
Neural Tangent Kernels (+ etc)
CPSC 532S: Modern Statistical Learning Theory

23 March 2022

cs.ubc.ca/~dsuth/532S/22/

1

https://www.cs.ubc.ca/~dsuth/532S/22/

Admin
• A3 Q1 is broken, to be replaced (with something as similar as possible) tonight

• Whole assignment now due Monday

• A4 will be posted soon, due Friday the 8th (last day of term)

• Yes, the same day as the project report; usual late policy 

• Project scope:

• I’m just looking for signs that you’ve read and understood the papers

• If you’re doing a lit review: ~3-4 papers is the expected amount

• Talk about how the settings / conclusions relate to each other, 

what they leave open, etc

• An “extension” can absolutely just be poking at the assumptions and talking

about when they hold / don’t

2

What’s left in deep learning?
• Talked about universal approximation results

• Shallow, wide networks: proved in 1d, sketched proof in general

• Mentioned results for deep, narrow networks

• Relationship to circuit complexity 

3

What’s left in deep learning?
• Talked about universal approximation results

• Shallow, wide networks: proved in 1d, sketched proof in general

• Mentioned results for deep, narrow networks

• Relationship to circuit complexity 

• Some generalization bounds

• VC dimension is known relatively sharply

• AlexNet can shatter CIFAR-10, but it still generalizes well

• Norm-based Rademacher bounds possible, but don’t seem very tight 

3

What’s left in deep learning?
• Talked about universal approximation results

• Shallow, wide networks: proved in 1d, sketched proof in general

• Mentioned results for deep, narrow networks

• Relationship to circuit complexity 

• Some generalization bounds

• VC dimension is known relatively sharply

• AlexNet can shatter CIFAR-10, but it still generalizes well

• Norm-based Rademacher bounds possible, but don’t seem very tight 

• Ignoring the many issues, approximation + generalization means ERM works

• …but ERM is NP-hard, even for square loss, even with one ReLU 

3

What’s left in deep learning?
• Talked about universal approximation results

• Shallow, wide networks: proved in 1d, sketched proof in general

• Mentioned results for deep, narrow networks

• Relationship to circuit complexity 

• Some generalization bounds

• VC dimension is known relatively sharply

• AlexNet can shatter CIFAR-10, but it still generalizes well

• Norm-based Rademacher bounds possible, but don’t seem very tight 

• Ignoring the many issues, approximation + generalization means ERM works

• …but ERM is NP-hard, even for square loss, even with one ReLU 

• What’s the optimization error for SGD/similar?
3

Nonconvex optimization
• Neural nets are not convex

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

• But we do know that SGD converges to a critical point under fairly mild conditions

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if is differentiable and -smooth, and 

there are s.t. for all , , 
then the best iterate from steps has (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A(f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if is differentiable and -smooth, and 

there are s.t. for all , , 
then the best iterate from steps has (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A(f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if is differentiable and -smooth, and 

there are s.t. for all , , 
then the best iterate from steps has (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A(f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

• …but there are saddle points, including “bad” ones where λmin(∇2f) = 0

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if is differentiable and -smooth, and 

there are s.t. for all , , 
then the best iterate from steps has (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A(f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

• …but there are saddle points, including “bad” ones where λmin(∇2f) = 0
• …but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if is differentiable and -smooth, and 

there are s.t. for all , , 
then the best iterate from steps has (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A(f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

• …but there are saddle points, including “bad” ones where λmin(∇2f) = 0
• …but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)

• …but it can take exponential time to escape (Du et al. 2017)

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if is differentiable and -smooth, and 

there are s.t. for all , , 
then the best iterate from steps has (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A(f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

• …but there are saddle points, including “bad” ones where λmin(∇2f) = 0
• …but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)

• …but it can take exponential time to escape (Du et al. 2017)

• …but that doesn’t happen on deep linear nets [under conditions] (Arora et al. 2019)

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Bad local minima in ReLU nets
 (reals to reals), square loss, :h(x) = ReLU(wx) S = ((1,1))

5

6

https://arxiv.org/abs/1911.01413

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima

7

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?

7

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:

7

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly)≫ n → ∞

7

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly)≫ n → ∞
• and we use an appropriate random initialization

7

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly)≫ n → ∞
• and we use an appropriate random initialization
• with square loss

7

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly)≫ n → ∞
• and we use an appropriate random initialization
• with square loss
• then (S)GD finds a global minimum

7

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly)≫ n → ∞
• and we use an appropriate random initialization
• with square loss
• then (S)GD finds a global minimum

• Implicit in these papers:

7

(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly)≫ n → ∞
• and we use an appropriate random initialization
• with square loss
• then (S)GD finds a global minimum

• Implicit in these papers:
• Behaviour of deep nets converges to kernel ridge regression with the

neural tangent kernel

7

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

8

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

8

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

• is the th row of (as a column vector)wi i W ∈ ℝm×d

8

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

• is the th row of (as a column vector)wi i W ∈ ℝm×d

• Going to treat the as fixed for simplicityaj

8

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

• is the th row of (as a column vector)wi i W ∈ ℝm×d

• Going to treat the as fixed for simplicityaj

• The core idea: think about a linearization of in f W

8

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

• is the th row of (as a column vector)wi i W ∈ ℝm×d

• Going to treat the as fixed for simplicityaj

• The core idea: think about a linearization of in f W
• fW0

(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

8

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

• is the th row of (as a column vector)wi i W ∈ ℝm×d

• Going to treat the as fixed for simplicityaj

• The core idea: think about a linearization of in f W
• fW0

(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩
• Approximates behaviour of as we change ; nonlinear in f W x

8

Shallow case
• Let’s start with a depth 2 case (Telgarsky notes section 4)

• f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

• is the th row of (as a column vector)wi i W ∈ ℝm×d

• Going to treat the as fixed for simplicityaj

• The core idea: think about a linearization of in f W
• fW0

(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩
• Approximates behaviour of as we change ; nonlinear in f W x
• We’ll see that, for large and random , through trainingm W0 f ≈ fW0

8

9

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

9

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

=
1

m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′￼(w0,j)x⊤(wj − w0,j)]

9

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

=
1

m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′￼(w0,j)x⊤(wj − w0,j)]

=
1

m

m

∑
j=1

aj ([σ(w⊤
0,jx) − σ′￼(w0,j)w⊤

0,jx] + σ′￼(w0,j)w⊤
j x)

9

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

=
1

m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′￼(w0,j)x⊤(wj − w0,j)]

=
1

m

m

∑
j=1

aj ([σ(w⊤
0,jx) − σ′￼(w0,j)w⊤

0,jx] + σ′￼(w0,j)w⊤
j x)

= 0 for ReLU

9

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

=
1

m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′￼(w0,j)x⊤(wj − w0,j)]

=
1

m

m

∑
j=1

aj ([σ(w⊤
0,jx) − σ′￼(w0,j)w⊤

0,jx] + σ′￼(w0,j)w⊤
j x)

= 0 for ReLU
fW0

(x; W) = ⟨∇f(x; W0), W⟩

9

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

=
1

m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′￼(w0,j)x⊤(wj − w0,j)]

=
1

m

m

∑
j=1

aj ([σ(w⊤
0,jx) − σ′￼(w0,j)w⊤

0,jx] + σ′￼(w0,j)w⊤
j x)

= 0 for ReLU

We’ll see shortly that shrinks as growsf − f0 m

fW0
(x; W) = ⟨∇f(x; W0), W⟩

10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′￼(w0,j)w⊤

0,jx + σ′￼(w0,j)w⊤
j x)

10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′￼(w0,j)w⊤

0,jx + σ′￼(w0,j)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′￼(w0,j)w⊤

0,jx + σ′￼(w0,j)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

f(x; W) − fW0
(x; W) ≤

1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′￼(w⊤
0,jx)x⊤(wj − w0,j)

10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′￼(w0,j)w⊤

0,jx + σ′￼(w0,j)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′￼(s)(r − s)| = ∫
s

r
σ′￼′￼(z)(s − z)dz

f(x; W) − fW0
(x; W) ≤

1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′￼(w⊤
0,jx)x⊤(wj − w0,j)

10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′￼(w0,j)w⊤

0,jx + σ′￼(w0,j)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′￼(s)(r − s)| = ∫
s

r
σ′￼′￼(z)(s − z)dz ≤

β
2

(r − s)2

f(x; W) − fW0
(x; W) ≤

1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′￼(w⊤
0,jx)x⊤(wj − w0,j)

10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′￼(w0,j)w⊤

0,jx + σ′￼(w0,j)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′￼(s)(r − s)| = ∫
s

r
σ′￼′￼(z)(s − z)dz ≤

β
2

(r − s)2

f(x; W) − fW0
(x; W) ≤

1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′￼(w⊤
0,jx)x⊤(wj − w0,j)

≤
1

m

m

∑
j=1

1
2

β(w⊤
j x − w⊤

0,jx)2

10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′￼(w0,j)w⊤

0,jx + σ′￼(w0,j)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′￼(s)(r − s)| = ∫
s

r
σ′￼′￼(z)(s − z)dz ≤

β
2

(r − s)2

f(x; W) − fW0
(x; W) ≤

1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′￼(w⊤
0,jx)x⊤(wj − w0,j)

≤
1

m

m

∑
j=1

1
2

β(w⊤
j x − w⊤

0,jx)2 ≤
β

2 m

m

∑
j=1

∥wj − w0,j∥2∥x∥2

10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′￼(w0,j)w⊤

0,jx + σ′￼(w0,j)w⊤
j x)

If is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′￼(s)(r − s)| = ∫
s

r
σ′￼′￼(z)(s − z)dz ≤

β
2

(r − s)2

f(x; W) − fW0
(x; W) ≤

1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′￼(w⊤
0,jx)x⊤(wj − w0,j)

≤
1

m

m

∑
j=1

1
2

β(w⊤
j x − w⊤

0,jx)2 ≤
β

2 m
∥W − W0∥2

F≤
β

2 m

m

∑
j=1

∥wj − w0,j∥2∥x∥2

Linearization quality
• For a two-layer net with -smooth hidden activations, 

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; W) − f0(x; W)| ≤
β

2 m
∥W − W0∥2

F

11

Linearization quality
• For a two-layer net with -smooth hidden activations, 

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; W) − f0(x; W)| ≤
β

2 m
∥W − W0∥2

F

• This holds for any and , but only for this shallow caseW W0

11

Linearization quality
• For a two-layer net with -smooth hidden activations, 

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; W) − f0(x; W)| ≤
β

2 m
∥W − W0∥2

F

• This holds for any and , but only for this shallow caseW W0

• For two-layer ReLU nets as above, with entries of iid standard normal: 
for any and any fixed with , 
with probability at least over the draw of , 

W0
B ≥ 0 x ∈ ℝd ∥x∥ ≤ 1

1 − δ W0

sup
W: ∥W−W0∥F≤B

|f(x; W) − fW0
(x; W)| ≤

2B4/3 + B log(1/δ)1/4

m1/6

11

Linearization quality
• For a two-layer net with -smooth hidden activations, 

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; W) − f0(x; W)| ≤
β

2 m
∥W − W0∥2

F

• This holds for any and , but only for this shallow caseW W0

• For two-layer ReLU nets as above, with entries of iid standard normal: 
for any and any fixed with , 
with probability at least over the draw of , 

W0
B ≥ 0 x ∈ ℝd ∥x∥ ≤ 1

1 − δ W0

sup
W: ∥W−W0∥F≤B

|f(x; W) − fW0
(x; W)| ≤

2B4/3 + B log(1/δ)1/4

m1/6

• Proof is more annoying: Telgarsky’s Lemma 4.1
11

Linearization quality
• For a two-layer net with -smooth hidden activations, 

second-layer weights with linear activation, 

then for any ,

β
≤ 1/ m

∥x∥ ≤ 1 |f(x; W) − f0(x; W)| ≤
β

2 m
∥W − W0∥2

F

• This holds for any and , but only for this shallow caseW W0

• For two-layer ReLU nets as above, with entries of iid standard normal: 
for any and any fixed with , 
with probability at least over the draw of , 

W0
B ≥ 0 x ∈ ℝd ∥x∥ ≤ 1

1 − δ W0

sup
W: ∥W−W0∥F≤B

|f(x; W) − fW0
(x; W)| ≤

2B4/3 + B log(1/δ)1/4

m1/6

• Proof is more annoying: Telgarsky’s Lemma 4.1
• Can do multi-layer versions, but approximation degrades with depth

11

What happens in the linearized model?
• For the ReLU, fW0

(x; W) = ⟨∇f(x; W0), W⟩

12

What happens in the linearized model?
• For the ReLU, fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!

12

What happens in the linearized model?
• For the ReLU, fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!
• k(x, x′￼) = ⟨∇f(x; W0), ∇f(x′￼; W0)⟩

12

What happens in the linearized model?
• For the ReLU, fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!
• k(x, x′￼) = ⟨∇f(x; W0), ∇f(x′￼; W0)⟩

12

= ⟨
a1x⊤σ′￼(w⊤

0,1x)/ m
⋮

amx⊤σ′￼(w⊤
0,mx)/ m

,
a1(x′￼)⊤σ′￼(w⊤

0,1x′￼)/ m
⋮

am(x′￼)⊤σ′￼(w⊤
0,mx′￼)/ m

⟩

What happens in the linearized model?
• For the ReLU, fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!
• k(x, x′￼) = ⟨∇f(x; W0), ∇f(x′￼; W0)⟩

12

= ⟨
a1x⊤σ′￼(w⊤

0,1x)/ m
⋮

amx⊤σ′￼(w⊤
0,mx)/ m

,
a1(x′￼)⊤σ′￼(w⊤

0,1x′￼)/ m
⋮

am(x′￼)⊤σ′￼(w⊤
0,mx′￼)/ m

⟩

= x⊤x′￼

1
m

m

∑
j=1

σ′￼(w⊤
0,jx)σ′￼(w⊤

0,jx′￼)

What happens in the linearized model?
• For the ReLU, fW0

(x; W) = ⟨∇f(x; W0), W⟩
• This is a kernel model!
• k(x, x′￼) = ⟨∇f(x; W0), ∇f(x′￼; W0)⟩

12

= ⟨
a1x⊤σ′￼(w⊤

0,1x)/ m
⋮

amx⊤σ′￼(w⊤
0,mx)/ m

,
a1(x′￼)⊤σ′￼(w⊤

0,1x′￼)/ m
⋮

am(x′￼)⊤σ′￼(w⊤
0,mx′￼)/ m

⟩

= x⊤x′￼

1
m

m

∑
j=1

σ′￼(w⊤
0,jx)σ′￼(w⊤

0,jx′￼) m→∞ x⊤x′￼𝔼w [σ′￼(w⊤x) σ′￼(w⊤x′￼)]

arccos kernel
For , :∥x∥ = 1 = ∥x′￼∥ 𝔼w[σ′￼(w⊤x)σ′￼(w⊤x′￼)] =

1
2

−
1

2π
arccos(x⊤x′￼)

13

arccos kernel
For , :∥x∥ = 1 = ∥x′￼∥ 𝔼w[σ′￼(w⊤x)σ′￼(w⊤x′￼)] =

1
2

−
1

2π
arccos(x⊤x′￼)

13

This kernel is universal on {x ∈ ℝd+1 : ∥x∥ = 1, xd+1 = 1/ 2}

Non-ReLU, multi-layer version
• General : σ fW0

(x; W) = f(x; W0) − ⟨∇f(x; W0), W0⟩ + ⟨∇f(x; W0), W⟩

14

http://github.com/google/neural-tangents

Non-ReLU, multi-layer version
• General : σ fW0

(x; W) = f(x; W0) − ⟨∇f(x; W0), W0⟩ + ⟨∇f(x; W0), W⟩

• Fitting to labels is fitting a function in to the residual  fW0
yi ℋk yi − f(xi; W0)

14

http://github.com/google/neural-tangents

Non-ReLU, multi-layer version
• General : σ fW0

(x; W) = f(x; W0) − ⟨∇f(x; W0), W0⟩ + ⟨∇f(x; W0), W⟩

• Fitting to labels is fitting a function in to the residual  fW0
yi ℋk yi − f(xi; W0)

• For multiple layers, idea is the same: kernel is still 
  
but now uses all of the parameters in the network

k(x, x′￼) = ⟨∇f(x; W0), ∇f(x′￼; W0)⟩
∇

14

http://github.com/google/neural-tangents

Non-ReLU, multi-layer version
• General : σ fW0

(x; W) = f(x; W0) − ⟨∇f(x; W0), W0⟩ + ⟨∇f(x; W0), W⟩

• Fitting to labels is fitting a function in to the residual  fW0
yi ℋk yi − f(xi; W0)

• For multiple layers, idea is the same: kernel is still 
  
but now uses all of the parameters in the network

k(x, x′￼) = ⟨∇f(x; W0), ∇f(x′￼; W0)⟩
∇

• but the linearization results are worse 

14

http://github.com/google/neural-tangents

Non-ReLU, multi-layer version
• General : σ fW0

(x; W) = f(x; W0) − ⟨∇f(x; W0), W0⟩ + ⟨∇f(x; W0), W⟩

• Fitting to labels is fitting a function in to the residual  fW0
yi ℋk yi − f(xi; W0)

• For multiple layers, idea is the same: kernel is still 
  
but now uses all of the parameters in the network

k(x, x′￼) = ⟨∇f(x; W0), ∇f(x′￼; W0)⟩
∇

• but the linearization results are worse 

• Can compute expectation version, even for convolutional nets with pooling

14

http://github.com/google/neural-tangents

Non-ReLU, multi-layer version
• General : σ fW0

(x; W) = f(x; W0) − ⟨∇f(x; W0), W0⟩ + ⟨∇f(x; W0), W⟩

• Fitting to labels is fitting a function in to the residual  fW0
yi ℋk yi − f(xi; W0)

• For multiple layers, idea is the same: kernel is still 
  
but now uses all of the parameters in the network

k(x, x′￼) = ⟨∇f(x; W0), ∇f(x′￼; W0)⟩
∇

• but the linearization results are worse 

• Can compute expectation version, even for convolutional nets with pooling
• github.com/google/neural-tangents

14

http://github.com/google/neural-tangents

NTK correspondence

• So far we know that:
• for wide nets with f(⋅ ; W) ≈ fW0

(⋅ ; W) W ≈ W0

15

NTK correspondence

• So far we know that:
• for wide nets with f(⋅ ; W) ≈ fW0

(⋅ ; W) W ≈ W0

• is an RKHS{fW0
(⋅ ; W) − f(⋅ ; W0) : W ∈ ℝp}

15

NTK correspondence

• So far we know that:
• for wide nets with f(⋅ ; W) ≈ fW0

(⋅ ; W) W ≈ W0

• is an RKHS{fW0
(⋅ ; W) − f(⋅ ; W0) : W ∈ ℝp}

• kernel k(x, x′￼) = ⟨∇f(x; W0), ∇f(x′￼; W0)⟩

15

NTK correspondence

• So far we know that:
• for wide nets with f(⋅ ; W) ≈ fW0

(⋅ ; W) W ≈ W0

• is an RKHS{fW0
(⋅ ; W) − f(⋅ ; W0) : W ∈ ℝp}

• kernel k(x, x′￼) = ⟨∇f(x; W0), ∇f(x′￼; W0)⟩
• Infinite-width limit is universal even for shallow, wide nets 

15

NTK correspondence

• So far we know that:
• for wide nets with f(⋅ ; W) ≈ fW0

(⋅ ; W) W ≈ W0

• is an RKHS{fW0
(⋅ ; W) − f(⋅ ; W0) : W ∈ ℝp}

• kernel k(x, x′￼) = ⟨∇f(x; W0), ∇f(x′￼; W0)⟩
• Infinite-width limit is universal even for shallow, wide nets 

• The big remaining result:

15

NTK correspondence

• So far we know that:
• for wide nets with f(⋅ ; W) ≈ fW0

(⋅ ; W) W ≈ W0

• is an RKHS{fW0
(⋅ ; W) − f(⋅ ; W0) : W ∈ ℝp}

• kernel k(x, x′￼) = ⟨∇f(x; W0), ∇f(x′￼; W0)⟩
• Infinite-width limit is universal even for shallow, wide nets 

• The big remaining result:
• Training for square loss kernel ridge regression with f ≈ k

15

NTK correspondence

16

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

NTK correspondence

16

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

Take gradient flow on : LS(w)
dwt

dt = − ∇LS(wt)

NTK correspondence

16

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

Take gradient flow on : LS(w)
dwt

dt = − ∇LS(wt)

= −
1
n

n

∑
i=1

(f(xi; wt) − yi)
∂f(xi; wt)

∂w

NTK correspondence

This means training set predictions update as:

16

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

Take gradient flow on : LS(w)
dwt

dt = − ∇LS(wt)

= −
1
n

n

∑
i=1

(f(xi; wt) − yi)
∂f(xi; wt)

∂w

NTK correspondence

This means training set predictions update as:

16

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

Take gradient flow on : LS(w)
dwt

dt = − ∇LS(wt)

= −
1
n

n

∑
i=1

(f(xi; wt) − yi)
∂f(xi; wt)

∂w

df(xi; wt)
dt

= −
1
n

n

∑
j=1

(f(xj; wt) − yj)⟨ ∂f(xi; wt)
∂w

,
∂f(xj; wt)

∂w ⟩

NTK correspondence

This means training set predictions update as:

16

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

Take gradient flow on : LS(w)
dwt

dt = − ∇LS(wt)

= −
1
n

n

∑
i=1

(f(xi; wt) − yi)
∂f(xi; wt)

∂w

df(xi; wt)
dt

= −
1
n

n

∑
j=1

(f(xj; wt) − yj)⟨ ∂f(xi; wt)
∂w

,
∂f(xj; wt)

∂w ⟩
So the vector evolves as fS(t) = (f(x1; wt), …, f(xn; wt))

dfS(t)
dt

= − 1
n k(wt)

SS (fS(t) − y)

NTK correspondence

This means training set predictions update as:

16

We’ll optimize based on squared loss LS(w) ℓ(w, (x, y)) = 1
2 (f(x; w) − y)2

Take gradient flow on : LS(w)
dwt

dt = − ∇LS(wt)

= −
1
n

n

∑
i=1

(f(xi; wt) − yi)
∂f(xi; wt)

∂w

df(xi; wt)
dt

= −
1
n

n

∑
j=1

(f(xj; wt) − yj)⟨ ∂f(xi; wt)
∂w

,
∂f(xj; wt)

∂w ⟩
So the vector evolves as fS(t) = (f(x1; wt), …, f(xn; wt))

dfS(t)
dt

= − 1
n k(wt)

SS (fS(t) − y)

If is constant over time, exact same dynamics as kernel (ridgeless) regressionk(wt)
SS = kSS

NTK correspondence
• As width , Arora et al. (2019) show is roughly constant over training, 

and converges to its expectation 
→ ∞ k(wt)

SS

17

https://arxiv.org/abs/1904.11955

NTK correspondence
• As width , Arora et al. (2019) show is roughly constant over training, 

and converges to its expectation 
→ ∞ k(wt)

SS

 

17

https://arxiv.org/abs/1904.11955

NTK correspondence
• As width , Arora et al. (2019) show is roughly constant over training, 

and converges to its expectation 
→ ∞ k(wt)

SS

 

• Proof is kind of gnarly, but basically amounts to showing kernel being close =>
gradients are close throughout training => final result is close

17

https://arxiv.org/abs/1904.11955

NTK correspondence
• As width , Arora et al. (2019) show is roughly constant over training, 

and converges to its expectation 
→ ∞ k(wt)

SS

 

• Proof is kind of gnarly, but basically amounts to showing kernel being close =>
gradients are close throughout training => final result is close

• Scales network so that initialization has fS ≈ 0
17

https://arxiv.org/abs/1904.11955

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK

18

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK
• Pretty abstract approach: argued that gradient descent on NN parameters

corresponds to kernel gradient descent in function space

18

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK
• Pretty abstract approach: argued that gradient descent on NN parameters

corresponds to kernel gradient descent in function space
• Doing gradient flow gives us an explicit formula for prediction function: 

 ft(x) = f0(x) + kS(x)K−1
SS (I − e−tKSS)(f*S − (f0)S)

18

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK
• Pretty abstract approach: argued that gradient descent on NN parameters

corresponds to kernel gradient descent in function space
• Doing gradient flow gives us an explicit formula for prediction function: 

 ft(x) = f0(x) + kS(x)K−1
SS (I − e−tKSS)(f*S − (f0)S)

• and so f∞(x) = f0(x) + kS(x) k−1
SS (f*S − (f0)S)

18

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK
• Pretty abstract approach: argued that gradient descent on NN parameters

corresponds to kernel gradient descent in function space
• Doing gradient flow gives us an explicit formula for prediction function: 

 ft(x) = f0(x) + kS(x)K−1
SS (I − e−tKSS)(f*S − (f0)S)

• and so f∞(x) = f0(x) + kS(x) k−1
SS (f*S − (f0)S)

• If , this is just kernel ridge regressionf0(x) = 0

18

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK
• Pretty abstract approach: argued that gradient descent on NN parameters

corresponds to kernel gradient descent in function space
• Doing gradient flow gives us an explicit formula for prediction function: 

 ft(x) = f0(x) + kS(x)K−1
SS (I − e−tKSS)(f*S − (f0)S)

• and so f∞(x) = f0(x) + kS(x) k−1
SS (f*S − (f0)S)

• If , this is just kernel ridge regressionf0(x) = 0
• In general, it’s GP regression with prior mean f0

18

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

• Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK
• Pretty abstract approach: argued that gradient descent on NN parameters

corresponds to kernel gradient descent in function space
• Doing gradient flow gives us an explicit formula for prediction function: 

 ft(x) = f0(x) + kS(x)K−1
SS (I − e−tKSS)(f*S − (f0)S)

• and so f∞(x) = f0(x) + kS(x) k−1
SS (f*S − (f0)S)

• If , this is just kernel ridge regressionf0(x) = 0
• In general, it’s GP regression with prior mean f0

• Proof actually needs infinite width but only really shows for finite time t

18

https://arxiv.org/abs/1806.07572

NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:

19

https://arxiv.org/abs/1812.07956

NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:
• Using a small scale “zooms in” on the Taylor expansion, 

and makes the behaviour more linear

19

https://arxiv.org/abs/1812.07956

NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:
• Using a small scale “zooms in” on the Taylor expansion, 

and makes the behaviour more linear
• Can give a short-ish proof of NTK behaviour based on this scaling

19

https://arxiv.org/abs/1812.07956

NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:
• Using a small scale “zooms in” on the Taylor expansion, 

and makes the behaviour more linear
• Can give a short-ish proof of NTK behaviour based on this scaling
• Basically, things “look strongly convex” 

19

https://arxiv.org/abs/1812.07956

NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:
• Using a small scale “zooms in” on the Taylor expansion, 

and makes the behaviour more linear
• Can give a short-ish proof of NTK behaviour based on this scaling
• Basically, things “look strongly convex” 

• But…it’s pretty abstract, and takes a bunch of work to connect back to
actual network architectures

19

https://arxiv.org/abs/1812.07956

NTK regime and scaling

• Chizat and Bach (2019) argue that scaling is the key thing:
• Using a small scale “zooms in” on the Taylor expansion, 

and makes the behaviour more linear
• Can give a short-ish proof of NTK behaviour based on this scaling
• Basically, things “look strongly convex” 

• But…it’s pretty abstract, and takes a bunch of work to connect back to
actual network architectures

• Telgarsky section 8 gives a simplified proof, but it’s a little bit WIP

19

https://arxiv.org/abs/1812.07956

So, is deep learning just kernels?

• No.

20

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”

20

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…

20

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…
• There are problems where NNs provably do better than any kernel method

possibly could (next time!) 

20

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…
• There are problems where NNs provably do better than any kernel method

possibly could (next time!) 

• But NTK is still useful:

20

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…
• There are problems where NNs provably do better than any kernel method

possibly could (next time!) 

• But NTK is still useful:
• AFAIK, the main (only?) proofs that GD optimizes deep networks reasonably

20

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…
• There are problems where NNs provably do better than any kernel method

possibly could (next time!) 

• But NTK is still useful:
• AFAIK, the main (only?) proofs that GD optimizes deep networks reasonably
• Can be practically useful in some settings

20

So, is deep learning just kernels?

• No.
• Real neural net optimization isn’t in “the NTK regime”
• NTK regime doesn’t allow for feature learning – the kernel doesn’t change…
• There are problems where NNs provably do better than any kernel method

possibly could (next time!) 

• But NTK is still useful:
• AFAIK, the main (only?) proofs that GD optimizes deep networks reasonably
• Can be practically useful in some settings
• Probably a building block for whatever comes next

20

