) has:

• where are step directionsRegret(w*, T) ≤ ∥w*∥2

2η
+ η

2
T

∑
t=1

∥vt∥2 vt ∈ ∂ℓt(wt)

• if are -Lipschitz, Regret(w*, T) ≤ 1
2 (∥w*∥2 + ρ2) T ℓt ρ η = 1/ T

16

Online convex optimization
• Online convex optimization is
• Convex hypothesis class ℋ
• At each step: learner picks , environment picks convex loss wt ∈ ℋ ℓt(wt)

• , Regret(w*, T) =
T

∑
t=1

ℓt(wt) −
T

∑
t=1

ℓt(w*) Regret(ℋ, T) = sup
w*∈ℋ

Regret(w*, T)

• Online gradient descent (exactly like SGD) has:

• where are step directionsRegret(w*, T) ≤ ∥w*∥2

2η
+ η

2
T

∑
t=1

∥vt∥2 vt ∈ ∂ℓt(wt)

• if are -Lipschitz, Regret(w*, T) ≤ 1
2 (∥w*∥2 + ρ2) T ℓt ρ η = 1/ T

• if are -Lipschitz, is -bounded, Regret(w*, T) ≤ Bρ T ℓt ρ ℋ B η = B/(ρ T)
16

Online Perceptron

• You learned about Batch Perceptron in HW3

• Original algorithm is online

• Essentially identical, just only update on mistake

• Corresponds to online gradient descent on hinge loss

• Get same margin-based mistake bound

• Ldim = without the margin condition

(R/γ)2

∞

17

Online-to-batch conversion
• If we have a good online algorithm, we have a good batch algorithm:  

just run it on the batch

18

Online-to-batch conversion
• If we have a good online algorithm, we have a good batch algorithm:  

just run it on the batch
• MRT Lemma 8.14: If gives for , 

S ∼ #T h1, …, hT 0 ≤ ℓ(h, (x, y)) ≤ M
1
T

T

∑
t=1

L#(ht) ≤ 1
T

T

∑
t=1

ℓ(ht(xt), yt) + M
2
T

log 1
δ

18

Online-to-batch conversion
• If we have a good online algorithm, we have a good batch algorithm:  

just run it on the batch
• MRT Lemma 8.14: If gives for , 

S ∼ #T h1, …, hT 0 ≤ ℓ(h, (x, y)) ≤ M
1
T

T

∑
t=1

L#(ht) ≤ 1
T

T

∑
t=1

ℓ(ht(xt), yt) + M
2
T

log 1
δ

• MRT Theorem 8.15: if is also convex, 

ℓ(⋅ , z)

L# (1
T

T

∑
t=1

ht) ≤ inf
h∈ℋ

L#(h) + 1
T

RegretA(ℋ, T) + 2M
2
T

log 2
δ

18

(pause)

19

You could use this time to do

https://seoi.ubc.ca/surveys

(if you want)

https://seoi.ubc.ca/surveys

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ

20

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ
• for all that differ on a single element (i.e. one person’s data),S1, S2

20

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ
• for all that differ on a single element (i.e. one person’s data),S1, S2
• for all subsets , H ⊆ ℋ Pr(A(S1) ∈ H) ≤ exp(ε) Pr(A(S2) ∈ H) + δ

20

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ
• for all that differ on a single element (i.e. one person’s data),S1, S2
• for all subsets , H ⊆ ℋ Pr(A(S1) ∈ H) ≤ exp(ε) Pr(A(S2) ∈ H) + δ

• Called pure DP if  δ = 0

20

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ
• for all that differ on a single element (i.e. one person’s data),S1, S2
• for all subsets , H ⊆ ℋ Pr(A(S1) ∈ H) ≤ exp(ε) Pr(A(S2) ∈ H) + δ

• Called pure DP if  δ = 0

• Used in practice (US Census, Apple, …), tons of work on algorithms

20

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ
• for all that differ on a single element (i.e. one person’s data),S1, S2
• for all subsets , H ⊆ ℋ Pr(A(S1) ∈ H) ≤ exp(ε) Pr(A(S2) ∈ H) + δ

• Called pure DP if  δ = 0

• Used in practice (US Census, Apple, …), tons of work on algorithms
• Mijung Park and Mathias Lecuyer both work on this, 

teach courses (532P next fall, 538L now [but not next year])  

20

Differential privacy
• Randomized learning algorithm is called (,) differentially private ifA(S) ε δ
• for all that differ on a single element (i.e. one person’s data),S1, S2
• for all subsets , H ⊆ ℋ Pr(A(S1) ∈ H) ≤ exp(ε) Pr(A(S2) ∈ H) + δ

• Called pure DP if  δ = 0

• Used in practice (US Census, Apple, …), tons of work on algorithms
• Mijung Park and Mathias Lecuyer both work on this, 

teach courses (532P next fall, 538L now [but not next year])  

• Can be thought of as a particular form of stability

20

DP and online learning
• Feldman and Xiao 2014:  

Pure private PAC learning takes
 samples

• Related to communication complexity
Ω(Ldim(ℋ))

21 https://differentialprivacy.org/private-pac/

https://differentialprivacy.org/private-pac/

DP and online learning
• Feldman and Xiao 2014:  

Pure private PAC learning takes
 samples

• Related to communication complexity
Ω(Ldim(ℋ))

• Alon, Livni, Malliaris, Moran 2019:  
Approximate private PAC learning takes  

 samplesΩ(log*(Ldim(ℋ)))

21 https://differentialprivacy.org/private-pac/

 = iterated logarithm 
(number of atoms in the universe)

log*
log* ≈ 4

https://differentialprivacy.org/private-pac/

DP and online learning
• Feldman and Xiao 2014:  

Pure private PAC learning takes
 samples

• Related to communication complexity
Ω(Ldim(ℋ))

• Alon, Livni, Malliaris, Moran 2019:  
Approximate private PAC learning takes  

 samplesΩ(log*(Ldim(ℋ)))
• Bun, Livni, Moran 2020:  

Approximate private PAC learning in  
 samples

• analysis via “global stability”
2K(Ldim(ℋ))

21 https://differentialprivacy.org/private-pac/

 = iterated logarithm 
(number of atoms in the universe)

log*
log* ≈ 4

https://differentialprivacy.org/private-pac/

DP and online learning

• Can learn differentially privately iff can learn online

• Close connections via stability

• But huge gap in sample and time complexity

• Indications (Bun 2020) that converting one to the other isn’t possible

with polynomial time + sample complexity

• Still a lot to understand here

22

https://arxiv.org/abs/2007.05665

Some of the stuff we didn’t cover
• Multiclass learning: can use same techniques, need right loss

• Ranking: which search results are most relevant?
• Boosting: combine “weak learners” to a strong one (kind of like A3 Q3 b)

• Transfer learning / out-of-domain generalization / …: train on , test on

• Do ImageNet Classifiers Generalize to ImageNet? / The Ladder mechanism

• Robustness: what if we have some adversarially-corrupted training data?

• Unsupervised learning (just the PCA question on A1) 

 “How well can we ‘understand’ a data distribution?”

• Semi-supervised learning (just the algorithm from A4)

• Active learning: if s are available but labeling them is expensive,  

 can we choose which to label?

• Multi-armed bandits: which action should I take?

• Reinforcement learning: interacting with an environment with hidden state

• …

! !′

x

23

https://arxiv.org/abs/1902.10811
https://arxiv.org/abs/1502.04585

