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Admin
• A3 Q1 is broken, to be replaced (with something as similar as possible) tonight

• Whole assignment now due Monday 

• A4 will be posted soon, due Friday the 8th (last day of term)

• Yes, the same day as the project report; usual late policy 

• Project scope:

• I’m just looking for signs that you’ve read and understood the papers

• If you’re doing a lit review: ~3-4 papers is the expected amount

• Talk about how the settings / conclusions relate to each other, 

what they leave open, etc

• An “extension” can absolutely just be poking at the assumptions and talking 

about when they hold / don’t
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What’s left in deep learning?
• Talked about universal approximation results

• Shallow, wide networks: proved in 1d, sketched proof in general

• Mentioned results for deep, narrow networks

• Relationship to circuit complexity 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What’s left in deep learning?
• Talked about universal approximation results

• Shallow, wide networks: proved in 1d, sketched proof in general

• Mentioned results for deep, narrow networks

• Relationship to circuit complexity 

• Some generalization bounds

• VC dimension is known relatively sharply

• AlexNet can shatter CIFAR-10, but it still generalizes well

• Norm-based Rademacher bounds possible, but don’t seem very tight 

• Ignoring the many issues, approximation + generalization means ERM works

• …but ERM is NP-hard, even for square loss, even with one ReLU 

• What’s the optimization error for SGD/similar?
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Nonconvex optimization
• Neural nets are not convex
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• e.g.: if  is differentiable and -smooth, and 

there are  s.t. for all ,  , 
then the best iterate from  steps has  (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 𝔼[∥ ̂g(x)∥2] ≤ 2A( f(x) − f inf) + B∥∇f(X)∥2 + C

𝒪(ε−4) 𝔼[∥∇f(x)∥2] ≤ ε2
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Bad local minima in ReLU nets
 (reals to reals), square loss, :h(x) = ReLU(wx) S = ((1,1))
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(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
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(S)GD works on over-parameterized nets

• Okay, so there are bad local minima
• But…does (S)GD actually find them?
• Several papers around 2018-19 showed that:
• If the network is very overparameterized (width , possibly )≫ n → ∞
• and we use an appropriate random initialization
• with square loss
• then (S)GD finds a global minimum

• Implicit in these papers:
• Behaviour of deep nets converges to kernel ridge regression with the 

neural tangent kernel
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• Going to treat the  as fixed for simplicityaj

• The core idea: think about a linearization of  in f W
• fW0

(x; W) = f(x; W0) + ⟨∇f(x; W0), W − W0⟩
• Approximates behaviour of  as we change ; nonlinear in f W x
• We’ll see that, for large  and random ,  through trainingm W0 f ≈ fW0
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This kernel is universal on {x ∈ ℝd+1 : ∥x∥ = 1, xd+1 = 1/ 2}
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• Proof is kind of gnarly, but basically amounts to showing kernel being close => 
gradients are close throughout training => final result is close
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and makes the behaviour more linear
• Can give a short-ish proof of NTK behaviour based on this scaling
• Basically, things “look strongly convex” 

• But…it’s pretty abstract, and takes a bunch of work to connect back to 
actual network architectures

• Telgarsky section 8 gives a simplified proof, but it’s a little bit WIP
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• There are problems where NNs provably do better than any kernel method 

possibly could (next time!) 

• But NTK is still useful:
• AFAIK, the main (only?) proofs that GD optimizes deep networks reasonably
• Can be practically useful in some settings
• Probably a building block for whatever comes next
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