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Admin
• A3 Q1 is broken, to be replaced (with something as similar as possible) tonight

• Whole assignment now due Monday 

• A4 will be posted soon, due Friday the 8th (last day of term)

• Yes, the same day as the project report; usual late policy 

• Project scope:

• I’m just looking for signs that you’ve read and understood the papers

• If you’re doing a lit review: ~3-4 papers is the expected amount

• Talk about how the settings / conclusions relate to each other, 

what they leave open, etc

• An “extension” can absolutely just be poking at the assumptions and talking 

about when they hold / don’t
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What’s left in deep learning?
• Talked about universal approximation results

• Shallow, wide networks: proved in 1d, sketched proof in general

• Mentioned results for deep, narrow networks

• Relationship to circuit complexity 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What’s left in deep learning?
• Talked about universal approximation results

• Shallow, wide networks: proved in 1d, sketched proof in general

• Mentioned results for deep, narrow networks

• Relationship to circuit complexity 

• Some generalization bounds

• VC dimension is known relatively sharply

• AlexNet can shatter CIFAR-10, but it still generalizes well

• Norm-based Rademacher bounds possible, but don’t seem very tight 

• Ignoring the many issues, approximation + generalization means ERM works

• …but ERM is NP-hard, even for square loss, even with one ReLU 

• What’s the optimization error for SGD/similar?
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Nonconvex optimization
• Neural nets are not convex
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• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if  is differentiable and -smooth, and 

there are  s.t. for all ,  , 
then the best iterate from  steps has  (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A( f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281


Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if  is differentiable and -smooth, and 

there are  s.t. for all ,  , 
then the best iterate from  steps has  (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A( f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281


Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if  is differentiable and -smooth, and 

there are  s.t. for all ,  , 
then the best iterate from  steps has  (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A( f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

• …but there are saddle points, including “bad” ones where λmin(∇2f ) = 0

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281


Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if  is differentiable and -smooth, and 

there are  s.t. for all ,  , 
then the best iterate from  steps has  (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A( f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

• …but there are saddle points, including “bad” ones where λmin(∇2f ) = 0
• …but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281


Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if  is differentiable and -smooth, and 

there are  s.t. for all ,  , 
then the best iterate from  steps has  (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A( f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

• …but there are saddle points, including “bad” ones where λmin(∇2f ) = 0
• …but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)

• …but it can take exponential time to escape (Du et al. 2017)

4

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://proceedings.mlr.press/v49/lee16.html
https://arxiv.org/abs/1705.10412
https://arxiv.org/abs/1810.02281


Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex 

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if  is differentiable and -smooth, and 

there are  s.t. for all ,  , 
then the best iterate from  steps has  (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A( f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

• …but there are saddle points, including “bad” ones where λmin(∇2f ) = 0
• …but gradient descent almost surely escapes saddles, reaches a local min (Lee et al. 2016)

• …but it can take exponential time to escape (Du et al. 2017)

• …but that doesn’t happen on deep linear nets [under conditions] (Arora et al. 2019)
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Bad local minima in ReLU nets
 (reals to reals), square loss, :h(x) = ReLU(wx) S = ((1,1))
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(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
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(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly )≫ n → ∞
• and we use an appropriate random initialization
• with square loss
• then (S)GD finds a global minimum

• Implicit in these papers:
• Behaviour of deep nets converges to kernel ridge regression with the 

neural tangent kernel
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•  is the th row of  (as a column vector)wi i W ∈ ℝm×d

• Going to treat the  as fixed for simplicityaj

• The core idea: think about a linearization of  in f W
• fW0

(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩
• Approximates behaviour of  as we change ; nonlinear in f W x
• We’ll see that, for large  and random ,  through trainingm W0 f ≈ fW0

8



9

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩



9

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

=
1

m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′ (w0,j)x⊤(wj − w0,j)]



9

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

=
1

m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′ (w0,j)x⊤(wj − w0,j)]

=
1

m

m

∑
j=1

aj ([σ(w⊤
0,jx) − σ′ (w0,j)w⊤

0,jx] + σ′ (w0,j)w⊤
j x)



9

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

=
1

m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′ (w0,j)x⊤(wj − w0,j)]

=
1

m

m

∑
j=1

aj ([σ(w⊤
0,jx) − σ′ (w0,j)w⊤

0,jx] + σ′ (w0,j)w⊤
j x)

= 0 for ReLU



9

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

=
1

m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′ (w0,j)x⊤(wj − w0,j)]

=
1

m

m

∑
j=1

aj ([σ(w⊤
0,jx) − σ′ (w0,j)w⊤

0,jx] + σ′ (w0,j)w⊤
j x)

= 0 for ReLU
fW0

(x; W) = ⟨∇f(x; W0), W⟩



9

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩

=
1

m

m

∑
j=1

aj [σ(w⊤
0,jx) + σ′ (w0,j)x⊤(wj − w0,j)]

=
1

m

m

∑
j=1

aj ([σ(w⊤
0,jx) − σ′ (w0,j)w⊤

0,jx] + σ′ (w0,j)w⊤
j x)

= 0 for ReLU

We’ll see shortly that  shrinks as  growsf − f0 m

fW0
(x; W) = ⟨∇f(x; W0), W⟩



10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w0,j)w⊤

0,jx + σ′ (w0,j)w⊤
j x)



10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w0,j)w⊤

0,jx + σ′ (w0,j)w⊤
j x)

If  is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1



10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w0,j)w⊤

0,jx + σ′ (w0,j)w⊤
j x)

If  is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

f(x; W) − fW0
(x; W) ≤

1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′ (w⊤
0,jx)x⊤(wj − w0,j)



10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w0,j)w⊤

0,jx + σ′ (w0,j)w⊤
j x)

If  is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz

f(x; W) − fW0
(x; W) ≤

1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′ (w⊤
0,jx)x⊤(wj − w0,j)



10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w0,j)w⊤

0,jx + σ′ (w0,j)w⊤
j x)

If  is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz ≤

β
2

(r − s)2

f(x; W) − fW0
(x; W) ≤

1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′ (w⊤
0,jx)x⊤(wj − w0,j)



10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w0,j)w⊤

0,jx + σ′ (w0,j)w⊤
j x)

If  is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz ≤

β
2

(r − s)2

f(x; W) − fW0
(x; W) ≤

1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′ (w⊤
0,jx)x⊤(wj − w0,j)

≤
1

m

m

∑
j=1

1
2

β(w⊤
j x − w⊤

0,jx)2



10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w0,j)w⊤

0,jx + σ′ (w0,j)w⊤
j x)

If  is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s

r
σ′ ′ (z)(s − z)dz ≤

β
2

(r − s)2

f(x; W) − fW0
(x; W) ≤

1

m

m

∑
j=1

|aj| σ(w⊤
j x) − σ(w⊤

0,jx) − σ′ (w⊤
0,jx)x⊤(wj − w0,j)

≤
1

m

m

∑
j=1

1
2

β(w⊤
j x − w⊤

0,jx)2 ≤
β

2 m

m

∑
j=1

∥wj − w0,j∥2∥x∥2



10

f(x; W) =
1

m

m

∑
j=1

aj σ(w⊤
j x)

fW0
(x; W) =

1

m

m

∑
j=1

aj (σ(w⊤
0,jx) − σ′ (w0,j)w⊤

0,jx + σ′ (w0,j)w⊤
j x)

If  is -smooth, , :σ β |aj| ≤ 1 ∥x∥ ≤ 1

|σ(r) − σ(s) − σ′ (s)(r − s)| = ∫
s
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m
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1
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2 m
∥W − W0∥2
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2 m
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∑
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• Proof is more annoying: Telgarsky’s Lemma 4.1
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This kernel is universal on {x ∈ ℝd+1 : ∥x∥ = 1, xd+1 = 1/ 2}
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and converges to its expectation 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• Proof is kind of gnarly, but basically amounts to showing kernel being close => 
gradients are close throughout training => final result is close

• Scales network so that initialization has fS ≈ 0
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• Can give a short-ish proof of NTK behaviour based on this scaling
• Basically, things “look strongly convex” 

• But…it’s pretty abstract, and takes a bunch of work to connect back to 
actual network architectures

• Telgarsky section 8 gives a simplified proof, but it’s a little bit WIP
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• But NTK is still useful:
• AFAIK, the main (only?) proofs that GD optimizes deep networks reasonably
• Can be practically useful in some settings
• Probably a building block for whatever comes next
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