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A4 (mostly on kernels) will be posted ASAP
= Just trying not to have to replace questions...

Final will be available for most of the finals period
= Optional bonus questions, to boost your assignment grade

Course grade will be curved
= Nobody who showed reasonable understanding will fail

= (even for grad student definition of failing)

Teaching evals available; due April 11th
= But please read Mike Gelbart's Teaching evaluations: the
good, the bad, and the ugly before doing any of them

= Numerical scores used heavily despite systematic bias


https://seoi.ubc.ca/surveys
https://www.reddit.com/r/UBC/comments/k18qj7/teaching_evaluations_the_good_the_bad_and_the_ugly/
https://link.springer.com/article/10.1007/s10755-014-9313-4
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Deep learning vs kernels

e We've seen some stabs at deep learning approximation,
generalization, and optimization

e NTK models, all three: as width — o0, NNs “work”

e So...are NTK models (or some tweak) all we need?

e Bunch of results saying no



On the Power and Limitations of Random Features
for Understanding Neural Networks

Gilad Yehudai Ohad Shamir
Weizmann Institute of Science
{gilad.yehudai, ohad.shamir}@weizmann.ac.il

e Roughly: there is a w* € R® with ||w*|| = d?, b* € Rs.t.
» if Egoo,n [(f(z) — ReLU((w*, z) +5%))°] < 5

563
= then || fllntk > exp(£2(d))
e and if f's init is isotropic, true for any w* with ||w*|| = d?

e But GD learns this (at linear rate) with poly(d) samples


https://proceedings.neurips.cc/paper/2017/hash/e034fb6b66aacc1d48f445ddfb08da98-Abstract.html

Quantifying the Benefit of
Using Differentiable Learning over Tangent Kernels
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Collaboration on the Theoretical Foundations of Deep Learning (deepfoundations.ai)
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NTK of arbitrary model
or even an arbitrary Kernel

GD with unbiased
initialization
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» NTK edge > poly
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while GD reaches 0 loss
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» NTK edge can be < poly™

while GD reaches 0 loss
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Edge can be < poly !
while GD reaches 0 loss
(Separation 2)

edge with any kernel can be < exp™

1

while GD reaches arb. low loss
(Separation 4)
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Okay, fine, NTKs aren't the (whole) answer.

What if we assume approximation and optimization are fine?
Current generalization bounds empirically aren't tight enough,
but can we hope to prove a tighter one?



Remainder of today is roughly this talk I've given before:

Can Uniform Convergence
Explain Interpolation Learning?

Danica J. Sutherland (she/nher)
TTI-Chicago — UBC + Amii

based on [ZSS NeurlPS-20], [KZSS NeurlPS-21], [ZKSS 20217 with

Lijia Zhou Frederic Koehler Nati Srebro
UChicago MIT — Simons — Stanford TTI-Chicago



https://djsutherland.ml/
https://arxiv.org/abs/2006.05942
https://arxiv.org/abs/2106.09276
https://arxiv.org/abs/2112.04470
https://zhoulijia.github.io/
https://frkoehle.github.io/
https://home.ttic.edu/~nati/
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Statistical learning theory
We have lots of bounds like: with probability > 1 — 9,

Cys
sup [Lp(h) — Ls(h)| < 4/ ——
heH n

Cy 5 could be from Rademacher complexity, covering numbers,
RKHS norm, VC dimension, fat-shattering dimension, ...

Then for large n, Lp (k) ~ Lg(h), so h = h*

Lp(h) < Ls(h) + sup |Lp(h) — Ls (h)
heH



Interpolation learning

Classical wisdom: “a model with zero training
error is overfit to the training data and will
typically generalize poorly”

Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of
Statistical Learning




Interpolation learning

Classical wisdom: “a model with zero training o
error is overfit to the training data and will
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Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.

model #params randomcrop weightdecay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26.03
no no 100.0 85.75

A A

Zhang et al., “Rethinking generalization”, ICLR 2017 LS (h) = O, Lp(h) ~ 11%
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Interpolation learning

Classical wisdom: “a model with zero training o
error is overfit to the training data and will
typ i Ca | Iy ge n e ra I ize p O O rly" Data Mining, Inference, and Prediction

(when Lp(h*) > 0)

Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.

model #params randomcrop weightdecay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26.03
no no 100.0 85.75
A A

Zhang et al., “Rethinking generalization”, ICLR 2017 LS (h) = O, L’D(h) ~ 11%
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Interpolation does not overfit even for
very noilsy data

All methods
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(except Bayes optimal) have zero training square loss.

A

Ls(h) = 0

Misha Belkin
Simons Institute
July 2019



https://simons.berkeley.edu/talks/tbd-65
http://proceedings.mlr.press/v80/belkin18a/belkin18a.pdf
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https://simons.berkeley.edu/talks/tbd-65
http://proceedings.mlr.press/v80/belkin18a/belkin18a.pdf

Not a question of improving bounds

correct CH 5 nontrivial
’
0.7 < <09 n— oo

n

Misha Belkin
Simons Institute
July 2019

There are no bounds like this and no reason they
should exist.

A constant factor of 2 invalidates the bound!



https://simons.berkeley.edu/talks/tbd-65

Generalization theory for interpolation?

What theoretical analyses do we have?

VC-dimension/Rademacher complexity/covering/ gin bounds.

Cannot deal with interpolated classifiers en Bayes risk is non-zero.

Generalization gap cannot be bound w empirical risk is zero.

Regularization-type analyses ATikhonov, early stopping/SGD, etc.)

Diverge as A—0 for fi

Algorithmic sta

Does not ply when empirical risk is zero, expected risk nonzero.

Classical smoothing methods (i.e., Nadaraya-Watson).
Most classical analyses do not support interpolaticn.

But 1-NN! (Also Hilbert regression Scheme, [Devroye, et al. 98])

Lp(h) < Lp (f_L*) + bound

=

—— expected loss

Lp(h) <

WYSIWYG

bounds: o
&
" training loss
i1
expected loss

bound

Misha Belkin
Simons Institute
July 2019

Oracle bounds

o~
~

optimal loss
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Generalization theory for interpolation?
What theoretical analyses do we have?

A
- VAL AN

Lots of recent theoretical work on interpolation.

[Belkin+ NeurlPS 2018], [Belkin+ AISTATS 2018], [Belkin+ 2019], [Hastie+ 2019],
[Muthukumar+ JSAIT 2020], [Bartlett+ PNAS 2020], [Liang+ COLT 2020], [Montanari+ 2019], many more...
None* bound supyc4 | Lp (h) — Ls (h)].

s it possible to find such a bound?

Can uniform convergence explain interpolation learning?

But 1-NN! (Also Hilbert regression Scheme, [Devroye, et al. 98])

‘ -

optimal loss

Lp(h) < Lp (]:L*) + bound
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Generalization theory for interpolation?

What theoretical analyses do we have?

A
- VAL AN

Lots of recent theoretical work on interpolation.

[Belkin+ NeurlPS 2018], [Belkin+ AISTATS 2018], [Belkin+ 2019], [Hastie+ 2019],
[Muthukumar+ JSAIT 2020], [Bartlett+ PNAS 2020], [Liang+ COLT 2020], [Montanari+ 2019], many more...
None* bound supyc4 | Lp (h) — Ls (h)].

s it possible to find such a bound?

Can uniform convergence explain interpolation learning?

o~

But 1-NN! (Also Hilbert regression Scheme, [Devroye, et al. 98]) ~
optimal loss a
—

*One exception-ish [Negrea/Dziugaite/Roy, ICML 2020]:

relates h to a surrogate predictor,
shows uniform convergence for the surrogate.
(Also, a few things since our first paper.)



https://simons.berkeley.edu/talks/tbd-65
https://arxiv.org/abs/1802.01396
https://arxiv.org/abs/1806.09471
https://arxiv.org/abs/1812.11118
https://arxiv.org/abs/1903.08560
https://arxiv.org/abs/1903.09139
https://arxiv.org/abs/1906.11300
https://arxiv.org/abs/1908.10292
https://arxiv.org/abs/1911.01544
https://arxiv.org/abs/1912.04265/
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A more specific version of the question

Today, we're mainly going to worry about consistency:.

A

E[Lp(h) — Lp(h*)] — O

..in a noisy setting: Lp (h*) > 0
...for Gaussian linear regression:

x~N(0,%) y=(x,u")+N(0,0°) L(y,9) = (y—9)°

s it possible to show consistency of an interpolator with

A A

Lp(h) < Lg(h) + sup |Lp(h) — Ls (h)|?
N’ heH
This rgquires tight constants!
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A testbed problem: “junk features”

“signal”, dg “junk”, dj; — 00

(xg,Wg™)

A, controls scale of junk: El|x |2 = A,

Linear regression: £(y, §) = (y — §)*

Min-norm interpolator: Wy = arg min||w|s = X'y
Xw=y
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A first attempt at uniform convergence

“Default” approach: (assuming A,, — 00)

.| BRE[x|]?
E sup |Lp(w)— Ls(w)| <2Lip
Iw(<Bp n

2 2
With B2 = E[|[%aw]|?], get \/B“ 2 L

Would need Lip — %0...

but only have Lip < sup max2|(w,x;) — y;| = o0
lwll<Bn °
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A more refined uniform convergence analysis?
l'w|| < B}isnogood. Maybe {w : A < ||w|| < B}?

{w:

Uniform convergence may be unable to explain
generalization in deep learning

Vaishnavh Nagarajan J. Zico Kolter
Department of Computer Science Department of Computer Science
Carnegie Mellon University Carnegie Mellon University &
Pittsburgh, PA Bosch Center for Artificial Intelligence
vaishnavh@cs.cmu.edu Pittsburgh, PA

zkolter@cs.cmu.edu
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A more refined uniform convergence analysis?
Theorem (a la [Nagarajan/Kolter, NeurlPS 2019]):
In junk features, for each § € (0, %) letPr(S €S,5) >1—9,

W a natural consistent interpolator,
and W, s = {W(S) : S € §,,5}. Then, almost surely,

lim lim sup sup |Lp(w)— Lg(w)| > 30°.
n—00 d ;—00 SES, s WEW,, 5

(I 1 had a very similar result for wzy)
Natural interpolators: wg doesn't change if X flips to —X j. Examples:
wWyy,  argmin||wl|;,  argmin||w — w’||2,

w: Xw=y w: Xw=y

arg{min fs(wg) + f7(wy) with each f convex, f;(—wy) = fr(wy)
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A more refined uniform convergence analysis?
Theorem (a la [Nagarajan/Kolter, NeurlPS 2019]):
In junk features, for each § € (0, %) letPr(S € S,s5) >1—4,

W a natural consistent interpolator,
and Wy, s = {w(S) : S € §,,5}. Then, almost surely,

lim lim sup sup |Lp(w)— Lg(w)| > 30°.

n—00 dj—00 SESn,(g WGWn,(g

Proof shows that for most S,
there's a typical predictor w (in W, 5)

that's good on most inputs (Lp (W) — o?),
but very bad on specifically S (Ls (W) — 40?%).
take w with X g the same, but flipped to —
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One-sided uniform convergence?

We don't really care about small Lp, big Ls....
Could we bound sup Lp — Lg instead of sup|Lp — Lg|?

e Existing uniform convergence proofs are “really” about
|Lp — LS | [Nagarajan/Kolter, NeurlPS 2019]

= If you can bound R, can usually similarly bound R’
e Strongly expect still oo for norm balls in our testbed

" Apax (X — X) instead of |3 — X[ 4y
 Not possible to show supy,cy Lp — Lg is big for all H

» If h consistent and inf; Lg(h) > 0, use
H=1f:Lp(h) < Lp(h*) + €ns}
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So, what are we left with?

Convergence of surrogates [Negrea/Dziugaite/Roy, ICML 2020]?
= Nice, but not really the same thing...

Only do analyses based on e.g. exact form of W pn?

We'd like to keep good things about uniform convergence:
= Apply to more than just one specific predictor

= Tell us more about “why"” things generalize
= Easier to apply without a nice closed form
Or...
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A broader view of uniform convergence

(N

Used at least since [Vapnik 1982] and [Valiant 1984]

From [Devroye/Gyorfi/Lugosi 1996]:

PROOF. For ne < 2, the inequality is clearly true. So, we assume that ne > 2. First
observe that since infycc L(¢) = 0, L,(¢;) = 0 with probability one. It is easily
seen that

L)) < sup |L(@) — La(@)I.
¢:L(9)=0 €—uu

It's the standard notion for realizable (Lp (w™) = 0) analyses...


https://link.springer.com/book/10.1007/0-387-34239-7
https://dl.acm.org/doi/10.1145/1968.1972
https://link.springer.com/book/10.1007/978-1-4612-0711-5

A broader view of uniform convergence

Foundations of
Machine Learning condeion

Mehryar Mohri,
Afshin Rostamizadeh,
and Ameet Talwalkar

It's the stand

In the example of axis-aligned rectangles that we examined, the hypothesis hg
returned by the algorithm was always consistent, that is, it admitted no error on
the training sample S. In this section, we present a general sample complexity
bound, or equivalently, a generalization bound, for consistent hypotheses, in the

case where the cardinality |H| of the hypothesis set is finite. Since we consider

> W consistent hypotheses, we will assume that the target concept ¢ is in H.

Theorem 2.1 Learning bounds finite /, consistent case

Let H be a finite set of functions mapping from X to Y. Let A be an algorithm that
for any target concept ¢ € H and i.1.d. sample S returns a consistent hypothesis hg:
f‘f[h S ) 0. Then, for any €,6 > 0, the inequality Prg..p» :H[fu} 4 r: > 1 — 6 holds

if

m > ](ln,l_', H| + log ‘i) (2.8)

f

This sample complexity result admits the fuNuu'Hw equivalent statement as a gener-

alization bound: for any €,0 > 0, with probability at least 1 — 4,

l l
- OpF T (8] . .2
R(he) (1 g |H| +1 ;ﬁn_) (2.9)

m

Proof Fix € > 0. We do not know which consistent hypothesis hg € H is selected
by the algorithm ,A. This hypothesis further depends on the training sample S.
Therefore, we need to give a uniform convergence bound, that is, a bound that
holds for the set of all consistent hypotheses, which a fortiori includes ho. Thus,
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sup | Lp(w) |7
|wllo<B, Lg(w)=0
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The interpolator ball in linear regression
What does {w : ||w||2 < B, Lg(w) = 0} look like?



The interpolator ball in linear regression
What does {w : || w||s < B, Lg(w) = 0} look like?

Intersection of d-ball



The interpolator ball in linear regression
What does {w : || w||s < B, Lg(w) = 0} look like?

{w: Lg(w) = %HXW — yH% = 0} isthe plane Xw =y

Intersection of d-ball with (d — n)-hyperplane:



The interpolator ball in linear regression
What does {w : || w||s < B, Lg(w) = 0} look like?

{w: Lg(w) = %HXW — yH% = 0} isthe plane Xw =y

Intersection of d-ball with (d — n)-hyperplane:
(d — n)-ball



The interpolator ball in linear regression
What does {w : || w||s < B, Lg(w) = 0} look like?

{w: Lg(w) = %HXW — yH% = 0} isthe plane Xw =y

Intersection of d-ball with (d — n)-hyperplane:
(d — n)-ball centered at W sy



Optimistic rates

[Srebro/Sridharan/Tewari 2010] show:

Lp(w) — Lg(w) < Op (\/Ls (W) R (H)? + ﬂ_f{n(’H)z)
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Optimistic rates

[Srebro/Sridharan/Tewari 2010] show:

Lp(w) — Ls(w (\/Ls 2+ R, (’H))

Yy, high-prob bound on max;—; .
L <o By on(l
SUP|w||,<B, Lg(w)=0 p(W) < ¢ n op(1)

.,n“xi 2
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Yy high-prob bound on max;—1 . n||X; ||§
B¢,
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ifl <Ay K1, B=

| W w2,

— Cp, LD (W*)
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Optimistic rates

[Srebro/Sridharan/Tewari 2010] show:

Lp(w) — Lg(w) < Op (\/Ls (W) R (H)? + i)_f{n(’H)z)

c, < 200,000 log3 (n) Yy high-prob bound on max;—1 .. . ||X; ||§

By,
SUD)iw||,<B, Lg (w)=0 LD (W) < ¢ —= 4 op(1)

ifl< A\, <n B=|Wunl2, — cn Ip(w*)

If this holds with ¢, — 1 (and %R, instead of R,,),
would explain consistency on junk features,
and predict that B = a||Wa||2 gives a? Lp(w*)
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Conjecture holds for Gaussian linear regression

For Gaussian linear regression, with general compact H,
ignoring lower-order terms, we show w.h.p. that for all w € H,

Lp(w) — Ls (w) < 24/ L (w) - Ry (H)? + R (H)’

Lp(w) < (\/Ls (w) + R, (%))2

sup / Lp(w) — 1/ Ls (w) < R (H)

weH

Proof very specific to Gaussian X, pretty specific to linear models
(but should work with sub-Gaussian noise)
(extension beyond square loss is ongoing)
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e Uniform convergence of interpolators does work
= Together with new analysis of | W ||,

~matches previously known (nearly necessary) sufficient conditions

= Shows low norm is sufficient for interpolation learning
= Also apply to min-£1 interpolator [Wang/Donhauser/Yang AISTATS-22]

= and two-layer random feature networks [Yang/Bai/Mei ICML-21]
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e Junk features setting: very stylized but “kind of like” deep learning
" Wy iS consistent, but usual uniform convergence can't show that

m Uniform convergence over norm ball shows nothing

o does work
= Together with new analysis of | W ||,

~matches previously known (nearly necessary) sufficient conditions

= Shows low norm is sufficient for interpolation learning
= Also apply to min-£1 interpolator [Wang/Donhauser/Yang AISTATS-22]
= and two-layer random feature networks [Yang/Bai/Mei ICML-21]

e Optimistic rates cover that theory, but also cover near-interpolators
= Some non-square losses, but (so far) very specific to Gaussian data

e Moving forward:
= “Plain” uniform convergence: maybe unlikely for realistic-ish NNs

= Uniform convergence of interpolators / optimistic rates might work!

A

= Or maybe Lp(h) < Lp(h*) + € type bounds...but unclear how
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