
More Deep Learning:
Approximation, Generalization

CPSC 532S: Modern Statistical Learning Theory

16 March 2022

cs.ubc.ca/~dsuth/532S/22/

1

https://www.cs.ubc.ca/~dsuth/532S/22/

Admin
• A3 is up; due next Friday the 25th
• There will be an A4 due at the end of the term

• Going to try to post that soon (before A3 is due) so you can start early  

• This week only, Thursday office hours were moved to this morning  

• Project proposals due tonight

• An informal paragraph on Piazza: just tell me what you want to do

• Say who your partners are in the post, I’ll add them to be able to see it

• Again, the scope of these is meant to be small

• A lit survey doesn’t require fully understanding the proofs or anything

• An “extension” could be just reading the proofs and talking about

when the assumptions hold, etc
2

Last time

• Deep learning, particularly fully-connected feedforward networks 

3

Last time

• Deep learning, particularly fully-connected feedforward networks 

• Universal approximation results:

• There exist networks (of depth two, but potentially extremely wide) 

that approximate any continuous function in sup-norm

• as long as the activation function is non-polynomial

3

Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}

4

https://go.exlibris.link/dfCmBkCW
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

4

https://go.exlibris.link/dfCmBkCW

Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that

4

https://go.exlibris.link/dfCmBkCW

Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that
• …but, there’s a network of size that can implement all boolean functions

that can be computed in maximum runtime
"(T2)

T

4

https://go.exlibris.link/dfCmBkCW

Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that
• …but, there’s a network of size that can implement all boolean functions

that can be computed in maximum runtime
"(T2)

T

4

https://go.exlibris.link/dfCmBkCW

Universal approximation via circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that
• …but, there’s a network of size that can implement all boolean functions

that can be computed in maximum runtime
"(T2)

T

Circuit Complexity and Neural Networks, Ian Parberry (1994) - UBC access

4

https://go.exlibris.link/dfCmBkCW

5

Mobile User

Mobile User

Why deep instead of wide?
• Deep networks much better at learning compositional structure

6

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”  
 – Y. Bengio & LeCun (2007)

6

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”  
 – Y. Bengio & LeCun (2007)

• Lots of empirical evidence, but theoretical support pretty limited until recently  

6

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”  
 – Y. Bengio & LeCun (2007)

• Lots of empirical evidence, but theoretical support pretty limited until recently  

• Telgarsky notes section 5 give a particular such function:  
shallow net needs huge width to approximate,  
but narrow not-super-deep net can approximate it efficiently

6

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”  
 – Y. Bengio & LeCun (2007)

• Lots of empirical evidence, but theoretical support pretty limited until recently  

• Telgarsky notes section 5 give a particular such function:  
shallow net needs huge width to approximate,  
but narrow not-super-deep net can approximate it efficiently

• Also proved for a certain class of functions by Mhaskar, Liao, Poggio (2016)

6

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”  
 – Y. Bengio & LeCun (2007)

• Lots of empirical evidence, but theoretical support pretty limited until recently  

• Telgarsky notes section 5 give a particular such function:  
shallow net needs huge width to approximate,  
but narrow not-super-deep net can approximate it efficiently

• Also proved for a certain class of functions by Mhaskar, Liao, Poggio (2016)
• Lu et al. (2017): approximating wide nets with deep nets easier(ish) than vice versa

6

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

Why deep instead of wide?
• Deep networks much better at learning compositional structure
• “We claim that most functions that can be represented compactly by deep

architectures cannot be represented by a compact shallow architecture.”  
 – Y. Bengio & LeCun (2007)

• Lots of empirical evidence, but theoretical support pretty limited until recently  

• Telgarsky notes section 5 give a particular such function:  
shallow net needs huge width to approximate,  
but narrow not-super-deep net can approximate it efficiently

• Also proved for a certain class of functions by Mhaskar, Liao, Poggio (2016)
• Lu et al. (2017): approximating wide nets with deep nets easier(ish) than vice versa
• Liang and Srikant (2017): can approximate piecewise-constant funcs with

exponentially smaller deep nets than shallow
6

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1709.02540
https://openreview.net/forum?id=SkpSlKIel

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

7

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
  but…

7

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do

but…

7

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do
• Gaussian kernels can also do anything (!)…with ridiculously large norm

but…

7

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do
• Gaussian kernels can also do anything (!)…with ridiculously large norm
• Neural nets can do anything…if they’re ridiculously large (or large norm) 

but…

7

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do
• Gaussian kernels can also do anything (!)…with ridiculously large norm
• Neural nets can do anything…if they’re ridiculously large (or large norm) 

• Even if our class approximates, do we generalize? (Does ERM, RLM, … work?) 

but…

7

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do
• Gaussian kernels can also do anything (!)…with ridiculously large norm
• Neural nets can do anything…if they’re ridiculously large (or large norm) 

• Even if our class approximates, do we generalize? (Does ERM, RLM, … work?) 

• Does (S)GD find an approximate ERM / RLM / something that generalizes?

but…

7

• We have some universal approximation results
• A lot of people use this to say “neural networks can do anything! !” 

 
 

• These kind of approximation results don’t tell us:
• What practically-sized networks can do
• Gaussian kernels can also do anything (!)…with ridiculously large norm
• Neural nets can do anything…if they’re ridiculously large (or large norm) 

• Even if our class approximates, do we generalize? (Does ERM, RLM, … work?) 

• Does (S)GD find an approximate ERM / RLM / something that generalizes?
• We (pretty much) know it doesn’t always find an (approximate) ERM:  

ERM with deep nets (even for square loss) is NP-hard  
 so, if you can prove that it does, let me know =)

but…

7

Generalization: VC dimension
• For ReLU (or general piecewise-linear) nets with params, VCdim = P "(PL log P)
• and , so nearly tight – Bartlett/Harvey/Liaw/Mehrabian (2019)Ω(PL log P

L)

8

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW

Generalization: VC dimension
• For ReLU (or general piecewise-linear) nets with params, VCdim = P "(PL log P)
• and , so nearly tight – Bartlett/Harvey/Liaw/Mehrabian (2019)Ω(PL log P

L)

• for fully-connected networksP =
L

∏
ℓ=1

dℓ−1dℓ

8

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW

Generalization: VC dimension
• For ReLU (or general piecewise-linear) nets with params, VCdim = P "(PL log P)
• and , so nearly tight – Bartlett/Harvey/Liaw/Mehrabian (2019)Ω(PL log P

L)

• for fully-connected networksP =
L

∏
ℓ=1

dℓ−1dℓ

• For piecewise-constant, e.g. threshold functions, VCdim = Θ(P log P)

8

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW

Generalization: VC dimension
• For ReLU (or general piecewise-linear) nets with params, VCdim = P "(PL log P)
• and , so nearly tight – Bartlett/Harvey/Liaw/Mehrabian (2019)Ω(PL log P

L)

• for fully-connected networksP =
L

∏
ℓ=1

dℓ−1dℓ

• For piecewise-constant, e.g. threshold functions, VCdim = Θ(P log P)
• For piecewise-polynomial, , with units"(PL2 + PL log P) "(PU) U

8

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW

Generalization: VC dimension
• For ReLU (or general piecewise-linear) nets with params, VCdim = P "(PL log P)
• and , so nearly tight – Bartlett/Harvey/Liaw/Mehrabian (2019)Ω(PL log P

L)

• for fully-connected networksP =
L

∏
ℓ=1

dℓ−1dℓ

• For piecewise-constant, e.g. threshold functions, VCdim = Θ(P log P)
• For piecewise-polynomial, , with units"(PL2 + PL log P) "(PU) U
• For sigmoids/similar, and "(P2U2) Ω(P2)

8

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW

Generalization: VC dimension
• For ReLU (or general piecewise-linear) nets with params, VCdim = P "(PL log P)
• and , so nearly tight – Bartlett/Harvey/Liaw/Mehrabian (2019)Ω(PL log P

L)

• for fully-connected networksP =
L

∏
ℓ=1

dℓ−1dℓ

• For piecewise-constant, e.g. threshold functions, VCdim = Θ(P log P)
• For piecewise-polynomial, , with units"(PL2 + PL log P) "(PU) U
• For sigmoids/similar, and "(P2U2) Ω(P2)
• Theorem 8.13/8.14 of Anthony & Bartlett (1999) textbook - UBC access

8

https://jmlr.org/papers/v20/17-612.html
https://go.exlibris.link/dfCmBkCW

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

9

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

• We can train our networks to get zero error even for random labels

9

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

• We can train our networks to get zero error even for random labels
• Even AlexNet can shatter CIFAR-10, almost shatter ImageNet
• Neyshabur et al. (2015), Zhang et al. (2017)

9

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

• We can train our networks to get zero error even for random labels
• Even AlexNet can shatter CIFAR-10, almost shatter ImageNet
• Neyshabur et al. (2015), Zhang et al. (2017)
• But these architectures do generalize well – VC of arch. can’t explain that

10

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

• We can train our networks to get zero error even for random labels
• Even AlexNet can shatter CIFAR-10, almost shatter ImageNet
• Neyshabur et al. (2015), Zhang et al. (2017)
• But these architectures do generalize well – VC of arch. can’t explain that
• Uniform stability can’t either, since it’s data-independent;  

on-average replace-one stability always can, but hard  

10

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

• We can train our networks to get zero error even for random labels
• Even AlexNet can shatter CIFAR-10, almost shatter ImageNet
• Neyshabur et al. (2015), Zhang et al. (2017)
• But these architectures do generalize well – VC of arch. can’t explain that
• Uniform stability can’t either, since it’s data-independent;  

on-average replace-one stability always can, but hard  

• Making hidden layers wider can often improve generalization,  
but worsens parameter counting-based bounds

10

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Problems with parameter counting
• We use networks with a lot of parameters
• ResNet-50 has ~25 million parameters and depth 50: VCdim > 1 billion  

• We can train our networks to get zero error even for random labels
• Even AlexNet can shatter CIFAR-10, almost shatter ImageNet
• Neyshabur et al. (2015), Zhang et al. (2017)
• But these architectures do generalize well – VC of arch. can’t explain that
• Uniform stability can’t either, since it’s data-independent;  

on-average replace-one stability always can, but hard  

• Making hidden layers wider can often improve generalization,  
but worsens parameter counting-based bounds

• Remember that has infinite VCdim for universal kernels,  
but we can still learn with small-norm predictors

ℋk

10

https://arxiv.org/abs/1412.6614
https://arxiv.org/pdf/1611.03530.pdf

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
c

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]})

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

ℜ̂S(ℱℓ+1) = ℜ̂S ({x ↦ σℓ+1 (∥W⊤
ℓ+1∥1,∞ g(x)) : g ∈ conv(− ℱℓ ∪ ℱℓ)})

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

ℜ̂S(ℱℓ+1) = ℜ̂S ({x ↦ σℓ+1 (∥W⊤
ℓ+1∥1,∞ g(x)) : g ∈ conv(− ℱℓ ∪ ℱℓ)})

≤ ρB ℜ̂S (conv(−ℱℓ ∪ ℱℓ))

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

ℜ̂S(ℱℓ+1) = ℜ̂S ({x ↦ σℓ+1 (∥W⊤
ℓ+1∥1,∞ g(x)) : g ∈ conv(− ℱℓ ∪ ℱℓ)})

≤ ρB ℜ̂S (conv(−ℱℓ ∪ ℱℓ)) ℜ̂S(conv(2)) = ℜ̂S(2)

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

ℜ̂S(ℱℓ+1) = ℜ̂S ({x ↦ σℓ+1 (∥W⊤
ℓ+1∥1,∞ g(x)) : g ∈ conv(− ℱℓ ∪ ℱℓ)})

≤ ρB ℜ̂S (conv(−ℱℓ ∪ ℱℓ)) ℜ̂S(conv(2)) = ℜ̂S(2)
≤ ρB ℜ̂S (−ℱℓ ∪ ℱℓ)

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

ℜ̂S(ℱℓ+1) = ℜ̂S ({x ↦ σℓ+1 (∥W⊤
ℓ+1∥1,∞ g(x)) : g ∈ conv(− ℱℓ ∪ ℱℓ)})

≤ ρB ℜ̂S (conv(−ℱℓ ∪ ℱℓ)) ℜ̂S(conv(2)) = ℜ̂S(2)

 if , ℜ̂S(A ∪ B) ≤ ℜ̂S(A) + ℜ̂S(B) 0 ∈ A 0 ∈ B≤ ρB ℜ̂S (−ℱℓ ∪ ℱℓ)

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

11

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
cBase case, : L = 0

ℜ̂S({x ↦ xj : j ∈ [d]}) ≤ 1
n (max

j
∥(x1,j, …, xn,j)∥2) 2 log d

= 1
n ∥X∥2,∞ 2 log d = 1

n ∥X∥2,∞(2ρB)0 2 log d
Inductive step:

ℜ̂S(ℱℓ+1) = ℜ̂S ({x ↦ σℓ+1 (∥W⊤
ℓ+1∥1,∞ g(x)) : g ∈ conv(− ℱℓ ∪ ℱℓ)})

≤ ρB ℜ̂S (conv(−ℱℓ ∪ ℱℓ))

≤ 2ρB ℜ̂S (ℱℓ)

ℜ̂S(conv(2)) = ℜ̂S(2)

 if , ℜ̂S(A ∪ B) ≤ ℜ̂S(A) + ℜ̂S(B) 0 ∈ A 0 ∈ B≤ ρB ℜ̂S (−ℱℓ ∪ ℱℓ)

Rademacher of convex hull

12

ℜ̂S(conv(2)) = 1
n

3σ sup
k≥1

sup
α∈Δk

sup
g1,…,gk∈2 ⟨σ,

k

∑
j=1

αj(gj)S⟩

Rademacher of convex hull

12

ℜ̂S(conv(2)) = 1
n

3σ sup
k≥1

sup
α∈Δk

sup
g1,…,gk∈2 ⟨σ,

k

∑
j=1

αj(gj)S⟩
= 1

n
3σ sup

k≥1
sup
α∈Δk

k

∑
j=1

αj sup
gj∈2

⟨ε, (gj)S⟩

Rademacher of convex hull

12

ℜ̂S(conv(2)) = 1
n

3σ sup
k≥1

sup
α∈Δk

sup
g1,…,gk∈2 ⟨σ,

k

∑
j=1

αj(gj)S⟩
= 1

n
3σ sup

k≥1
sup
α∈Δk

k

∑
j=1

αj sup
gj∈2

⟨ε, (gj)S⟩

= 1
n

3σ sup
k≥1

sup
α∈Δk

k

∑
j=1

αj sup
g∈2

⟨ε, gS⟩

Rademacher of convex hull

12

ℜ̂S(conv(2)) = 1
n

3σ sup
k≥1

sup
α∈Δk

sup
g1,…,gk∈2 ⟨σ,

k

∑
j=1

αj(gj)S⟩
= 1

n
3σ sup

k≥1
sup
α∈Δk

k

∑
j=1

αj sup
gj∈2

⟨ε, (gj)S⟩

= 1
n

3σ sup
k≥1

sup
α∈Δk

k

∑
j=1

αj sup
g∈2

⟨ε, gS⟩

= ℜ̂S(2)

Rademacher of union

13

ℜ̂S(2 ∪ ℋ) = 1
n

3σ sup
g∈(2∪ℋ)

⟨σ, gS⟩

Rademacher of union

13

ℜ̂S(2 ∪ ℋ) = 1
n

3σ sup
g∈(2∪ℋ)

⟨σ, gS⟩

 if , ≤ 1
n

3σ[sup
g∈2

⟨σ, gS⟩ + sup
g∈ℋ

⟨σ, gS⟩] 0 ∈ 2 0 ∈ ℋ

Rademacher of union

13

ℜ̂S(2 ∪ ℋ) = 1
n

3σ sup
g∈(2∪ℋ)

⟨σ, gS⟩

= ℜ̂S(2) + ℜ̂S(ℋ)

 if , ≤ 1
n

3σ[sup
g∈2

⟨σ, gS⟩ + sup
g∈ℋ

⟨σ, gS⟩] 0 ∈ 2 0 ∈ ℋ

Rademacher of union

13

ℜ̂S(2 ∪ ℋ) = 1
n

3σ sup
g∈(2∪ℋ)

⟨σ, gS⟩

= ℜ̂S(2) + ℜ̂S(ℋ)

 if , ≤ 1
n

3σ[sup
g∈2

⟨σ, gS⟩ + sup
g∈ℋ

⟨σ, gS⟩] 0 ∈ 2 0 ∈ ℋ

or if both sets are symmetric: 
for all , also have g ∈ 2 −g ∈ 2

Rademacher of union

13

ℜ̂S(2 ∪ ℋ) = 1
n

3σ sup
g∈(2∪ℋ)

⟨σ, gS⟩

= ℜ̂S(2) + ℜ̂S(ℋ)

 if , ≤ 1
n

3σ[sup
g∈2

⟨σ, gS⟩ + sup
g∈ℋ

⟨σ, gS⟩] 0 ∈ 2 0 ∈ ℋ

or if both sets are symmetric: 
for all , also have g ∈ 2 −g ∈ 2

…or if we otherwise know that 
,

for any assignment of

sup
g∈2

⟨σ, gS⟩ ≥ 0 sup
g∈ℋ

⟨σ, gS⟩ ≥ 0

σ

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
c

Rademacher of deep nets

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
c

Rademacher of deep nets

Theorem: Fix each -Lipschitz, positive homogenous (for). 
Let be the set of -layer no-intercept nets, , 
with . Then .

(More complicated proof: Golowich/Rakhlin/Shamir, COLT 2018 / Telgarsky’s 14.2.)

σ1, …, σL 1 σℓ(ax) = aσℓ(x) a > 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥Wℓ∥F ≤ B ℜ̂n(ℱ) ≤ 1

n ∥X∥FBL (1 + 2L log 2)

https://arxiv.org/abs/1712.06541
https://mjt.cs.illinois.edu/dlt/#theorem:rad_frob

Theorem: Fix each -Lipschitz with .  
Let be the set of -layer no-intercept nets, , 
with . Then .

σ1, …, σL ρ σℓ(0) = 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥W⊤

ℓ ∥1,∞ ≤ B ℜ̂n(ℱ) ≤ 1
n ∥X∥2,∞(2ρB)L 2 log d

∥M∥b,c = (∥M⋅1∥b, …,∥M⋅d∥b)
c

Rademacher of deep nets

Theorem: Fix each -Lipschitz, positive homogenous (for). 
Let be the set of -layer no-intercept nets, , 
with . Then .

(More complicated proof: Golowich/Rakhlin/Shamir, COLT 2018 / Telgarsky’s 14.2.)

σ1, …, σL 1 σℓ(ax) = aσℓ(x) a > 0
ℱL L f (ℓ) = σℓ(Wℓ f (ℓ−1))
∥Wℓ∥F ≤ B ℜ̂n(ℱ) ≤ 1

n ∥X∥FBL (1 + 2L log 2)

Can get a slightly better rate via covering numbers: see Telgarsky’s section 16.2.

https://arxiv.org/abs/1712.06541
https://mjt.cs.illinois.edu/dlt/#theorem:rad_frob
https://mjt.cs.illinois.edu/dlt/#sec:gen:specnorm
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

So, does this solve it?

• Experiment by Dziugaite/Roy (2017): 
training a small network on MNIST (0-4 vs 5-9),  
plotting a Rademacher-based margin bound 
using a different (but similarly[?] tight)  
upper bound on the Rademacher complexity

15

https://arxiv.org/abs/1703.11008

What’s left?

• We’ve shown some bounds on approximation and generalization 
(each with significant limitations) 

• If we could run ERM, this combination could be enough

• …but ERM is NP-hard even for square loss even with one ReLU 

• What’s the optimization error for SGD/similar?

16

Nonconvex optimization
• Neural nets are not convex

17

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex  

17

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex  

• But we do know that SGD converges to a critical point under fairly mild conditions

17

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex  

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if is differentiable and -smooth, and  

there are s.t. for all , , 
then the best iterate has in steps (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 3[∥ ̂g(x)∥2] ≤ 2A(f(x) − f inf) + B∥∇f(X)∥2 + C

3[∥∇f(x)∥2] ≤ ε2 "(ε−4)

17

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex  

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if is differentiable and -smooth, and  

there are s.t. for all , , 
then the best iterate has in steps (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 3[∥ ̂g(x)∥2] ≤ 2A(f(x) − f inf) + B∥∇f(X)∥2 + C

3[∥∇f(x)∥2] ≤ ε2 "(ε−4)

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

17

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex  

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if is differentiable and -smooth, and  

there are s.t. for all , , 
then the best iterate has in steps (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 3[∥ ̂g(x)∥2] ≤ 2A(f(x) − f inf) + B∥∇f(X)∥2 + C

3[∥∇f(x)∥2] ≤ ε2 "(ε−4)

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

• …but there are saddle points, including “bad” ones where λmin(∇2f) = 0

17

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex  

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if is differentiable and -smooth, and  

there are s.t. for all , , 
then the best iterate has in steps (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 3[∥ ̂g(x)∥2] ≤ 2A(f(x) − f inf) + B∥∇f(X)∥2 + C

3[∥∇f(x)∥2] ≤ ε2 "(ε−4)

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

• …but there are saddle points, including “bad” ones where λmin(∇2f) = 0
• …but gradient descent doesn’t get stuck, under some conditions (Arora et al. 2019) 

17

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://arxiv.org/abs/1810.02281

Nonconvex optimization
• Neural nets are not convex
• Even deep linear networks are not convex  

• But we do know that SGD converges to a critical point under fairly mild conditions
• e.g.: if is differentiable and -smooth, and  

there are s.t. for all , , 
then the best iterate has in steps (Khaled/Richtárik 2020) 

f ≥ f inf β
A, B, C x 3[∥ ̂g(x)∥2] ≤ 2A(f(x) − f inf) + B∥∇f(X)∥2 + C

3[∥∇f(x)∥2] ≤ ε2 "(ε−4)

• In deep linear nets, local minima are global minima (Kawaguchi 2016, Laurent/von Brecht 2019)

• …but there are saddle points, including “bad” ones where λmin(∇2f) = 0
• …but gradient descent doesn’t get stuck, under some conditions (Arora et al. 2019) 

• Next time: optimization “acts convex” in the neural tangent kernel regime
17

https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1605.07110
http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
https://arxiv.org/abs/1810.02281

