Double Descent / Implicit Regularization + PAC-Bayes

CPSC 532S: Modern Statistical Learning Theory 30 March 2022 cs.ubc.ca/~dsuth/532S/22/

Admin

- A3 late-late deadline is tonight
- A4 out, due next Friday late deadline Sunday, late-late deadline Tuesday
- Last regular class is Monday
 - Overview of online learning, privacy (~equivalent), connection to stability
- Project presentations in class next Wednesday
 - Details were posted on Piazza a bit ago
 - Will post schedule tonight
- Project reports due next Friday usual late policy (-5 Saturday, -10 Sunday)
- Final will be take-home, available over most of the finals period Exact dates TBA – contact me if this really matters to you for whatever reason

Nakkiran et al. blog post's companion notebook

Nakkiran et al. blog post's companion notebook

 $L_{S}(w) = \frac{1}{2n} \|Xw - y\|^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with } n < d,$ of rank *n*

 $L_{S}(w) = \frac{1}{2n} \|Xw - y\|^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\top}(Xw - y)$ of rank *n*

 $L_{S}(w) = \frac{1}{2n} \|Xw - y\|^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\top} (Xw - y) \quad w_{0} = 0$ of rank *n*

 $L_{S}(w) = \frac{1}{2n} \|Xw - y\|^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\top}(Xw - y) \quad w_{0} = 0$ of rank *n*

 $w_k = w_{k-1} - \eta \nabla L_S(w_{k-1})$

 $L_{S}(w) = \frac{1}{2n} \|Xw - y\|^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\top} (Xw - y) \quad w_{0} = 0$ of rank *n*

 $w_k = w_{k-1} - \eta \nabla L_S(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right) w_{k-1} + \frac{\eta}{n} X^{\mathsf{T}} y$

 $L_{S}(w) = \frac{1}{2n} ||Xw - y||^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with}$ of rank *n*

 $w_k = w_{k-1} - \eta \nabla L_S(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right)$

$$n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\mathsf{T}} (Xw - y) \quad w_{0} = \tilde{\eta}$$

$$X = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\mathsf{T}} X)^{\ell} X^{\mathsf{T}} y$$

 $L_{S}(w) = \frac{1}{2n} ||Xw - y||^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with}$ of rank *n*

 $w_k = w_{k-1} - \eta \nabla L_S(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right)$

 $X = U \Sigma V^{\mathsf{T}}$

$$n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\mathsf{T}} (Xw - y) \quad w_{0} = \tilde{\eta}$$

$$X = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\mathsf{T}} X)^{\ell} X^{\mathsf{T}} y$$

 $L_{S}(w) = \frac{1}{2n} ||Xw - y||^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with}$ of rank *n*

 $w_k = w_{k-1} - \eta \nabla L_S(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right)$

 $X = U\Sigma V^{\mathsf{T}} = U\tilde{\Sigma}\tilde{V}^{\mathsf{T}}$

$$n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\mathsf{T}} (Xw - y) \quad w_{0} = \tilde{\eta}$$

$$X = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\mathsf{T}} X)^{\ell} X^{\mathsf{T}} y$$

$$L_{S}(w) = \frac{1}{2n} \|Xw - y\|^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\mathsf{T}} (Xw - y) \quad w_{0} = \frac{1}{n} \|Xw - y\|^{2} \quad \text{of rank } n$$

$$w_{k} = w_{k-1} - \eta \nabla L_{S}(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right) w_{k-1} + \frac{\eta}{n} X^{\mathsf{T}} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\mathsf{T}} X)^{\ell} X^{\mathsf{T}} y$$

 $X = U\Sigma V^{\mathsf{T}} = U\tilde{\Sigma}\tilde{V}^{\mathsf{T}} \quad \tilde{\Sigma} = \begin{bmatrix} \Sigma & 0 \end{bmatrix} \in \mathbb{R}^{n \times d}$

4

$$L_{S}(w) = \frac{1}{2n} \|Xw - y\|^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\top} (Xw - y) \quad w_{0} = 0$$

of rank n
$$w_{k} = w_{k-1} - \eta \nabla L_{S}(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\top} X\right) w_{k-1} + \frac{\eta}{n} X^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\top} X)^{\ell} X^{\top} y$$

$$X = U \Sigma V^{\top} = U \tilde{\Sigma} \tilde{V}^{\top} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{n \times d} \quad \tilde{V} = [V \quad V_{2}] \in \mathbb{R}^{d \times d}; \quad \tilde{V}^{\top} \tilde{V} = I = \tilde{V}$$

$$L_{S}(w) = \frac{1}{2n} \|Xw - y\|^{2} \quad \begin{array}{l} X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\top} (Xw - y) \quad w_{0} = 0 \\ \text{of rank } n & \tilde{\eta} \\ w_{k} = w_{k-1} - \eta \,\nabla L_{S}(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\top} X\right) w_{k-1} + \frac{\eta}{n} X^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\top} X)^{\ell} X^{\top} y \\ X = U \Sigma V^{\top} = U \tilde{\Sigma} \tilde{V}^{\top} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{n \times d} \quad \tilde{V} = \begin{bmatrix} V \quad V_{2} \end{bmatrix} \in \mathbb{R}^{d \times d}; \quad \tilde{V}^{\top} \tilde{V} = I = \tilde{V} \\ \end{array}$$

$$L_{S}(w) = \frac{1}{2n} \|Xw - y\|^{2} \quad \begin{array}{l} X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\top} (Xw - y) \quad w_{0} = 0 \\ \text{of rank } n & \tilde{\eta} \\ w_{k} = w_{k-1} - \eta \,\nabla L_{S}(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\top} X\right) w_{k-1} + \frac{\eta}{n} X^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\top} X)^{\ell} X^{\top} y \\ X = U \Sigma V^{\top} = U \tilde{\Sigma} \tilde{V}^{\top} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{n \times d} \quad \tilde{V} = [V \quad V_{2}] \in \mathbb{R}^{d \times d}; \quad \tilde{V}^{\top} \tilde{V} = I = \tilde{V} \\ \end{array}$$

$w_k = \tilde{\eta} \sum_{k=1}^{k-1} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} \tilde{\Sigma} \tilde{V}^{\mathsf{T}})^{\ell} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}} y$ $\ell = 0$

$$L_{S}(w) = \frac{1}{2n} \|Xw - y\|^{2} \quad \begin{array}{l} X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\mathsf{T}} (Xw - y) \quad w_{0} = 0 \\ \text{of rank } n & \tilde{\eta} \\ w_{k} = w_{k-1} - \eta \,\nabla L_{S}(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right) w_{k-1} + \frac{\eta}{n} X^{\mathsf{T}} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\mathsf{T}} X)^{\ell} X^{\mathsf{T}} y \\ X = U \Sigma V^{\mathsf{T}} = U \tilde{\Sigma} \tilde{V}^{\mathsf{T}} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{n \times d} \quad \tilde{V} = [V \quad V_{2}] \in \mathbb{R}^{d \times d}; \quad \tilde{V}^{\mathsf{T}} \tilde{V} = I = \tilde{V} \\ w_{k} = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} \tilde{\Sigma} \tilde{V}^{\mathsf{T}})^{\ell} \quad \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}} y = \tilde{\eta} \sum_{\ell=0}^{k-1} \tilde{V} \left(I - \tilde{\eta} \left[\sum_{\ell=0}^{2} 0 \right] \right)^{\ell} \quad \tilde{V}^{\mathsf{T}} \quad \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}} \end{array}$$

$$\begin{split} L_{S}(w) &= \frac{1}{2n} \|Xw - y\|^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\top} (Xw - y) \quad w_{0} = 0 \\ \text{of rank } n \quad & \tilde{\eta} \\ w_{k} &= w_{k-1} - \eta \, \nabla L_{S}(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\top} X\right) w_{k-1} + \frac{\eta}{n} X^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\top} X)^{\ell} X^{\top} y \\ X &= U \Sigma V^{\top} = U \tilde{\Sigma} \tilde{V}^{\top} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{n \times d} \quad \tilde{V} = [V \quad V_{2}] \in \mathbb{R}^{d \times d}; \quad \tilde{V}^{\top} \tilde{V} = I = \tilde{V} \\ w_{k} &= \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\top} \tilde{\Sigma} \tilde{V}^{\top})^{\ell} \quad \tilde{V} \tilde{\Sigma}^{\top} U^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} \tilde{V} \left(I - \tilde{\eta} \begin{bmatrix} \Sigma^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{\ell} \quad \tilde{V}^{\top} \quad \tilde{V} \tilde{\Sigma}^{\top} U^{\top} V \end{split}$$

$$L_{S}(w) = \frac{1}{2n} \|Xw - y\|^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\mathsf{T}} (Xw - y) \quad w_{0} = 0$$

of rank n
$$w_{k} = w_{k-1} - \eta \nabla L_{S}(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right) w_{k-1} + \frac{\eta}{n} X^{\mathsf{T}} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\mathsf{T}} X)^{\ell} X^{\mathsf{T}} y$$

$$X = U \Sigma V^{\mathsf{T}} = U \tilde{\Sigma} \tilde{V}^{\mathsf{T}} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{n \times d} \quad \tilde{V} = [V \quad V_{2}] \in \mathbb{R}^{d \times d}; \quad \tilde{V}^{\mathsf{T}} \tilde{V} = I = \tilde{V}$$

$$w_{k} = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} \tilde{\Sigma} \tilde{V}^{\mathsf{T}})^{\ell} \quad \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}} y = \tilde{\eta} \sum_{\ell=0}^{k-1} \tilde{V} \left(I - \tilde{\eta} \begin{bmatrix} \Sigma^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{\ell} \tilde{V}^{\mathsf{T}} \quad \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}}$$

$$L_{S}(w) = \frac{1}{2n} \|Xw - y\|^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\mathsf{T}} (Xw - y) \quad w_{0} = 0$$

of rank n
$$w_{k} = w_{k-1} - \eta \nabla L_{S}(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right) w_{k-1} + \frac{\eta}{n} X^{\mathsf{T}} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\mathsf{T}} X)^{\ell} X^{\mathsf{T}} y$$

$$X = U \Sigma V^{\mathsf{T}} = U \tilde{\Sigma} \tilde{V}^{\mathsf{T}} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{n \times d} \quad \tilde{V} = [V \quad V_{2}] \in \mathbb{R}^{d \times d}; \quad \tilde{V}^{\mathsf{T}} \tilde{V} = I = \tilde{V}$$

$$w_{k} = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} \tilde{\Sigma} \tilde{V}^{\mathsf{T}})^{\ell} \quad \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}} y = \tilde{\eta} \sum_{\ell=0}^{k-1} \tilde{V} \left(I - \tilde{\eta} \begin{bmatrix} \Sigma^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{\ell} \tilde{V}^{\mathsf{T}} \quad \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}}$$

$= \tilde{\eta} \sum_{\ell=0}^{k-1} \begin{bmatrix} V & V_2 \end{bmatrix} \begin{bmatrix} (I - \tilde{\eta} \Sigma^2)^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} U^{\mathsf{T}} y$

$$\begin{split} L_{S}(w) &= \frac{1}{2n} \|Xw - y\|^{2} \quad \begin{array}{l} X \in \mathbb{R}^{n \times d} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\top} (Xw - y) \quad w_{0} \\ \text{of rank } n \quad & \tilde{\eta} \\ w_{k} &= w_{k-1} - \eta \nabla L_{S}(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\top} X\right) w_{k-1} + \frac{\eta}{n} X^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\top} X)^{\ell} X^{\top} y \\ X &= U \Sigma V^{\top} = U \tilde{\Sigma} \tilde{V}^{\top} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{n \times d} \quad \tilde{V} = [V \quad V_{2}] \in \mathbb{R}^{d \times d}; \quad \tilde{V}^{\top} \tilde{V} = I = \tilde{V} \\ w_{k} &= \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\top} \tilde{\Sigma} \tilde{V}^{\top})^{\ell} \quad \tilde{V} \tilde{\Sigma}^{\top} U^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} \tilde{V} \left(I - \tilde{\eta} \left[\sum_{0}^{2^{2}} 0 \\ 0 & 0 \end{array} \right] \right)^{\ell} \quad \tilde{V}^{\top} \quad \tilde{V} \tilde{\Sigma}^{\top} U^{\top} y \\ &= \tilde{\eta} \sum_{\ell=0}^{k-1} \left[V \quad V_{2} \right] \begin{bmatrix} (I - \tilde{\eta} \Sigma^{2})^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} U^{\top} y \quad &= \tilde{\eta} \sum_{\ell=0}^{k-1} V (I - \tilde{\eta} \Sigma^{2})^{\ell} \Sigma U^{\top} y \end{split}$$

$$\begin{split} L_{S}(w) &= \frac{1}{2n} \|Xw - y\|^{2} \quad \stackrel{X \in \mathbb{R}^{n \times d}}{\text{of rank } n} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\top} (Xw - y) \quad w_{0} = 0 \\ w_{k} &= w_{k-1} - \eta \nabla L_{S}(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\top} X\right) w_{k-1} + \frac{\eta}{n} X^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\top} X)^{\ell} X^{\top} y \\ X &= U \Sigma V^{\top} = U \tilde{\Sigma} \tilde{V}^{\top} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{n \times d} \quad \tilde{V} = [V \quad V_{2}] \in \mathbb{R}^{d \times d}; \quad \tilde{V}^{\top} \tilde{V} = I = \tilde{V} \\ w_{k} &= \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\top} \tilde{\Sigma} \tilde{V}^{\top})^{\ell} \quad \tilde{V} \tilde{\Sigma}^{\top} U^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} \tilde{V} \left(I - \tilde{\eta} \left[\sum_{0}^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{\ell} \quad \tilde{V}^{\top} \quad \tilde{V} \tilde{\Sigma}^{\top} U^{\top} y \\ &= \tilde{\eta} \sum_{\ell=0}^{k-1} [V \quad V_{2}] \begin{bmatrix} (I - \tilde{\eta} \Sigma^{2})^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} U^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} V (I - \tilde{\eta} \Sigma^{2})^{\ell} \Sigma U^{\top} y \\ &= \tilde{\eta} \sum_{\ell=0}^{k-1} [V \quad V_{2}] \begin{bmatrix} (I - \tilde{\eta} \Sigma^{2})^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} U^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} V (I - \tilde{\eta} \Sigma^{2})^{\ell} \Sigma U^{\top} y \\ &= \tilde{\eta} \sum_{\ell=0}^{k-1} [V \quad V_{2}] \begin{bmatrix} (I - \tilde{\eta} \Sigma^{2})^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} U^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} V (I - \tilde{\eta} \Sigma^{2})^{\ell} \Sigma U^{\top} y \end{bmatrix}$$

$$\begin{split} L_{S}(w) &= \frac{1}{2n} \|Xw - y\|^{2} \quad \stackrel{X \in \mathbb{R}^{n \times d}}{\text{of rank } n} \text{ with } n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\mathsf{T}} (Xw - y) \quad w_{0} = 0 \\ w_{k} &= w_{k-1} - \eta \, \nabla L_{S}(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right) w_{k-1} + \frac{\eta}{n} X^{\mathsf{T}} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\mathsf{T}} X)^{\ell} X^{\mathsf{T}} y \\ X &= U \Sigma V^{\mathsf{T}} = U \tilde{\Sigma} \tilde{V}^{\mathsf{T}} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{n \times d} \quad \tilde{V} = \begin{bmatrix} V \quad V_{2} \end{bmatrix} \in \mathbb{R}^{d \times d}; \quad \tilde{V}^{\mathsf{T}} \tilde{V} = I = \tilde{V} \\ w_{k} &= \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} \tilde{\Sigma} \tilde{V}^{\mathsf{T}})^{\ell} \quad \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}} y = \tilde{\eta} \sum_{\ell=0}^{k-1} \tilde{V} \left(I - \tilde{\eta} \begin{bmatrix} \Sigma^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{\ell} \quad \tilde{V}^{\mathsf{T}} \quad \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}} \\ &= \tilde{\eta} \sum_{\ell=0}^{k-1} \begin{bmatrix} V \quad V_{2} \end{bmatrix} \begin{bmatrix} (I - \tilde{\eta} \Sigma^{2})^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} U^{\mathsf{T}} y = \tilde{\eta} \sum_{\ell=0}^{k-1} V (I - \tilde{\eta} \Sigma^{2})^{\ell} \Sigma U^{\mathsf{T}} y \\ &= \tilde{\eta} \sum_{\ell=0}^{k-1} \begin{bmatrix} V \quad V_{2} \end{bmatrix} \begin{bmatrix} (I - \tilde{\eta} \Sigma^{2})^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} U^{\mathsf{T}} y = \tilde{\eta} \sum_{\ell=0}^{k-1} V (I - \tilde{\eta} \Sigma^{2})^{\ell} \Sigma U^{\mathsf{T}} y \\ &= \tilde{\eta} \sum_{\ell=0}^{k-1} \begin{bmatrix} V \quad V_{2} \end{bmatrix} \begin{bmatrix} (I - \tilde{\eta} \Sigma^{2})^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} U^{\mathsf{T}} y = \tilde{\eta} \sum_{\ell=0}^{k-1} V (I - \tilde{\eta} \Sigma^{2})^{\ell} \Sigma U^{\mathsf{T}} y \end{bmatrix}$$

 $= \tilde{\eta} V \left[\sum_{\ell=0}^{k-1} (I - \tilde{\eta} \Sigma^2)^{\ell} \right] \Sigma U^{\mathsf{T}} y$

 $L_{S}(w) = \frac{1}{2n} ||Xw - y||^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with}$ of rank *n* $w_k = w_{k-1} - \eta \nabla L_S(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right)$ $X = U\Sigma V^{\mathsf{T}} = U\tilde{\Sigma}\tilde{V}^{\mathsf{T}} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{\mathsf{T}}$ $w_k = \tilde{\eta} \sum_{k=1}^{N} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} \tilde{\Sigma} \tilde{V}^{\mathsf{T}})^{\ell} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}} y$ $\ell = 0$ $= \tilde{\eta} \sum_{k=1}^{k-1} \begin{bmatrix} V & V_2 \end{bmatrix} \begin{bmatrix} (I - \tilde{\eta} \Sigma^2)^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix}$ $\ell = 0$ $= \tilde{\eta} V \left[\sum_{\ell=0}^{k-1} (I - \tilde{\eta} \Sigma^2)^{\ell} \right] \Sigma U^{\mathsf{T}} y$ Neumann series: $\sum_{\ell=0}^{\infty} A^{\ell} = (I - A)^{-1}$ when $||A||_{op} < 1$

 $L_{S}(w) = \frac{1}{2n} ||Xw - y||^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with}$ of rank *n* $w_k = w_{k-1} - \eta \nabla L_S(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right)$ $X = U\Sigma V^{\mathsf{T}} = U\tilde{\Sigma}\tilde{V}^{\mathsf{T}} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{\mathsf{T}}$ $w_k = \tilde{\eta} \sum_{k=1}^{N} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} \tilde{\Sigma} \tilde{V}^{\mathsf{T}})^{\ell} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}} y$ $\ell = 0$ $= \tilde{\eta} \sum_{k=1}^{k-1} \begin{bmatrix} V & V_2 \end{bmatrix} \begin{bmatrix} (I - \tilde{\eta} \Sigma^2)^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix}$ $\ell = 0$ $= \tilde{\eta} V \left[\sum_{\ell=0}^{k-1} (I - \tilde{\eta} \Sigma^2)^{\ell} \right] \Sigma U^{\mathsf{T}} y$ Neumann series: $\sum_{\ell=0}^{\infty} A^{\ell} = (I - A)^{-1}$ when $||A||_{op} < 1$ $\tilde{\eta} < 2/\lambda_{max}(\Sigma^2)$

$$n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\top} (Xw - y) \quad w_{0} = \tilde{\eta}$$

$$X = \int W_{k-1} + \frac{\eta}{n} X^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\top} X)^{\ell} X^{\top} y$$

$$n \times d \quad \tilde{V} = \begin{bmatrix} V \quad V_{2} \end{bmatrix} \in \mathbb{R}^{d \times d}; \quad \tilde{V}^{\top} \tilde{V} = I = \tilde{V}$$

$$= \tilde{\eta} \sum_{\ell=0}^{k-1} \tilde{V} \left(I - \tilde{\eta} \begin{bmatrix} \Sigma^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{\ell} \quad \tilde{V}^{\top} \quad \tilde{V} \tilde{\Sigma}^{\top} U^{\top}$$

$$\int U^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} V (I - \tilde{\eta} \Sigma^{2})^{\ell} \Sigma U^{\top} y$$

 $L_{S}(w) = \frac{1}{2n} ||Xw - y||^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with}$ of rank *n* $w_k = w_{k-1} - \eta \nabla L_S(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right)$ $X = U\Sigma V^{\mathsf{T}} = U\tilde{\Sigma}\tilde{V}^{\mathsf{T}} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{\mathsf{T}}$ $w_k = \tilde{\eta} \sum_{k=1}^{N} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} \tilde{\Sigma} \tilde{V}^{\mathsf{T}})^{\ell} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}} y$ $\ell = 0$ $= \tilde{\eta} \sum_{k=1}^{k-1} \begin{bmatrix} V & V_2 \end{bmatrix} \begin{bmatrix} (I - \tilde{\eta} \Sigma^2)^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix}$ $\ell = 0$ $= \tilde{\eta} V \left[\sum_{\ell=0}^{k-1} (I - \tilde{\eta} \Sigma^2)^{\ell} \right] \Sigma U^{\mathsf{T}} y \to \tilde{\eta} V$ Neumann series: $\sum_{\ell=0}^{\infty} A^{\ell} = (I - A)^{-1}$ when $||A||_{op} < 1$ $\tilde{\eta} < 2/\lambda_{max}(\Sigma^2)$

$$n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\mathsf{T}} (Xw - y) \quad w_{0} = \tilde{\eta} X$$

$$\left[I - (I - \tilde{\eta}\Sigma^2)\right]^{-1}\Sigma U^{\mathsf{T}} y$$

 $L_{S}(w) = \frac{1}{2n} ||Xw - y||^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with}$ of rank *n* $w_k = w_{k-1} - \eta \nabla L_S(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right)$ $X = U\Sigma V^{\mathsf{T}} = U\tilde{\Sigma}\tilde{V}^{\mathsf{T}} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{\mathsf{T}}$ $w_k = \tilde{\eta} \sum_{k=1}^{n} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} \tilde{\Sigma} \tilde{V}^{\mathsf{T}})^{\ell} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}} y$ $\ell = 0$ $= \tilde{\eta} \sum_{k=1}^{k-1} \begin{bmatrix} V & V_2 \end{bmatrix} \begin{bmatrix} (I - \tilde{\eta} \Sigma^2)^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix}$ $\ell = 0$ $= \tilde{\eta} V \left[\sum_{\ell=0}^{k-1} (I - \tilde{\eta} \Sigma^2)^{\ell} \right] \Sigma U^{\mathsf{T}} y \to \tilde{\eta} V \left[I - (I - \tilde{\eta} \Sigma^2) \right]^{-1} \Sigma U^{\mathsf{T}} y = V \Sigma^{-1} U^{\mathsf{T}} y$ Neumann series: $\sum_{\ell=0}^{\infty} A^{\ell} = (I - A)^{-1}$ when $||A||_{\text{op}} < 1$ $\tilde{\eta} < 2/\lambda_{\max}(\Sigma^2)$

$$n < d, \quad \nabla L_{S}(w) = \frac{1}{n} X^{\top} (Xw - y) \quad w_{0} = \tilde{\eta}$$

$$K = \int W_{k-1} + \frac{\eta}{n} X^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} (I - \tilde{\eta} X^{\top} X)^{\ell} X^{\top} y$$

$$n \times d \quad \tilde{V} = \begin{bmatrix} V \quad V_{2} \end{bmatrix} \in \mathbb{R}^{d \times d}; \quad \tilde{V}^{\top} \tilde{V} = I = \tilde{V}$$

$$= \tilde{\eta} \sum_{\ell=0}^{k-1} \tilde{V} \left(I - \tilde{\eta} \begin{bmatrix} \Sigma^{2} & 0 \\ 0 & 0 \end{bmatrix} \right)^{\ell} \quad \tilde{V}^{\top} \quad \tilde{V} \tilde{\Sigma}^{\top} U^{\top}$$

$$\int U^{\top} y = \tilde{\eta} \sum_{\ell=0}^{k-1} V (I - \tilde{\eta} \Sigma^{2})^{\ell} \Sigma U^{\top} y$$

 $L_{S}(w) = \frac{1}{2n} ||Xw - y||^{2} \quad X \in \mathbb{R}^{n \times d} \text{ with}$ of rank *n* $w_k = w_{k-1} - \eta \nabla L_S(w_{k-1}) = \left(I - \frac{\eta}{n} X^{\mathsf{T}} X\right)$ $X = U\Sigma V^{\mathsf{T}} = U\tilde{\Sigma}\tilde{V}^{\mathsf{T}} \quad \tilde{\Sigma} = [\Sigma \quad 0] \in \mathbb{R}^{\mathsf{T}}$ $w_k = \tilde{\eta} \sum_{k=1}^{n} (I - \tilde{\eta} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} \tilde{\Sigma} \tilde{V}^{\mathsf{T}})^{\ell} \tilde{V} \tilde{\Sigma}^{\mathsf{T}} U^{\mathsf{T}} y$ $\ell = 0$ $= \tilde{\eta} \sum_{k=1}^{k-1} \begin{bmatrix} V & V_2 \end{bmatrix} \begin{bmatrix} (I - \tilde{\eta} \Sigma^2)^{\ell} & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix}$ $\ell = 0$ $= \tilde{\eta} V \left[\sum_{\ell=0}^{k-1} (I - \tilde{\eta} \Sigma^2)^{\ell} \right] \Sigma U^{\mathsf{T}} y \to \tilde{\eta} V \left[I - (I - \tilde{\eta} \Sigma^2) \right]^{-1} \Sigma U^{\mathsf{T}} y = V \Sigma^{-1} U^{\mathsf{T}} y = X^{\dagger} y$ Neumann series: $\sum_{\ell=0}^{\infty} A^{\ell} = (I - A)^{-1}$ when $||A||_{\text{op}} < 1$ $\tilde{\eta} < 2/\lambda_{\max}(\Sigma^2)$

• We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$

• We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$

• We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$

- So, the 1,000-degree polynomial picture is what GD would give
- If we track $w_0 \neq 0$ in same analysis, get $w_{\infty} = V_2 V_2^{\mathsf{T}} w_0 + X^{\dagger} y$ (proof)

• We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$

- Does this same idea hold for other losses / models? Not necessarily.
- So, the 1,000-degree polynomial picture is what GD would give
- If we track $w_0 \neq 0$ in same analysis, get $w_{\infty} = V_2 V_2^{\mathsf{T}} w_0 + X^{\dagger} y$ (proof)

• We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$

- Does this same idea hold for other losses / models? Not necessarily.
- So, the 1,000-degree polynomial picture is what GD would give
 - Logistic regression:

• We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$

- Does this same idea hold for other losses / models? Not necessarily.
- So, the 1,000-degree polynomial picture is what GD would give
 - Logistic regression:
 - Separable: norm diverges in direction of max-margin separator (Soudry et al.)

• We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$

- So, the 1,000-degree polynomial picture is what GD would give Does this same idea hold for other losses / models? Not necessarily.
- - Logistic regression:
 - Separable: norm diverges in direction of max-margin separator (Soudry et al.) Non-separable: biased towards max-margin, but complicated (<u>Ji/Telgarsky</u>)

• We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$

- So, the 1,000-degree polynomial picture is what GD would give • Does this same idea hold for other losses / models? Not necessarily.
- - Logistic regression:
 - Separable: norm diverges in direction of max-margin separator (Soudry et al.) • Non-separable: biased towards max-margin, but complicated (Ji/Telgarsky)

 - Also see <u>Telgarsky notes section 10</u>

• We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$

- So, the 1,000-degree polynomial picture is what GD would give • Does this same idea hold for other losses / models? Not necessarily.
- - Logistic regression:
 - Separable: norm diverges in direction of max-margin separator (Soudry et al.) • Non-separable: biased towards max-margin, but complicated (Ji/Telgarsky) • Also see <u>Telgarsky notes section 10</u>
 - Matrix factorization models: <u>conjectured</u> min nuclear norm, slightly controversial

Implicit regularization of gradient descent

• We just showed that gradient descent for OLS with X of rank n, starting from zero with $\eta < 2n / \sigma_{\max}(X)^2$, converges to the minimum-norm interpolator $X^{\dagger}y$

• If we track $w_0 \neq 0$ in same analysis, get $w_{\infty} = V_2 V_2^{\top} w_0 + X^{\dagger} y$ (proof)

- So, the 1,000-degree polynomial picture is what GD would give • Does this same idea hold for other losses / models? Not necessarily.
- - Logistic regression:
 - Separable: norm diverges in direction of max-margin separator (Soudry et al.) • Non-separable: biased towards max-margin, but complicated (Ji/Telgarsky) Also see <u>Telgarsky notes section 10</u>
 - Matrix factorization models: <u>conjectured</u> min nuclear norm, slightly controversial
 - Deep learning: ???

model predictors $h_{n,N}$ learned on a subset of MNIST ($n = 10^4$, 10 classes). The interpolation threshold is achieved at $N = 10^4$.

Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient ℓ_2 norms (log scale), and training risks of the RFF 6

Classical regime (left of peak): unique ERM

model predictors $h_{n,N}$ learned on a subset of MNIST ($n = 10^4$, 10 classes). The interpolation threshold is achieved at $N = 10^4$.

Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient ℓ_2 norms (log scale), and training risks of the RFF 6

Classical regime (left of peak): unique ERM

model predictors $h_{n,N}$ learned on a subset of MNIST ($n = 10^4$, 10 classes). The interpolation threshold is achieved at $N = 10^4$.

Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient ℓ_2 norms (log scale), and training risks of the RFF 6

Classical regime (left of peak): unique ERM

model predictors $h_{n,N}$ learned on a subset of MNIST ($n = 10^4$, 10 classes). The interpolation threshold is achieved at $N = 10^4$.

Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient ℓ_2 norms (log scale), and training risks of the RFF 6

Fig. 3. interpolation threshold (black dashed line) is observed at $n \cdot K$.

Double-descent risk curve for a fully connected neural network Fig. 4. Double-descent risk curve for random forests on MNIST. The doubleon MNIST. Shown are training and test risks of a network with a single descent risk curve is observed for random forests with increasing model layer of H hidden units, learned on a subset of MNIST ($n = 4 \cdot 10^3$, d = 784, complexity trained on a subset of MNIST ($n = 10^4$, 10 classes). Its complex-K = 10 classes). The number of parameters is $(d + 1) \cdot H + (H + 1) \cdot K$. The ity is controlled by the number of trees N_{tree} and the maximum number of leaves allowed for each tree N_{leaf}^{max} .

More data hurts!

75 100 125 150 175 200 Embedding Dimension (Transformer Model Size)

Nakkiran et al. ICLR-20

Test Error

procedure \mathcal{T} , with respect to distribution \mathcal{D} and parameter $\epsilon > 0$, is defined as:

where $\operatorname{Error}_{S}(M)$ is the mean error of model M on train samples S.

Our main hypothesis can be informally stated as follows:

predicting labels based on n samples from D then:

that increases its effective complexity will decrease the test error.

that increases its effective complexity will decrease the test error.

effective complexity might decrease or increase the test error.

Definition 1 (Effective Model Complexity) *The* Effective Model Complexity (*EMC*) of a training

- $\mathrm{EMC}_{\mathcal{D},\epsilon}(\mathcal{T}) := \max \left\{ n \mid \mathbb{E}_{S \sim \mathcal{D}^n}[\mathrm{Error}_S(\mathcal{T}(S))] \le \epsilon \right\}$
- Hypothesis 1 (Generalized Double Descent hypothesis, informal) For any natural data distribution D, neural-network-based training procedure T, and small $\epsilon > 0$, if we consider the task of
- **Under-paremeterized regime.** If $\text{EMC}_{\mathcal{D},\epsilon}(\mathcal{T})$ is sufficiently smaller than n, any perturbation of \mathcal{T}
- **Over-parameterized regime.** If $\text{EMC}_{\mathcal{D},\epsilon}(\mathcal{T})$ is sufficiently larger than n, any perturbation of \mathcal{T}
- Critically parameterized regime. If $\text{EMC}_{\mathcal{D},\epsilon}(\mathcal{T}) \approx n$, then a perturbation of \mathcal{T} that increases its

(pause)

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
 - Make predictions/decision based on posterior mean/median, MAP, single draw, ...

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood!

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood!
- Frequentists say: "but how good is it actually???"

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood! Frequentists say: "but how good is it actually???"
- - What if your model class / prior / ... are wrong?

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood!
 - Frequentists say: "but how good is it actually???"
 - What if your model class / prior / ... are wrong?
- Tempered likelihood (<u>Zhang 06</u>) / SafeBayes (<u>Grünwald 12</u>):

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood!
 - Frequentists say: "but how good is it actually???"
 - What if your model class / prior / ... are wrong?
- Tempered likelihood (<u>Zhang 06</u>) / SafeBayes (<u>Grünwald 12</u>):
 - If your model is misspecified, can be provably better to use \mathscr{L}^{λ} for $\lambda < 1$

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood!
 - Frequentists say: "but how good is it actually???"
 - What if your model class / prior / ... are wrong?
- Tempered likelihood (<u>Zhang 06</u>) / SafeBayes (<u>Grünwald 12</u>):
 - If your model is misspecified, can be provably better to use \mathscr{L}^{λ} for $\lambda < 1$
 - No longer quite Bayesian inference, but turns a prior into a posterior

- Bayesians say:
 - Start with a prior distribution $\pi(h)$ on choice of hypothesis
 - Observe data S with likelihood $\mathscr{L}(S \mid h)$
 - End up with posterior distribution $\rho(h \mid S) \propto \mathscr{L}(S \mid h) \pi(h)$
- Make predictions/decision based on posterior mean/median, MAP, single draw, ... This is optimal if you believe in your prior + likelihood!
 - Frequentists say: "but how good is it actually???"
 - What if your model class / prior / ... are wrong?
- Tempered likelihood (<u>Zhang 06</u>) / SafeBayes (<u>Grünwald 12</u>):
 - If your model is misspecified, can be provably better to use \mathscr{L}^{λ} for $\lambda < 1$
 - No longer quite Bayesian inference, but turns a prior into a posterior
- PAC-Bayes: analyzes any prior-posterior pair (potentially even totally unrelated)

• We start with some prior π (independent of the data S) on hypotheses

- Our learning algorithm sees S and gives us a posterior ρ

• We start with some prior π (independent of the data S) on hypotheses

- We start with some prior π (independent of the data S) on hypotheses
- Our learning algorithm sees S and gives us a posterior ρ
- We'll analyze $L_{\mathscr{D}}(\rho) = \mathbb{E}_{h\sim\rho}[L_{\mathscr{D}}(h)]$ based on $L_{S}(\rho) = \mathbb{E}_{h\sim\rho}[L_{S}(h)]$

- Our learning algorithm sees S and gives us a posterior ρ
- We'll analyze $L_{\mathcal{D}}(\rho) = \mathbb{E}_{h\sim\rho}[L_{\mathcal{D}}(h)]$ based on $L_{S}(\rho) = \mathbb{E}_{h\sim\rho}[L_{S}(h)]$
- McAllester-style bound (SSBD theorem 31.1):

• We start with some prior π (independent of the data S) on hypotheses

- We start with some prior π (independent of the data S) on hypotheses
- Our learning algorithm sees S and gives us a posterior ρ
- We'll analyze $L_{\mathscr{D}}(\rho) = \mathbb{E}_{h\sim\rho}[L_{\mathscr{D}}(h)]$ based on $L_{S}(\rho) = \mathbb{E}_{h\sim\rho}[L_{S}(h)]$ • McAllester-style bound (SSBD theorem 31.1):
- - If $\ell(h, z) \in [0, 1]$, with probability at least 1δ over $S \sim \mathscr{D}^n$, $\leq \sqrt{\frac{\mathrm{KL}(\rho \| \pi) + \log \frac{n}{\delta}}{2(n-1)}}$ $\frac{\rho(h)}{\pi(h)} \text{ (the usual KL divergence)}$

$$L_{\mathcal{D}}(\rho) - L_{S}(\rho) \leq$$

where
$$\operatorname{KL}(\rho \| \pi) = \mathbb{E}_{h \sim \rho} \log \frac{\rho}{\pi}$$

- We start with some prior π (independent of the data S) on hypotheses
- Our learning algorithm sees S and gives us a posterior ρ
- We'll analyze $L_{\mathscr{D}}(\rho) = \mathbb{E}_{h\sim\rho}[L_{\mathscr{D}}(h)]$ based on $L_{S}(\rho) = \mathbb{E}_{h\sim\rho}[L_{S}(h)]$ • McAllester-style bound (SSBD theorem 31.1):
- - If $\ell(h, z) \in [0, 1]$, with probability at least 1δ over $S \sim \mathscr{D}^n$,
 $$\begin{split} L_{\mathscr{D}}(\rho) - L_{S}(\rho) &\leq \sqrt{\frac{\mathrm{KL}(\rho \| \pi) + \log \frac{n}{\delta}}{2(n-1)}} \\ \text{where } \mathrm{KL}(\rho \| \pi) &= \mathbb{E}_{h \sim \rho} \log \frac{\rho(h)}{\pi(h)} \text{ (the usual KL divergence)} \end{split}$$

$$L_{\mathcal{D}}(\rho) - L_{S}(\rho) \leq$$

 $\mathcal{I}(\mathcal{I})$ Proved in SSBD chapter 31 (not bad at all)

 $L_{\mathcal{D}}(\rho) - L_{S}(\rho) \leq$

• What's the best learning algorithm, according to this bound?

ng algorithm?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

 $L_{\mathcal{D}}(\rho) - L_{\mathcal{S}}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

ng algorithm?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

according to this bound? or: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

$L_{\mathcal{D}}(\rho) - L_{\mathcal{S}}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_{S}(h)) \pi(h)$

ng algorithm?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

$L_{O}(\rho) - L_{S}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

 - Typical choice (see 340): e.g. squared loss \leftrightarrow Gaussian likelihood

ng algorithm?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

$L_{O}(\rho) - L_{S}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

 - Typical choice (see 340): e.g. squared loss \leftrightarrow Gaussian likelihood
- But the bound applies to any prior-posterior pair (with π independent of S)

ng algorithm?
$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

$L_{O}(\rho) - L_{S}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

 - Typical choice (see 340): e.g. squared loss \leftrightarrow Gaussian likelihood
- But the bound applies to any prior-posterior pair (with π independent of S)
 - For instance: could learn a \hat{h} with (S)GD and then add noise to it

ng algorithm?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

$L_{O}(\rho) - L_{S}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

 - Typical choice (see 340): e.g. squared loss \leftrightarrow Gaussian likelihood
- - For instance: could learn a \hat{h} with (S)GD and then add noise to it
 - If h is in a flat minimum, then h + noise will still be good

ng algorithm?
$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

• Same as tempered likelihood / SafeBayes if $\mathscr{L}(S \mid h) = -\log L_S(h) + \text{const}$

• But the bound applies to any prior-posterior pair (with π independent of S)

What learni

$L_{O}(\rho) - L_{S}(\rho) \leq$

- What's the best learning algorithm, according to this bound?
 - Turns out to be the Gibbs posterior: $\rho(h) \propto \exp(-\lambda L_S(h)) \pi(h)$

 - Typical choice (see 340): e.g. squared loss \leftrightarrow Gaussian likelihood
- But the bound applies to any prior-posterior pair (with π independent of S)
 - For instance: could learn a \hat{h} with (S)GD and then add noise to it
 - If \hat{h} is in a flat minimum, then h + noise will still be good
 - But note that if $\rho \to \text{point mass}$ and π continuous, $\text{KL}(\rho \| \pi) \to \infty$

ng algorithm?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

• Same as tempered likelihood / SafeBayes if $\mathscr{L}(S \mid h) = -\log L_S(h) + \text{const}$

- What's the best prior?
 - Bound on generalization gap is better if ρ is "closer" to π

t prior?

$$\sqrt{KL(\rho \| \pi) + \log \frac{n}{\delta}}$$

$$\frac{2(n-1)}{\delta}$$

- What's the best prior?
 - Bound on generalization gap is better if ρ is "closer" to π • S didn't make us "change our mind" too much – similar to MDL

t prior?

$$\sqrt{KL(\rho \| \pi) + \log \frac{n}{\delta}}$$

$$\frac{1}{2(n-1)}$$

$L_{\mathcal{D}}(\rho) - L_{S}(\rho) \leq$

- What's the best prior?
 - Bound on generalization gap is better if ρ is "closer" to π
 - S didn't make us "change our mind" too much similar to MDL
 - But we also want a good ho, i.e. average training loss $L_{\rm S}(
 ho)$ should be small

t prior?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

- What's the best prior?
 - Bound on generalization gap is better if ρ is "closer" to π
 - S didn't make us "change our mind" too much similar to MDL
 - But we also want a good ρ , i.e. average training loss $L_{S}(\rho)$ should be small
- Notice π only shows up in the bound nothing to do with the learning algorithm

t prior?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

- What's the best prior?
 - Bound on generalization gap is better if ρ is "closer" to π
 - S didn't make us "change our mind" too much similar to MDL
 - But we also want a good ρ , i.e. average training loss $L_{S}(\rho)$ should be small
- Notice π only shows up in the bound nothing to do with the learning algorithm • We could potentially pick a prior that actually depends on \mathscr{D}

t prior?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

- What's the best prior?
 - Bound on generalization gap is better if ρ is "closer" to π
 - S didn't make us "change our mind" too much similar to MDL
 - But we also want a good ρ , i.e. average training loss $L_{S}(\rho)$ should be small
- Notice π only shows up in the bound nothing to do with the learning algorithm • We could potentially pick a prior that actually depends on \mathscr{D} • ...as long as we can still bound $KL(\rho \| \pi)$

t prior?

$$\sqrt{\frac{KL(\rho \parallel \pi) + \log \frac{n}{\delta}}{2(n-1)}}$$

Other forms of PAC-Bayes bounds

• Linear bound:
$$L_{\mathscr{D}}(\rho) \leq \frac{1}{\beta}L_{S}(\rho)$$
 -

- - Can be much tighter (unfortunately) if $KL(\rho \| \pi)/n$ is big
- Also variants based on <u>general f-divergences</u>, <u>Wasserstein</u>, …

 $+\frac{\mathrm{KL}(\rho \| \pi) + \log \frac{1}{\delta}}{2\beta(1-\beta)n} \text{ for any } \beta \in (0,1)$

• Catoni bound: for $\alpha > 1$, $\Phi_{\gamma}^{-1}(x) = (1 - \exp(-\gamma x))/(1 - \exp(-\gamma))$, $L_{\mathcal{D}}(\rho) \le \inf_{\lambda > 1} \Phi_{\lambda/n}^{-1} \left(L_{S}(\rho) + \frac{\alpha}{\lambda} \left[\operatorname{KL}(\rho \| \pi) - \log \varepsilon + 2\log \frac{\log(\alpha^{2}\lambda)}{\log \alpha} \right] \right)$

NON-VACUOUS GENERALIZATION BOUNDS AT THE IM-AGENET SCALE: A PAC-BAYESIAN COMPRESSION APPROACH

Wenda Zhou Columbia University New York, NY

Victor Veitch Columbia University New York, NY wz2335@columbia.edu victorveitch@gmail.com

Ryan P. Adams Princeton University Princeton, NJ rpa@princeton.edu

Morgane Austern **Columbia University** New York, NY ma3293@columbia.edu

Peter Orbanz Columbia University New York, NY porbanz@stat.columbia.edu

• Pre-pick a coding scheme to represent networks (e.g. compress the weights) • Train a network with SGD, sparsify it/etc to \hat{h} , then add a little noise to weights

NON-VACUOUS GENERALIZATION BOUNDS AT THE IM-AGENET SCALE: A PAC-BAYESIAN COMPRESSION APPROACH

Wenda Zhou Columbia University New York, NY

Victor Veitch Columbia University New York, NY wz2335@columbia.edu victorveitch@gmail.com

Ryan P. Adams Princeton University Princeton, NJ rpa@princeton.edu

Table 1: Summary of bounds obtained from compression

Dataset	Orig. size	Comp. size	Robust. Adj.	Eff. Size	Error Bound	
					Top 1	Top 5
MNIST	$168.4{ m KiB}$	$8.1{ m KiB}$	$1.88{ m KiB}$	$6.23{ m KiB}$	< 46%	NA
ImageNet	$5.93{ m MiB}$	$452{ m KiB}$	$102{ m KiB}$	$350{ m KiB}$	< 96.5%	< 89%

Morgane Austern **Columbia University** New York, NY ma3293@columbia.edu

Peter Orbanz Columbia University New York, NY porbanz@stat.columbia.edu

• Pre-pick a coding scheme to represent networks (e.g. compress the weights) • Train a network with SGD, sparsify it/etc to \hat{h} , then add a little noise to weights

• In practice, we don't actually use randomized predictors (usually)

- In practice, we don't actually use randomized predictors (usually)

• Possible to "derandomize" to a high-probability bound on $L_{\Im}(h) - L_{S}(h)$:

- In practice, we don't actually use randomized predictors (usually)

• Possible to "derandomize" to a high-probability bound on $L_{O}(h) - L_{S}(h)$:

• Show convergence of $L_{\mathscr{D}}(h)$ to $\mathbb{E}_{h\sim\rho}L_{\mathscr{D}}(h)$, $L_{S}(h)$ to $\mathbb{E}_{h\sim\rho}L_{S}(h)$, under ρ

- In practice, we don't actually use randomized predictors (usually)
- - Show convergence of $L_{\mathcal{O}}(h)$ to \mathbb{E}

• Possible to "derandomize" to a high-probability bound on $L_{O}(h) - L_{S}(h)$:

$$\mathbb{E}_{h\sim\rho}L_{\mathscr{D}}(h), L_{S}(h)$$
 to $\mathbb{E}_{h\sim\rho}L_{S}(h)$, under ρ

• Or, use a margin-type loss to show 0-1 error doesn't change under ρ

- In practice, we don't actually use randomized predictors (usually)
- Possible to "derandomize" to a high-probability bound on $L_{\Im}(h) L_{S}(h)$:
 - Show convergence of $L_{\infty}(h)$ to \mathbb{E}
- Or, use a margin-type loss to show 0-1 error doesn't change under ρ But...these then become "two-sided" bounds

$$\mathbb{E}_{h\sim\rho}L_{\mathscr{D}}(h), L_{S}(h)$$
 to $\mathbb{E}_{h\sim\rho}L_{S}(h)$, under ρ

- In practice, we don't actually use randomized predictors (usually)
- Possible to "derandomize" to a high-probability bound on $L_{\Im}(h) L_{S}(h)$:
 - Show convergence of $L_{\mathcal{O}}(h)$ to \mathbb{E}
- Or, use a margin-type loss to show 0-1 error doesn't change under ρ But...these then become "two-sided" bounds
 - Subject to the <u>Nagarajan/Kolter</u> failure mode (their Appendix J)

Uniform convergence may be unable to explain generalization in deep learning

20

Vaishnavh Nagarajan Department of Computer Science Carnegie Mellon University Pittsburgh, PA vaishnavh@cs.cmu.edu

$$\mathbb{E}_{h\sim\rho}L_{\mathscr{D}}(h), L_{S}(h)$$
 to $\mathbb{E}_{h\sim\rho}L_{S}(h)$, under ρ

J. Zico Kolter Department of Computer Science Carnegie Mellon University & Bosch Center for Artificial Intelligence Pittsburgh, PA zkolter@cs.cmu.edu

- Double descent
 - Classical behaviour, then descend again after interpolation peak
 - Highly dependent on learning algorithm's implicit regularization
- PAC-Bayes
 - <u>A Primer on PAC-Bayesian Learning (Guedi 2019)</u>

 - Still, significant practical issues, not always super explanatory
 - Lots of ongoing fancy variations

Recap

Tightest bounds we know for deep learning (afaik)...but still not that tight