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Admin
• A3 is up; due next Friday the 25th 
• There will be an A4 due at the end of the term

• Going to try to post that soon (before A3 is due) so you can start early  

• This week only, Thursday office hours were moved to this morning  

• Project proposals due tonight

• An informal paragraph on Piazza: just tell me what you want to do

• Say who your partners are in the post, I’ll add them to be able to see it

• Again, the scope of these is meant to be small

• A lit survey doesn’t require fully understanding the proofs or anything

• An “extension” could be just reading the proofs and talking about 

when the assumptions hold, etc
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Last time

• Deep learning, particularly fully-connected feedforward networks 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Last time

• Deep learning, particularly fully-connected feedforward networks 

• Universal approximation results:

• There exist networks (of depth two, but potentially extremely wide) 

that approximate any continuous function in sup-norm

• as long as the activation function is non-polynomial
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Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
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Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that
• …but, there’s a network of size  that can implement all boolean functions 

that can be computed in maximum runtime 
"(T2)

T

Circuit Complexity and Neural Networks, Ian Parberry (1994) - UBC access
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Why deep instead of wide?
• Deep networks much better at learning compositional structure
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Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep 

architectures cannot be represented by a compact shallow architecture.”  
                                                                           – Y. Bengio & LeCun (2007)

• Lots of empirical evidence, but theoretical support pretty limited until recently  

• Telgarsky notes section 5 give a particular such function:  
shallow net needs huge width to approximate,  
but narrow not-super-deep net can approximate it efficiently

• Also proved for a certain class of functions by Mhaskar, Liao, Poggio (2016)
• Lu et al. (2017): approximating wide nets with deep nets easier(ish) than vice versa
• Liang and Srikant (2017): can approximate piecewise-constant funcs with 

exponentially smaller deep nets than shallow
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• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do
• Gaussian kernels can also do anything (!)…with ridiculously large norm
• Neural nets can do anything…if they’re ridiculously large (or large norm) 

• Even if our class approximates, do we generalize? (Does ERM, RLM, … work?) 

• Does (S)GD find an approximate ERM / RLM / something that generalizes?
• We (pretty much) know it doesn’t always find an (approximate) ERM:  

ERM with deep nets (even for square loss) is NP-hard  
             so, if you can prove that it does, let me know =)

but…
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L )

•  for fully-connected networksP =
L

∏
ℓ=1

dℓ−1dℓ

• For piecewise-constant, e.g. threshold functions, VCdim = Θ(P log P)
• For piecewise-polynomial, ,  with  units"(PL2 + PL log P) "(PU) U
• For sigmoids/similar,  and "(P2U2) Ω(P2)
• Theorem 8.13/8.14 of Anthony & Bartlett (1999) textbook - UBC access 
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• Even AlexNet can shatter CIFAR-10, almost shatter ImageNet
• Neyshabur et al. (2015), Zhang et al. (2017)
• But these architectures do generalize well – VC of arch. can’t explain that
• Uniform stability can’t either, since it’s data-independent;  

on-average replace-one stability always can, but hard  

• Making hidden layers wider can often improve generalization,  
but worsens parameter counting-based bounds

• Remember that  has infinite VCdim for universal kernels,  
but we can still learn with small-norm predictors

ℋk
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Theorem: Fix  each -Lipschitz with .  
Let  be the set of -layer no-intercept nets, , 
with .  Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d
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= 1
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Theorem: Fix  each -Lipschitz, positive homogenous (  for ). 
Let  be the set of -layer no-intercept nets, , 
with .  Then .

(More complicated proof: Golowich/Rakhlin/Shamir, COLT 2018 / Telgarsky’s 14.2.)

σ1, …, σL 1 σℓ(ax) = aσℓ(x) a > 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥Wℓ∥F ≤ B ℜ̂n(ℱ) ≤ 1

n ∥X∥FBL (1 + 2L log 2)
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https://mjt.cs.illinois.edu/dlt/#theorem:rad_frob
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Can get a slightly better rate via covering numbers: see Telgarsky’s section 16.2.
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So, does this solve it?

• Experiment by Dziugaite/Roy (2017): 
training a small network on MNIST (0-4 vs 5-9),  
plotting a Rademacher-based margin bound 
using a different (but similarly[?] tight)  
upper bound on the Rademacher complexity

15

https://arxiv.org/abs/1703.11008


What’s left?

• We’ve shown some bounds on approximation and generalization 
(each with significant limitations) 

• If we could run ERM, this combination could be enough

• …but ERM is NP-hard even for square loss even with one ReLU 

• What’s the optimization error for SGD/similar?

16



Nonconvex optimization
• Neural nets are not convex
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• Next time: optimization “acts convex” in the neural tangent kernel regime
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