Double Descent / Implicit Regularization
+ PAC-Bayes

CPSC 532S: Modern Statistical Learning Theory
30 March 2022
cs.ubc.ca/~dsuth/5325/22/



https://www.cs.ubc.ca/~dsuth/532S/22/

Admin
AJ late-late deadline Is tonight

A4 out, due next Friday — late deadline Sunday, late-late deadline Tuesday

Last regular class is Monday
* Overview of online learning, privacy (~equivalent), connection to stability

Project presentations in class next Wednesday

* Details were posted on Piazza a bit ago

* Will post schedule tonight

Project reports due next Friday — usual late policy (-5 Saturday, -10 Sunday)

Final will be take-home, available over most of the finals period
 Exact dates TBA - contact me if this really matters to you for whatever reason
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Implicit regularization of gradient descent

« We just showed that gradient descent for OLS with X of rank n,
starting from zero with y < 2n/ o, (X)*

converges to the minimum-norm interpolator XTy


https://math.stackexchange.com/a/3499305/19147
https://arxiv.org/abs/1710.10345
https://proceedings.mlr.press/v99/ji19a.html
https://mjt.cs.illinois.edu/dlt/#sec:margin_opt
https://proceedings.neurips.cc/paper/2017/file/58191d2a914c6dae66371c9dcdc91b41-Paper.pdf
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« If we track wy # 0 in same analysis, get w_, = V2V2T Wy + XTy (proof)
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 Does this same idea hold for other losses / models? Not necessarily.
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* Logistic regression:
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Implicit regularization of gradient descent

« We just showed that gradient descent for OLS with X of rank n,
starting from zero with y < 2n/ o, (X)*

converges to the minimum-norm interpolator XTy

« If we track wy # 0 in same analysis, get w_, = V2V2T Wy + XTy (proof)

e So, the 1,000-degree polynomial picture is what GD would give
 Does this same idea hold for other losses / models? Not necessarily.
* Logistic regression:
* Separable: norm diverges in direction of max-margin separator (Soudry et al.)
 Non-separable: biased towards max-margin, but complicated (Ji/Telgarsky)
* Also see Ielgarsky notes section 10

* Matrix factorization models: conjectured min nuclear norm, slightly controversial
 Deep learning: 7?77
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Definition 1 (Effective Model Complexity) The Effective Model Complexity (EMC) of a training
procedure T, with respect to distribution D and parameter € > 0, is defined as:

EMCop (7)) := max {n | Eg.pn[Errorg(7(S5))] < €}

where Errorg (M) is the mean error of model M on train samples S.

Our main hypothesis can be informally stated as follows:

Hypothesis 1 (Generalized Double Descent hypothesis, informal) For any natural data distribu-

tion D, neural-network-based training procedure T, and small ¢ > 0, if we consider the task of
predicting labels based on n samples from D then:

Under-paremeterized regime. I[f EMCop (7)) is sufficiently smaller than n, any perturbation of T
that increases its effective complexity will decrease the test error.

Over-parameterized regime. If EMCyp (7)) is sufficiently larger than n, any perturbation of T
that increases its effective complexity will decrease the test error.

Critically parameterized regime. If EMCp (7 ) = n, then a perturbation of T that increases its
effective complexity might decrease or Increase the test error.
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A road to PAC-Bayes

 Bayesians say:

o Start with a prior distribution 7z(/) on choice of hypothesis
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 Make predictions/decision based on posterior mean/median, MAP, single draw, ...
This is optimal if you believe in your prior + likelihood! &

* Frequentists say: “but how good is it actually???”

 What if your model class / prior / ... are wrong?
Tempered likelihood (Zhang 06) / SafeBayes (Grunwald 12):

e If your model is misspecified, can be provably better to use Fror ) < 1

* No longer quite Bayesian inference, but turns a prior into a posterior
PAC-Bayes: analyzes any prior-posterior pair (potentially even totally unrelated)

Bayesians say:
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where KL(p||7) = E;,_,log —— (the usual KL divergence)
(h)

 Proved in SSBD chapter 31 (not bad at all)
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» Same as tempered likelihood / SafeBayes if £ (S | h) = — log L¢(h) + const

» Typical choice (see 340): e.g. squared loss <> Gaussian likelihood

Lo (p) — Lg(p) < \

« But the bound applies to any prior-posterior pair (with 7 independent of 5)
. For instance: could learn a & with (S)GD and then add noise to it
« If K1 is in a flat minimum, then & + noise will still be good
 But note that if p — point mass and x continuous, KL(p||7) = o0
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Lg(p) — Lg(p) < \

 What'’s the best prior?
 Bound on generalization gap is better if p is “closer” to &
« §S didn’t make us “change our mind” too much — similar to MDL
» But we also want a good p, i.e. average training loss L¢(p) should be small
 Notice & only shows up in the bound — nothing to do with the learning algorithm
» We could potentially pick a prior that actually depends on &
e ...as long as we can still bound KL(p||7)
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Other forms of PAC-Bayes bounds

Linear b dL()<1L()+KL(pHﬂ)+lOg%f B e (0,1)
inNear oouna. — -_— 107 an .
' = S T T s B g

+ Catoni bound: for a > 1, ®7'(x) = (1 — exp(—yx))/(1 — exp(—7)),

| . o log(a’l)
Loy(p) <int® | Lg(p) +— |KL(p||nr) —loge +2log ———
I>1 A log a

 Can be much tighter (unfortunately) if KL(p||7)/n is big

* Also variants based on general f-divergences, Wasserstein, ...
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Ryan P. Adams Peter Orbanz

Princeton University Columbia University
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rpal@princeton.edu porbanz@stat.columbia.edu

* Pre-pick a coding scheme to represent networks (e.g. compress the weights)
 Train a network with SGD, sparsify it/etc to £, then add a little noise to weights

Table 1: Summary of bounds obtained from compression

Dataset Orig. size Comp. size Robust. Adj.  Eff. Size Error Bound

Top 1 Top 5
MNIST 168.4 KiB 8.1 KiB 1.88KiB 6.23KiB < 46% NA
ImageNet 5.93 MiB 452 KiB 102KiB 350KiB <96.5% < 89%
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» Possible to “derandomize” to a high-probability bound on Lg,(h) — Ly(h):

 Show convergence of Lg(h) to

S

Lg,(h), Lg(h) to

S

L(h), under p

* Or, use a margin-type loss to show 0-1 error doesn’t change under p

But...these then become “two-sided” bounds
e Subject to the Nagarajan/Kolter failure mode (their Appendix J)

Uniform convergence may be unable to explain
generalization in deep learning
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Department of Computer Science
Carnegie Mellon University
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Recap

 Double descent
» Classical behaviour, then descend again after interpolation peak
* Highly dependent on learning algorithm’s implicit regularization

« PAC-Bayes
* A Primer on PAC-Bayesian Learning (Guedj 2019)
* Tightest bounds we know for deep learning (afaik)...but still not that tight
o Still, significant practical issues, not always super explanatory
e Lots of ongoing fancy variations
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