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Admin
• A3 late-late deadline is tonight

• A4 out, due next Friday – late deadline Sunday, late-late deadline Tuesday 

• Last regular class is Monday

• Overview of online learning, privacy (~equivalent), connection to stability 

• Project presentations in class next Wednesday

• Details were posted on Piazza a bit ago

• Will post schedule tonight


• Project reports due next Friday – usual late policy (-5 Saturday, -10 Sunday) 

• Final will be take-home, available over most of the finals period

• Exact dates TBA – contact me if this really matters to you for whatever reason
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3 Nakkiran et al. blog post's companion notebook

degree 1

https://windowsontheory.org/2019/12/05/deep-double-descent/
https://colab.research.google.com/drive/1oMuUz3_BOENSoaOVOymLoB2mHeYBex8S


3 Nakkiran et al. blog post's companion notebook

degree 1 degree 3

https://windowsontheory.org/2019/12/05/deep-double-descent/
https://colab.research.google.com/drive/1oMuUz3_BOENSoaOVOymLoB2mHeYBex8S


3 Nakkiran et al. blog post's companion notebook

degree 1 degree 20degree 3

https://windowsontheory.org/2019/12/05/deep-double-descent/
https://colab.research.google.com/drive/1oMuUz3_BOENSoaOVOymLoB2mHeYBex8S


3 Nakkiran et al. blog post's companion notebook

degree 1 degree 20degree 3

degree 1,000

https://windowsontheory.org/2019/12/05/deep-double-descent/
https://colab.research.google.com/drive/1oMuUz3_BOENSoaOVOymLoB2mHeYBex8S


3 Nakkiran et al. blog post's companion notebook

degree 1 degree 20degree 3

degree 1,000

Important: this is the minimum norm solution!

(There are also terrible degree-1,000 ERMs)

https://windowsontheory.org/2019/12/05/deep-double-descent/
https://colab.research.google.com/drive/1oMuUz3_BOENSoaOVOymLoB2mHeYBex8S
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4



LS(w) = 1
2n ∥Xw − y∥2 ∇LS(w) = 1

n X⊤(Xw − y) w0 = 0

wk = wk−1 − η∇LS(wk−1) = (I− η
n X⊤X) wk−1+

η
n X⊤y = η̃

k−1

∑
ℓ=0

(I − η̃X⊤X)ℓX⊤y

 with , 
of rank 
X ∈ ℝn×d n < d

n η̃ =
η
n
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Ṽ⊤ ṼΣ̃⊤U⊤y

= η̃
k−1

∑
ℓ=0

[V V2] [(I − η̃Σ2)ℓ 0
0 I] [Σ

0] U⊤y

4



LS(w) = 1
2n ∥Xw − y∥2 ∇LS(w) = 1

n X⊤(Xw − y) w0 = 0

wk = wk−1 − η∇LS(wk−1) = (I− η
n X⊤X) wk−1+

η
n X⊤y = η̃

k−1

∑
ℓ=0

(I − η̃X⊤X)ℓX⊤y

 with , 
of rank 
X ∈ ℝn×d n < d

n η̃ =
η
n
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Ṽ⊤ ṼΣ̃⊤U⊤y

= η̃
k−1

∑
ℓ=0

[V V2] [(I − η̃Σ2)ℓ 0
0 I] [Σ

0] U⊤y

4

= η̃
k−1

∑
ℓ=0

V(I − η̃Σ2)ℓΣU⊤y

= η̃V [
k−1

∑
ℓ=0

(I − η̃Σ2)ℓ] ΣU⊤y → η̃V [I − (I − η̃Σ2)]−1 ΣU⊤y

Neumann series:  when ∑∞
ℓ=0 Aℓ = (I − A)−1 ∥A∥op < 1 η̃ < 2 / λmax(Σ2)



LS(w) = 1
2n ∥Xw − y∥2 ∇LS(w) = 1

n X⊤(Xw − y) w0 = 0

wk = wk−1 − η∇LS(wk−1) = (I− η
n X⊤X) wk−1+

η
n X⊤y = η̃

k−1

∑
ℓ=0

(I − η̃X⊤X)ℓX⊤y

 with , 
of rank 
X ∈ ℝn×d n < d

n η̃ =
η
n
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Ṽ⊤ ṼΣ̃⊤U⊤y

= η̃
k−1

∑
ℓ=0

[V V2] [(I − η̃Σ2)ℓ 0
0 I] [Σ

0] U⊤y

4

= η̃
k−1

∑
ℓ=0

V(I − η̃Σ2)ℓΣU⊤y

= η̃V [
k−1

∑
ℓ=0

(I − η̃Σ2)ℓ] ΣU⊤y → η̃V [I − (I − η̃Σ2)]−1 ΣU⊤y = VΣ−1U⊤y = X†y

Neumann series:  when ∑∞
ℓ=0 Aℓ = (I − A)−1 ∥A∥op < 1 η̃ < 2 / λmax(Σ2)



Implicit regularization of gradient descent
• We just showed that gradient descent for OLS with  of rank , 

starting from zero with , 
converges to the minimum-norm interpolator 

X n
η < 2n / σmax(X)2

X†y
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https://proceedings.neurips.cc/paper/2017/file/58191d2a914c6dae66371c9dcdc91b41-Paper.pdf
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• Matrix factorization models: conjectured min nuclear norm, slightly controversial
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Double descent

Classical regime 
(left of peak): 
unique ERM

Interpolating regime 
(right of peak): 
many possible 
interpolators

which one we get 
depends on alg.’s 

implicit bias
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• Frequentists say: “but how good is it actually???”
• What if your model class / prior / … are wrong?

• Tempered likelihood (Zhang 06) / SafeBayes (Grünwald 12):
• If your model is misspecified, can be provably better to use  for ℒλ λ < 1
• No longer quite Bayesian inference, but turns a prior into a posterior

• PAC-Bayes: analyzes any prior-posterior pair (potentially even totally unrelated)
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where   (the usual KL divergence)

ℓ(h, z) ∈ [0,1] 1 − δ S ∼ 𝒟n

L𝒟(ρ) − LS(ρ) ≤
KL(ρ∥π) + log n

δ

2(n − 1)

KL(ρ∥π) = 𝔼h∼ρ log
ρ(h)
π(h)

• Proved in SSBD chapter 31 (not bad at all)
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• Same as tempered likelihood / SafeBayes if ℒ(S ∣ h) = − log LS(h) + const
• Typical choice (see 340): e.g. squared loss  Gaussian likelihood ↔

• But the bound applies to any prior-posterior pair (with  independent of )π S
• For instance: could learn a  with (S)GD and then add noise to itĥ
• If  is in a flat minimum, then  will still be goodĥ ĥ + noise
• But note that if  and  continuous, ρ → point mass π KL(ρ∥π) → ∞
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What prior?

• What’s the best prior?
• Bound on generalization gap is better if  is “closer” to ρ π
•  didn’t make us “change our mind” too much – similar to MDLS

• But we also want a good , i.e. average training loss  should be smallρ LS(ρ)
• Notice  only shows up in the bound – nothing to do with the learning algorithmπ
• We could potentially pick a prior that actually depends on 𝒟
• …as long as we can still bound KL(ρ∥π)
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Other forms of PAC-Bayes bounds

• Linear bound:  for any  

• Catoni bound: for , , 




• Can be much tighter (unfortunately) if  is big 

• Also variants based on general f-divergences, Wasserstein, …

L𝒟(ρ) ≤
1
β

LS(ρ) +
KL(ρ∥π) + log 1

δ

2β(1 − β)n
β ∈ (0,1)

α > 1 Φ−1
γ (x) = (1 − exp(−γx))/(1 − exp(−γ))

L𝒟(ρ) ≤ inf
λ>1

Φ−1
λ/n (LS(ρ) +

α
λ [KL(ρ∥π) − log ε + 2 log

log(α2λ)
log α ])

KL(ρ∥π)/n
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19



• Pre-pick a coding scheme to represent networks (e.g. compress the weights)

• Train a network with SGD, sparsify it/etc to , then add a little noise to weightsĥ
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• Show convergence of  to ,  to , under L𝒟(h) 𝔼h∼ρL𝒟(h) LS(h) 𝔼h∼ρLS(h) ρ
• Or, use a margin-type loss to show 0-1 error doesn’t change under ρ

• But…these then become “two-sided” bounds
• Subject to the Nagarajan/Kolter failure mode (their Appendix J)
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Recap

• Double descent

• Classical behaviour, then descend again after interpolation peak

• Highly dependent on learning algorithm’s implicit regularization 

• PAC-Bayes

• A Primer on PAC-Bayesian Learning (Guedj 2019)

• Tightest bounds we know for deep learning (afaik)…but still not that tight

• Still, significant practical issues, not always super explanatory

• Lots of ongoing fancy variations
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