Neural Tangent Kernels (+ etc)

CPSC 532S: Modern Statistical Learning Theory
23 March 2022
cs.ubc.ca/~dsuth/5325/22/

https://www.cs.ubc.ca/~dsuth/532S/22/

Admin

A3 Q1 is broken, to be replaced (with something as similar as possible) tonight
 Whole assignment now due Monday

* A4 will be posted soon, due Friday the 8th (last day of term)
* Yes, the same day as the project report; usual late policy

* Project scope:
* I’'m just looking for signs that you’'ve read and understood the papers
* |f you're doing a lit review: ~3-4 papers is the expected amount

* Talk about how the settings / conclusions relate to each other,
what they leave open, etc

* An “extension” can absolutely just be poking at the assumptions and talking
about when they hold / don'’t

What’s left in deep learning?

 Jalked about universal approximation results
 Shallow, wide networks: proved in 1d, sketched proof in general
 Mentioned results for deep, narrow networks
* Relationship to circuit complexity

What’s left in deep learning?

 Jalked about universal approximation results
 Shallow, wide networks: proved in 1d, sketched proof in general
 Mentioned results for deep, narrow networks
* Relationship to circuit complexity

 Some generalization bounds
* VC dimension is known relatively sharply
* AlexNet can shatter CIFAR-10, but it still generalizes well
 Norm-based Rademacher bounds possible, but don’t seem very tight

What’s left in deep learning?

 Jalked about universal approximation results
 Shallow, wide networks: proved in 1d, sketched proof in general
 Mentioned results for deep, narrow networks
* Relationship to circuit complexity

 Some generalization bounds
* VC dimension is known relatively sharply
* AlexNet can shatter CIFAR-10, but it still generalizes well
 Norm-based Rademacher bounds possible, but don’t seem very tight

* Ignoring the many issues, approximation + generalization means ERM works
e ...but ERM is NP-hard, even for square loss, even with one RelLU

What’s left in deep learning?

Talked about universal approximation results

* Shallow, wide networks: proved in 1d, sketched proof in general
 Mentioned results for deep, narrow networks

» Relationship to circuit complexity

Some generalization bounds

* VC dimension is known relatively sharply

* AlexNet can shatter CIFAR-10, but it still generalizes well
 Norm-based Rademacher bounds possible, but don’t seem very tight

lgnoring the many issues, approximation + generalization means ERM works
e ...but ERM is NP-hard, even for square loss, even with one RelLU

What'’s the optimization error for SGD/similar?

3

Nonconvex optimization

e Neural nets are not convex

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization

 Neural nets are not convex
* Even deep linear networks are not convex

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization

 Neural nets are not convex
* Even deep linear networks are not convex

 But we do know that SGD converges to a critical point under fairly mild conditions

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization

 Neural nets are not convex
* Even deep linear networks are not convex

 But we do know that SGD converges to a critical point under fairly mild conditions
. e.g..if f > f"™ is differentiable and -smooth, and
there are A, B, C s.t. for all x, E [Hgf(x)Hz] < 2A(f(x) — ™) + B||[VAX)|I” + C,

then the best iterate from O(e~*) steps has E [HV f(x)l\z] < €? (Khaled/Richtérik 2020)

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization

Neural nets are not convex
Even deep linear networks are not convex

But we do know that SGD converges to a critical point under fairly mild conditions
. e.g..if f > f"™ is differentiable and -smooth, and
there are A, B, C s.t. for all x, E [Hgf(x)Hz] < 2A(f(x) — ™) + B||[VAX)|I” + C,

then the best iterate from O(e~*) steps has E [HV f(x)l\z] < €? (Khaled/Richtérik 2020)

In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization

Neural nets are not convex
Even deep linear networks are not convex

But we do know that SGD converges to a critical point under fairly mild conditions
. e.g..if f > f"™ is differentiable and -smooth, and
there are A, B, C s.t. for all x, E [Hgf(x)Hz] < 2A(f(x) — ™) + B||[VAX)|I” + C,

then the best iterate from O(e~*) steps has E [HV f(x)l\z] < €? (Khaled/Richtérik 2020)

In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

» ...but there are saddle points, including “bad” ones where 4 . (V) =0

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization

Neural nets are not convex
Even deep linear networks are not convex

But we do know that SGD converges to a critical point under fairly mild conditions
. e.g..if f > f"™ is differentiable and -smooth, and
there are A, B, C s.t. for all x, E [Hgf(x)Hz] < 2A(f(x) — ™) + B||[VAX)|I” + C,

then the best iterate from O(e~*) steps has E [HV f(x)l\z] < €? (Khaled/Richtérik 2020)

In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

» ...but there are saddle points, including “bad” ones where 4 . (V) =0
o ...but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization

Neural nets are not convex
Even deep linear networks are not convex

But we do know that SGD converges to a critical point under fairly mild conditions
. e.g..if f > f"™ is differentiable and -smooth, and
there are A, B, C s.t. for all x, E [Hgf(x)Hz] < 2A(f(x) — ™) + B||[VAX)|I” + C,

then the best iterate from O(e~*) steps has E [HV f(x)l\z] < €? (Khaled/Richtérik 2020)

In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

» ...but there are saddle points, including “bad” ones where 4 . (V) =0

* ...but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)
e ...but it can take exponential time to escape (Du et al. 2017)

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Nonconvex optimization

Neural nets are not convex
Even deep linear networks are not convex

But we do know that SGD converges to a critical point under fairly mild conditions
. e.g..if f > f"™ is differentiable and -smooth, and
there are A, B, C s.t. for all x, E [Hgf(x)Hz] < 2A(f(x) — ™) + B||[VAX)|I” + C,

then the best iterate from O(e~*) steps has E [HV f(x)l\z] < €? (Khaled/Richtérik 2020)

In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

» ...but there are saddle points, including “bad” ones where 4 . (V) =0

o ...but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)
e ...but it can take exponential time to escape (Du et al. 2017)
e ...but that doesn’t happen on deep linear nets [under conditions] (Arora et al. 2019)

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281

Bad local minima in RelLLU nets

h(x) = ReLU(wx) (reals to reals), square loss, S = ((1,1)):

Sub-Optimal Local Minima Exist for Neural
Networks with Almost All Non-Linear Activations

Tian Ding* Dawei Li T Ruoyu Sun *
Nov 4, 2019

https://arxiv.org/abs/1911.01413

(S)GD works on over-parameterized nets

* Okay, so there are bad local minima

(S)GD works on over-parameterized nets

* Okay, so there are bad local minima
e But...does (S)GD actually find them?

(S)GD works on over-parameterized nets

* Okay, so there are bad local minima
e But...does (S)GD actually find them?
e Several papers around 2018-19 showed that:

(S)GD works on over-parameterized nets

* Okay, so there are bad local minima
e But...does (S)GD actually find them?
e Several papers around 2018-19 showed that:

o |f the network is very overparameterized (width > n, possibly — ©0)

(S)GD works on over-parameterized nets

* Okay, so there are bad local minima
e But...does (S)GD actually find them?
e Several papers around 2018-19 showed that:

o |f the network is very overparameterized (width > n, possibly — ©0)
e and we use an appropriate random initialization

(S)GD works on over-parameterized nets

* Okay, so there are bad local minima
e But...does (S)GD actually find them?
e Several papers around 2018-19 showed that:

o |f the network is very overparameterized (width > n, possibly — ©0)

e and we use an appropriate random initialization
* with square loss

(S)GD works on over-parameterized nets

* Okay, so there are bad local minima
e But...does (S)GD actually find them?
e Several papers around 2018-19 showed that:

o |f the network is very overparameterized (width > n, possibly — ©0)
e and we use an appropriate random initialization

* with square loss

* then (S)GD finds a global minimum

(S)GD works on over-parameterized nets

* Okay, so there are bad local minima
e But...does (S)GD actually find them?
e Several papers around 2018-19 showed that:

o |f the network is very overparameterized (width > n, possibly — ©0)
e and we use an appropriate random initialization
* with square loss
* then (S)GD finds a global minimum
* |Implicit in these papers:

(S)GD works on over-parameterized nets

* Okay, so there are bad local minima
e But...does (S)GD actually find them?
e Several papers around 2018-19 showed that:

o |f the network is very overparameterized (width > n, possibly — ©0)
e and we use an appropriate random initialization
* with square loss
* then (S)GD finds a global minimum
* |Implicit in these papers:
* Behaviour of deep nets converges to kernel ridge regression with the
neural tangent kernel

Shallow case

o |et’s start with a depth 2 case (Telgarsky notes section 4)

Shallow case

o |et’s start with a depth 2 case (Telgarsky notes section 4)

1 m
fs W) =—=) a;o(wx)
m =1

Shallow case

o |et’s start with a depth 2 case (Telgarsky notes section 4)

1 m
fs W) =—=) a;o(wx)
m =1

e W, istheithrow of W € | mxd (as a column vector)

Shallow case

o |et’s start with a depth 2 case (Telgarsky notes section 4)

1 m
fs W) =—=) a;o(wx)
m =1

e W, istheithrow of W € | mxd (as a column vector)

« Going to treat the a; as fixed for simplicity

Shallow case

o |et’s start with a depth 2 case (Telgarsky notes section 4)

1 m
fs W) =—=) a;o(wx)
m =1

e W, istheithrow of W € | mxd (as a column vector)

« Going to treat the a; as fixed for simplicity

« The core idea: think about a linearization of fin W

Shallow case

o |et’s start with a depth 2 case (Telgarsky notes section 4)

1 m
fs W) =—=) a;o(wx)
m =1

e W, istheithrow of W € | mxd (as a column vector)

« Going to treat the a; as fixed for simplicity

« The core idea: think about a linearization of fin W

o fw, (s W) = fx; W) + (Vflx; Wy), W — W)

Shallow case

o |et’s start with a depth 2 case (Telgarsky notes section 4)

1 m
fs W) =—=) a;o(wx)
m =1

e W, istheithrow of W € | mxd (as a column vector)

« Going to treat the a; as fixed for simplicity

« The core idea: think about a linearization of fin W
o fw, (6 W) = fl; Wo) + (Vo W), W — W)

» Approximates behaviour of f as we change W; nonlinear in x

Shallow case

o |et’s start with a depth 2 case (Telgarsky notes section 4)

1 m
fs W) =—=) a;o(wx)
m =1

e W, istheithrow of W € | mxd (as a column vector)

« Going to treat the a; as fixed for simplicity

« The core idea: think about a linearization of fin W
o fw, (6 W) = flas Wo) + (Ve W), W = W)
» Approximates behaviour of f as we change W; nonlinear in x
« We'll see that, for large m and random Wo,fszo through training

8

1 m
fl; W) =—=) a;o(w,
m i—

Jw, (6 W) = fx; W) + (VG Wo), W= W)

1 m
fl; W) = —=) a;0(w] x)
m i

Jw, (6 W) = fx; W) + (VG Wo), W= W)

_ % i a lg(w(;l:]x) -+ G,(W(),j)x-r(wj o WO,j)]
m j=1

fx; W) —Lia o(w; x)
> \% ~ J J

S, (6 W) = fx; W) + (Ve W), W — W)

— L Z a; la(wo]x) + o'(w])XT(W Wo])]

*—§

m

T / T / T
— a] (IG(WOJX) — 0 (WO’J-)WOJ-X] + oW)W, x)

§

fx; W) —Lia o(w; x)
> \% ~ J J

S, (6 W) = fx; W) + (Ve W), W — W)

— L Z a; la(wo]x) + o'(w])XT(W Wo])]

*—§

m

T / T / T
— a] (lg(wo,jx) — 0 (W(),j)wo, jx] + 0 (Wo,j)Wj x)
\ — 0 for Rel.U J

§

fx; W) —Lia o(w; x)
> \% ~ J J

S, (6 W) = fx; W) + (Ve W), W — W)

— L 2 a; la(wo]x) + o'(w])XT(W Wo])]

~§

m

—_— Cl] (IG(W(I]X) — 6,(W(),])W(;|:]x] -+ 6’(W(),j)Wij>
k - 0 for RelLU J
S (s W) = (Vf(x; W), W)

§

e, W) = Lia o(w. x)
’ \M ~ J J

Jw,(xs W) = fl; Wo) + (VG W), W = W)

— L z a; la(wo]x) + o'(w])XT(W Wo])]

~§

m

— a] (la(wOT, jx) — o' (W, j)W(;l: jx] + o' (W, j)ijx)
\ — 0 for ReLU J
Jw, (s W) = (Vf(x; W), W)

§

We'll see shortly that f — f, shrinks as m grows

9

e, W) = L Z a; (f(ijx)
J= 1

m

(x W) = Z (U(Wo]) — G(WO])WO]X + U(WO])W x)

10

Jw (W) = — Z a; (G(W(_)l: X) —o(w, j)wOT, X+ o(wy, j)ijx>

If o is p-smooth, |a;| < 1, [|x|| < 1:

10

Jw (W) = — Z a; (G(W(I X) —o(w, j)wOT, X+ o(wy, j)ijx)

If o is p-smooth, |a;| < 1, [|x|| < 1:

1 m
[0 W) = fi, s W)| < —= Y laf \ 6w, x) — o(wg %) — 6wy X)xT(w; = W)

m =1

10

Jw (W) = — Z a; (G(W(_)l: X) — o' (W, j)wOT, X+ o(wy,]-)ijx)

If ois f-smooth, |a;| < 1, |[x]| < I:

o(r) — o(s) = o'(s)(r — 5)| =

J o'(2)(s — 2)dz

T T T oy T
o(w; x) = o(w, :x) — o' (wy . x)x " (W; — W ;)

‘f(M W) _fWO(x; W)‘ < L i |aj]

m =1

10

m

Jw (W) = — Z a; (G(W(_)l: X) — o' (W, j)wOT, X+ o(wy,]-)ijx)

m =1

If ois f-smooth, |a;| < 1, |[x]| < I:

o(r) — o(s) = o'(s)(r — 5)| =

‘f(x; W) — fy, (x; W) ‘ <

j=1

§<” — 5)°

J o'(2)(s — 2)dz

T T T oy T
o(w; x) = o(w, :x) — o' (wy . x)x " (W; — W ;)

10

1 m
fo; W) =—=) a;o(w;'x)
\%]:ZI J J

1 m
Fi (3 W) = = Ya (O-(WOT 1) = 6wy Jw x + 6w, j)w]Tx)
m =1

If ois f-smooth, |a;| < 1, |[x]| < I:

|6(r) — o(s) — o'(s)(r —s)| = ,B

5(7’ — 5)2

J o'(2)(s — 2)dz

a(w Tx) — G(WO]x) — o'(w,]x)xT(w Wy])

105 W) = fy e W) | <

10

1 m
fo; W) =—=) a;o(w;'x)
\%]221 J J

1 m
Fi (3 W) = = Ya (a(wg 1) = 6wy Jw x + 6w, j)w]Tx)
m =1

If ois f-smooth, |a;| < 1, |[x]| < I:

|6(r) — o(s) — o'(s)(r —s)| = ,5

5(’” — 5)2

J o'(2)(s — 2)dz

G(W Tx) — G(WO]x) — o'(w,]x)xT(w Wy])

105 W) = fy e W) | <

2
APl

1 m
fo; W) =—=) a;o(w;'x)
\%]221 J J

1 m
Fi (3 W) = = Ya (a(wg 1) = 6wy Jw x + 6w, j)w]Tx)
m =1

If ois f-smooth, |a;| < 1, |[x]| < I:

|6(r) — o(s) — o'(s)(r —s)| = ,5

5(’” — 5)2

J o'(2)(s — 2)dz

G(W Tx) — G(WO]x) — o'(w,]x)xT(w Wy])

105 W) = fy e W) | <

Tx o] PP < =2
m =1 Z\F 2\%

Linearization quality

 For a two-layer net with ff-smooth hidden activations,

second-layer weights < 1/4/m with linear activation,

then forany ||x|| < 1, |f(x; W) —fo(x; W)| < b
27/ m

W — W,l|2

11

Linearization quality

 For a two-layer net with ff-smooth hidden activations,

second-layer weights < 1/4/m with linear activation,

then forany ||x|| < 1, |f(x; W) —fo(x; W)| < b
27/ m

W — W,l|2

e This holds for any W and W,,, but only for this shallow case

11

Linearization quality

 For a two-layer net with ff-smooth hidden activations,

second-layer weights < 1/4/m with linear activation,

then forany ||x|| < 1, |f(x; W) —fo(x; W)| < b
27/ m

W — W,l|2

e This holds for any W and W,,, but only for this shallow case

 For two-layer ReLU nets as above, with entries of W, iid standard normal:
for any B > 0 and any fixed x € R? with ||x|| < 1,

with probability at least 1 — 0 over the draw of W,,,

2B* + Blog(1/8)"*
sup [fs W) = fy (s W) £ ———
W IIW=Woll <B .

11

Linearization quality

 For a two-layer net with ff-smooth hidden activations,

second-layer weights < 1/4/m with linear activation,

then forany ||x|| < 1, |f(x; W) —fo(x; W)| < b
27/ m

W — W,l|2

e This holds for any W and W,,, but only for this shallow case

 For two-layer ReLU nets as above, with entries of W, iid standard normal:
for any B > 0 and any fixed x € R? with ||x|| < 1,

with probability at least 1 — 0 over the draw of W,,,

2B* + Blog(1/8)"*
sup [fs W) = fy (s W) £ ———
W: [IW=Wll <B .

* Proof is more annoying: Telgarsky’s Lemma 4.1

11

Linearization quality

 For a two-layer net with ff-smooth hidden activations,

second-layer weights < 1/4/m with linear activation,

then forany ||x|| < 1, |f(x; W) —fo(x; W)| < b
27/ m

W — W,l|2

e This holds for any W and W,,, but only for this shallow case

 For two-layer ReLU nets as above, with entries of W, iid standard normal:
for any B > 0 and any fixed x € R? with ||x|| < 1,

with probability at least 1 — 0 over the draw of W,,,

2B* + Blog(1/8)"*
sup [fs W) = fy (s W) £ ———
W: [IW=Wll <B .

* Proof is more annoying: Telgarsky’s Lemma 4.1
 Can do multi-layer versions, but qpproximation degrades with depth

What happens in the linearized model?

» Forthe ReLU, fy, (x; W) = (Vflx; Wy), W)

12

What happens in the linearized model?

» Forthe ReLU, fy, (x; W) = (Vflx; Wy), W)
e This is a kernel model!

12

What happens in the linearized model?

» Forthe ReLU, fy, (x; W) = (Vflx; Wy), W)
e This is a kernel model!

o k(x,x") = (Vflx; Wy, VAxs Wy))

12

What happens in the linearized model?

» Forthe ReLU, fy, (x; W) = (Vflx; Wy), W)
e This is a kernel model!

o k(x,x") = (Vflx; Wy, VAxs Wy))
alea’(w(I 1X)/ ﬁ al(x’)Ta’(w(I 1 X/ \%

< amxTa’(w(I mx)/ﬁ am(x’)Ta’(w(I mx’)/\% >

12

What happens in the linearized model?

» Forthe ReLU, fy, (x; W) = (Vflx; Wy), W)
e This is a kernel model!

o k(x,x") = (Vflx; Wy, VAxs Wy))

< alea’(w(I lx)/\/% al(x’)TU’(w(I lx’)/ﬁ >
To'(wg) m| | a,x) o' (wg,x)/m

1 m
[Z J:Zl o (WO]x)a (WO X)]

12

What happens in the linearized model?

» Forthe ReLU, fy, (x; W) = (Vflx; Wy), W)
e This is a kernel model!

o k(x,x") = (Vflx; Wy, VAxs Wy))

< alea’(w(I 1X)/ ﬁ al(x’)TU’(w(I 1 X/ \% >

To'(wg) m| | a,x) o' (wg,x)/m

12

arccos kernel

For ||x|| =1 = [|x||, -W[a’(wa)a’(wa’)] = 5 o arccos(x ' x'):

13

arccos kernel

For ||x|| =1 = [|x||, -W[a’(wa)a’(wa’)] = > "7 arccos(x ' x'):
T

This kernel is universal on {x € R*! : ||x|| = 1, X = 1/\/5}

13

Non-RelLU, multi-layer version

» General o: fi (x; W) = flox; W) — (Vfx; Wy), W) + (VIx; W), W)

http://github.com/google/neural-tangents

Non-RelLU, multi-layer version

» General o: fy, (x; W) = flx; W) — (Vf(x; W), Wo) + (Vf(x; W), W)
. FittinngO to labels y; is fitting a function in #, to the residual y. — f(x;; W)

14

http://github.com/google/neural-tangents

Non-RelLU, multi-layer version

» General o: fy, (x; W) = flx; W) — (Vf(x; W), Wo) + (Vf(x; W), W)
. FittinngO to labels y; is fitting a function in #, to the residual y. — f(x;; W)

 For multiple layers, idea Is the same: kernel is still

k(x,x") = (Vf(x; Wy), VAx'; Wp))

but now V uses all of the parameters in the network

14

http://github.com/google/neural-tangents

Non-RelLU, multi-layer version

General 6 fy, (x; W) = flx; W) — (Vflx; Wy), W) + (Vfx; Wy), W)
FittinngO to labels y; is fitting a function in #, to the residual y. — f(x;; W)

For multiple layers, idea is the same: kernel is still

k(x, x) = (Vflx; Wp), VAXS W)
but now V uses all of the parameters in the network
e but the linearization results are worse

14

http://github.com/google/neural-tangents

Non-RelLU, multi-layer version

General 6 fy, (x; W) = flx; W) — (Vflx; Wy), W) + (Vfx; Wy), W)
FittinngO to labels y; is fitting a function in #, to the residual y. — f(x;; W)

For multiple layers, idea is the same: kernel is still

k(x, x) = (Vflx; Wp), VAXS W)
but now V uses all of the parameters in the network
e but the linearization results are worse

Can compute expectation version, even for convolutional nets with pooling

14

http://github.com/google/neural-tangents

Non-RelLU, multi-layer version

General 6 fy, (x; W) = flx; W) — (Vflx; Wy), W) + (Vfx; Wy), W)
FittinngO to labels y; is fitting a function in #, to the residual y. — f(x;; W)

For multiple layers, idea is the same: kernel is still

k(x, x) = (Vflx; Wp), VAXS W)
but now V uses all of the parameters in the network
e but the linearization results are worse

Can compute expectation version, even for convolutional nets with pooling
e github.com/google/neural-tangents

14

http://github.com/google/neural-tangents

NTK correspondence

* So far we know that:
« JO- 5 W) = fy (-3 W) for wide nets with W = W,

NTK correspondence

* So far we know that:
« JO- 5 W) = fy (-3 W) for wide nets with W = W,

o Uw, (s W) —=J(- 5 W) : We RP}is an RKHS

15

NTK correspondence

* So far we know that:
« JO- 5 W) = fy (-3 W) for wide nets with W = W,

o Uw, (s W) —=J(- 5 W) : We RP}is an RKHS
e kernel k(x, x") = (Vf(x; W), VAx"; W)

15

NTK correspondence

e So far we know that:

« JO- 5 W) = fy (-3 W) for wide nets with W = W,
o Uw, (s W) —=J(- 5 W) : We RP}is an RKHS
e kernel k(x,x") = (Vf(x; Wy), VAx'; Wp))

e [nfinite-width limit Is universal even for shallow, wide nets

15

NTK correspondence

* So far we know that:
« JO- 5 W) = fy (-3 W) for wide nets with W = W,

o Uw, (s W) —=J(- 5 W) : We RP}is an RKHS
e kernel k(x,x") = (Vf(x; Wy), VAx'; Wp))

e [nfinite-width limit Is universal even for shallow, wide nets

* The big remaining result:

15

NTK correspondence

* So far we know that:
« JO- 5 W) = fy (-3 W) for wide nets with W = W,

o Uw, (s W) —=J(- 5 W) : We RP}is an RKHS
e kernel k(x,x") = (Vf(x; Wy), VAx'; Wp))

e [nfinite-width limit Is universal even for shallow, wide nets

* The big remaining result:
» Training f for square loss & kernel ridge regression with k

15

NTK correspondence

We’ll optimize L¢(w) based on squared loss £ (w, (x,y)) = %(O w) — y)?

16

NTK correspondence

We’ll optimize L¢(w) based on squared loss £ (w, (x,y)) = %(O w) — y)?

dw,

Take gradient flow on LS(W): = = VLS(Wt)

16

NTK correspondence

We’ll optimize L¢(w) based on squared loss £ (w, (x,y)) = %(O w) — y)?

dw,

Take gradient flow on LS(W): = = VLS(Wt)

1 < of(x;; wy
= _;Z(f(xi;wt)_yi) i)
i=1

ow

16

NTK correspondence

We’ll optimize L¢(w) based on squared loss £ (w, (x,y)) = %(O w) — y)?

d t
Take gradient flow on LS(W) L VLS(wt)

0f (x;; wy)

-—z<f< - yp LD

This means training set predictions update as

16

NTK correspondence

We’ll optimize L¢(w) based on squared loss £ (w, (x,y)) = %(O w) — y)?

dw,

Take gradient flow on LS(W): = = VLS(Wt)

1 n
= — — Z SO w) — w)
"l =1

This means training set predictions update as:

.. y . of(x;; W,
Sy 1 Z iy — v < of(x;; wt), f(x; wy) >
s

of(x;; wy)
ow

ds ow ow

16

NTK correspondence

We’ll optimize L¢(w) based on squared loss £ (w, (x,y)) = %(O w) — y)?

d t
Take gradient flow on LS(W) = V Li(w,)

1 n
= ——) (flzw) =)
n -

This means training set predictions update as:

.. y . of(x;; W,
Sy 1 Z iy — v < of(x;; wt), f(x; wy) >
s

of(x;; w,)
ow

d? ow ow
df: S(t)

So the vector f((7) = (f(xl; W), ..., f(xn;wt)) evolves as gy

——kgs! (fs(1) =)

16

NTK correspondence

We’ll optimize L¢(w) based on squared loss £ (w, (x,y)) = %(O w) — y)?

d t
Take gradient flow on LS(W) = VLS(wt)

__Z(f(Wt) yz

This means training set predictions update as

d 4flx; wy) 0 t af(W)
JUi) ——2<f<x],wt> y,>< Ui) —>

af 9f(x;; wy)
ow

dr ow ow

df (1
fi) — kg (fs(®) =)

If kég"f) = k¢ is constant over time, exact same dynamics as kernel (ridgeless) regression

So the vector f((7) = (f(xl; wt), s J (X5 wt)) evolves as

16

NTK correspondence

o As width — ©0, Arora et al. (2019) show kég"f) IS roughly constant over training,
and converges to its expectation

17

https://arxiv.org/abs/1904.11955

NTK correspondence

o As width — o0, Arora et al. (2019) show K s roughly constant over training,
SS
and converges to its expectation

Theorem 3.2 (Equivalence between trained net and kernel regression). Suppose o (z) =
max(0,z), 1/k = poly(l/e,log(n/d)) and di = dy = --- = dp = m with m >
poly(1/k,L,1/\g,n,log(1/d)). Then for any x;. € R® with ||x:.|| = 1, with probability at least
1 — 0 over the random initialization, we have

‘fnn(wte) — fntk(mte)‘ S €.

17

https://arxiv.org/abs/1904.11955

NTK correspondence

o As width — o0, Arora et al. (2019) show K s roughly constant over training,
SS
and converges to its expectation

Theorem 3.2 (Equivalence between trained net and kernel regression). Suppose o (z) =
max(0,z), 1/k = poly(l/e,log(n/d)) and di = dy = --- = dp = m with m >
poly(1/k,L,1/ Xy, n,log(1/8)). Then for any x;. € R with ||x;:.|| = 1, with probability at least
1 — 0 over the random initialization, we have

‘fnn(mte) — fntk(mte)‘ S €.

* Proof is kind of gnarly, but basically amounts to showing kernel being close =>
gradients are close throughout training => final result is close

17

https://arxiv.org/abs/1904.11955

NTK correspondence

o As width — o0, Arora et al. (2019) show K s roughly constant over training,
SS
and converges to its expectation

Theorem 3.2 (Equivalence between trained net and kernel regression). Suppose o (z) =
max(0,z), 1/k = poly(l/elog(n/d)) and dy = do = --- = dp = m with m >

poly(1/k,L,1/ Xy, n,log(1/8)). Then for any x;. € R with ||x;:.|| = 1, with probability at least
1 — 0 over the random initialization, we have

‘fnn(mte) — fntk(mte)‘ S €.

* Proof is kind of gnarly, but basically amounts to showing kernel being close =>
gradients are close throughout training => final result is close

» Scales network so that initialization has f; ~ 0

17

https://arxiv.org/abs/1904.11955

Showing the NTK correspondence

e Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

e Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK

* Pretty abstract approach: argued that gradient descent on NN parameters
corresponds to kernel gradient descent in function space

18

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

e Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK

* Pretty abstract approach: argued that gradient descent on NN parameters
corresponds to kernel gradient descent in function space

* Doing gradient flow gives us an explicit formula for prediction function:

i) = fo(0) + ks(D)Kgg (I — e) — (fp)s)

18

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

e Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK

* Pretty abstract approach: argued that gradient descent on NN parameters
corresponds to kernel gradient descent in function space

* Doing gradient flow gives us an explicit formula for prediction function:

fi(x) = fo(x) + kg)Kgg (I — e s)(f = (fy)s)
+ and so fo (%) = fo(x) + ks(x) kgg' (fF = (f)s)

18

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

e Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK

* Pretty abstract approach: argued that gradient descent on NN parameters
corresponds to kernel gradient descent in function space

* Doing gradient flow gives us an explicit formula for prediction function:

fi(x) = fo(x) + kg)Kgg (I — e s)(f = (fy)s)
+ and so fo (%) = fo(x) + ks(x) kgg' (fF = (f)s)

e If fo(x) = O, this is just kernel ridge regression

18

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

e Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK

* Pretty abstract approach: argued that gradient descent on NN parameters
corresponds to kernel gradient descent in function space

* Doing gradient flow gives us an explicit formula for prediction function:

fi(x) = fo(x) + kg)Kgg (I — e s)(f = (fy)s)
+ and so fo (%) = fo(x) + ks(x) kgg' (fF = (f)s)

e If fo(x) = O, this is just kernel ridge regression

» In general, it’s GP regression with prior mean f,

18

https://arxiv.org/abs/1806.07572

Showing the NTK correspondence

e Jacot, Gabriel, and Hongler (2018) (earlier) introduced the term NTK

* Pretty abstract approach: argued that gradient descent on NN parameters
corresponds to kernel gradient descent in function space

* Doing gradient flow gives us an explicit formula for prediction function:

fi(x) = fo(x) + kg)Kgg (I — e s)(f = (fy)s)
+ and so fo (%) = fo(x) + ks(x) kgg' (fF = (f)s)

e If fo(x) = O, this is just kernel ridge regression

» In general, it’s GP regression with prior mean f,
 Proof actually needs infinite width but only really shows for finite time ¢

18

https://arxiv.org/abs/1806.07572

NTK regime and scaling

» Chizat and Bach (2019) argue that scaling is the key thing:

https://arxiv.org/abs/1812.07956

NTK regime and scaling

» Chizat and Bach (2019) argue that scaling is the key thing:

 Using a small scale “zooms in” on the Taylor expansion,
and makes the behaviour more linear

19

https://arxiv.org/abs/1812.07956

NTK regime and scaling

» Chizat and Bach (2019) argue that scaling is the key thing:

 Using a small scale “zooms in” on the Taylor expansion,
and makes the behaviour more linear

e (Can give a short-ish proof of NTK behaviour based on this scaling

19

https://arxiv.org/abs/1812.07956

NTK regime and scaling

» Chizat and Bach (2019) argue that scaling is the key thing:

 Using a small scale “zooms in” on the Taylor expansion,
and makes the behaviour more linear

e (Can give a short-ish proof of NTK behaviour based on this scaling
» Basically, things “look strongly convex”

19

https://arxiv.org/abs/1812.07956

NTK regime and scaling

» Chizat and Bach (2019) argue that scaling is the key thing:

 Using a small scale “zooms in” on the Taylor expansion,
and makes the behaviour more linear

e (Can give a short-ish proof of NTK behaviour based on this scaling
» Basically, things “look strongly convex”

o But...it’s pretty abstract, and takes a bunch of work to connect back to
actual network architectures

19

https://arxiv.org/abs/1812.07956

NTK regime and scaling

Chizat and Bach (2019) argue that scaling is the key thing:

 Using a small scale “zooms in” on the Taylor expansion,
and makes the behaviour more linear

Can give a short-ish proof of NTK behaviour based on this scaling
» Basically, things “look strongly convex”

But...it’s pretty abstract, and takes a bunch of work to connect back to
actual network architectures

Telgarsky section 8 gives a simplified proof, but it’s a little bit WIP

19

https://arxiv.org/abs/1812.07956

S0, Is deep learning just kernels?

e No.

S0, Is deep learning just kernels?

e No.

* Real neural net optimization isn’t in “the NTK regime”

S0, Is deep learning just kernels?

* No.
* Real neural net optimization isn’t in “the NTK regime”
« NTK regime doesn’t allow for feature learning — the kernel doesn’t change...

20

S0, Is deep learning just kernels?

* No.
* Real neural net optimization isn’t in “the NTK regime”
« NTK regime doesn’t allow for feature learning — the kernel doesn’t change...

 There are problems where NNs provably do better than any kernel method
possibly could (next time!)

20

S0, Is deep learning just kernels?

e No.

* Real neural net optimization isn’t in “the NTK regime”
« NTK regime doesn’t allow for feature learning — the kernel doesn’t change...

 There are problems where NNs provably do better than any kernel method
possibly could (next time!)

 But NTK is still useful:

20

S0, Is deep learning just kernels?

* No.
* Real neural net optimization isn’t in “the NTK regime”
« NTK regime doesn’t allow for feature learning — the kernel doesn’t change...

 There are problems where NNs provably do better than any kernel method
possibly could (next time!)

 But NTK is still useful:
o AFAIK, the main (only?) proofs that GD optimizes deep networks reasonably

20

S0, Is deep learning just kernels?

* No.
* Real neural net optimization isn’t in “the NTK regime”
« NTK regime doesn’t allow for feature learning — the kernel doesn’t change...

 There are problems where NNs provably do better than any kernel method
possibly could (next time!)

 But NTK is still useful:

o AFAIK, the main (only?) proofs that GD optimizes deep networks reasonably
e Can be practically useful in some settings

20

S0, Is deep learning just kernels?

* No.
* Real neural net optimization isn’t in “the NTK regime”
« NTK regime doesn’t allow for feature learning — the kernel doesn’t change...

 There are problems where NNs provably do better than any kernel method
possibly could (next time!)

e But NTK is still useful:
o AFAIK, the main (only?) proofs that GD optimizes deep networks reasonably
e Can be practically useful in some settings
* Probably a building block for whatever comes next

20

