Some More Kernels
+ Deep Learning

CPSC 532S: Modern Statistical Learning Theory
14 March 2022
cs.ubc.ca/~dsuth/532S/22/
Admin

• A3 is up; due next Friday the 25th

• This week only, Thursday office hours are instead Wednesday 10-11am
 • both in X563 and on the class Zoom

• Project proposals are due by Wednesday night
 • An informal paragraph on Piazza: just tell me what you want to do
 • Again, the scope of these is meant to be small
 • A lit survey doesn’t require fully understanding the proofs or anything
 • An “extension” could be just reading the proofs and talking about when the assumptions hold, etc
Last time

- We defined the RKHS for a given kernel k
- Representer theorem:
 \[
 \arg\min_{f \in \mathcal{H}} L(f(x_1), \ldots, f(x_n)) + R(||f||_{\mathcal{H}}) \in \text{span}(\{k(x_i, \cdot)\}_{i=1}^n)
 \]
- We can kernelize any algorithm that only depends on $x_i \cdot x_j$
- Applied previous bounds on generalization gap / suboptimality to kernels
 - Dependence on $||x||$ becomes $\sqrt{k(x, x)}$
 - Dependence on $||w||$ becomes $||f||_{\mathcal{H}}$
Universal kernels

- What about that $L_S(f)$ or $\inf\limits_{\|f\|_k} L_\mathcal{D}(f)$ term?
Universal kernels

- What about that $L(f)$ or $\inf_{\|f\|_{\mathcal{H}_k}} L(f)$ term?

- A continuous kernel on a compact metric space \mathcal{X} is **universal** if \mathcal{H}_k is dense in $C(\mathcal{X})$:

 for every continuous $g : \mathcal{X} \to \mathbb{R}$, every $\varepsilon > 0$, there is an $f \in \mathcal{H}_k$

 with $\|f - g\|_{\infty} = \sup_{x \in \mathcal{X}} |f(x) - g(x)| \leq \varepsilon$

 \mathbb{R}^d: $\{x \in \mathbb{R}^d : \|x\| \leq R\}$

 Continuous functions $\mathcal{X} \to \mathbb{R}$
Universal kernels

- What about that $L_S(f)$ or $\inf_{\|f\|_{\mathcal{H}_k}} L_\mathcal{D}(f)$ term?

- A continuous kernel on a compact metric space \mathcal{X} is universal if \mathcal{H}_k is dense in $C(\mathcal{X})$: for every continuous $g : \mathcal{X} \to \mathbb{R}$, every $\varepsilon > 0$, there is an $f \in \mathcal{H}_k$ with $\|f - g\|_\infty = \sup_{x \in \mathcal{X}} |f(x) - g(x)| \leq \varepsilon$

- If \mathcal{X} is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)
Universal kernels

• What about that $L_S(f)$ or $\inf_{\|f\|_{\mathcal{H}_k}} L_{\mathcal{D}}(f)$ term?

• A continuous kernel on a compact metric space \mathcal{X} is **universal** if \mathcal{H}_k is dense in $C(\mathcal{X})$: for every continuous $g : \mathcal{X} \to \mathbb{R}$, every $\varepsilon > 0$, there is an $f \in \mathcal{H}_k$ with $\|f - g\|_{\infty} = \sup_{x \in \mathcal{X}} |f(x) - g(x)| \leq \varepsilon$

 • If \mathcal{X} is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

 • Separates compact sets: if $X_1 \cap X_2 = \emptyset$ are compact subsets of \mathcal{X}, there’s an $f \in \mathcal{H}_k$ with $f(x) > 0$ for $x \in X_1$, $f(x) < 0$ for $x \in X_2$ (so VCdim $= \infty$)
Universal kernels

• What about that $L_S(f)$ or $\inf_{\|f\|_{H_k}} L_D(f)$ term?

• A continuous kernel on a compact metric space \mathcal{X} is **universal** if H_k is dense in $C(\mathcal{X})$: for every continuous $g : \mathcal{X} \to \mathbb{R}$, every $\varepsilon > 0$, there is an $f \in H_k$

 with $\|f - g\|_{\infty} = \sup_{x \in \mathcal{X}} |f(x) - g(x)| \leq \varepsilon$

• If \mathcal{X} is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

• Separates compact sets: if $X_1 \cap X_2 = \emptyset$ are compact subsets of \mathcal{X}, there’s an $f \in H_k$ with $f(x) > 0$ for $x \in X_1$, $f(x) < 0$ for $x \in X_2$ (so VCdim = ∞)

 • Implies that as $B \to \infty$, get $\inf_{H_k,B} L_S(f) \to 0$, $\inf_{H_k,B} L_D(f) \to$ Bayes error if D has compact support

\[
H_{k,B} = \{ f \in H_k : \| f \|_{H_k} \leq B \}
\]
Universal kernels

• What about that $L_S(f)$ or $\inf \frac{L_D(f)}{\|f\|_{\mathcal{H}_k}}$ term?

• A continuous kernel on a compact metric space \mathcal{X} is **universal** if \mathcal{H}_k is dense in $C(\mathcal{X})$: for every continuous $g : \mathcal{X} \rightarrow \mathbb{R}$, every $\varepsilon > 0$, there is an $f \in \mathcal{H}_k$ with $\|f - g\|_{\infty} = \sup_{x \in \mathcal{X}} |f(x) - g(x)| \leq \varepsilon$

 • If \mathcal{X} is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

 • Separates compact sets: if $X_1 \cap X_2 = \emptyset$ are compact subsets of \mathcal{X}, there’s an $f \in \mathcal{H}_k$ with $f(x) > 0$ for $x \in X_1$, $f(x) < 0$ for $x \in X_2$ (so VCdim = ∞)

 • Implies that as $B \rightarrow \infty$, get $\inf_{\mathcal{H}_{k,B}} L_S(f) \rightarrow 0$, $\inf_{\mathcal{H}_{k,B}} L_D(f) \rightarrow$ Bayes error if \mathcal{D} has compact support

• Can show universality via Stone-Weierstrass (more later), or Fourier properties

 $K(x, y) = \Psi(x - y)$
Universal kernels

• What about that \(L_S(f) \) or \(\inf_{\|f\|_{\mathcal{H}_k}} L_{\mathcal{D}}(f) \) term?

• A continuous kernel on a compact metric space \(\mathcal{X} \) is **universal** if \(\mathcal{H}_k \) is dense in \(C(\mathcal{X}) \):
for every continuous \(g : \mathcal{X} \to \mathbb{R} \), every \(\varepsilon > 0 \), there is an \(f \in \mathcal{H}_k \)
with \(\|f - g\|_{\infty} = \sup_{x \in \mathcal{X}} |f(x) - g(x)| \leq \varepsilon \)

• If \(\mathcal{X} \) is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

• Separates compact sets: if \(X_1 \cap X_2 = \emptyset \) are compact subsets of \(\mathcal{X} \),
there’s an \(f \in \mathcal{H}_k \) with \(f(x) > 0 \) for \(x \in X_1 \), \(f(x) < 0 \) for \(x \in X_2 \) (so VCdim = \(\infty \))
 • Implies that as \(B \to \infty \), get \(\inf_{\mathcal{H}_{k,B}} L_S(f) \to 0 \), \(\inf_{\mathcal{H}_{k,B}} L_{\mathcal{D}}(f) \to \text{Bayes error} \) if \(\mathcal{D} \) has compact support

• Can show universality via Stone-Weierstrass (more later), or Fourier properties

• \(\exp(x^\top y) \), \(\exp(-\frac{1}{2\sigma^2}\|x - y\|^2) \), \(\exp(-\frac{1}{\sigma}\|x - y\|) \) are universal on compact subsets of \(\mathbb{R}^d \)
Universal kernels

• What about that \(L_S(f) \) or \(\inf_{\|f\|_{\mathcal{H}_k}} L_{\mathcal{D}}(f) \) term?

• A continuous kernel on a compact metric space \(\mathcal{X} \) is universal if \(\mathcal{H}_k \) is dense in \(C(\mathcal{X}) \):
for every continuous \(g : \mathcal{X} \to \mathbb{R} \), every \(\varepsilon > 0 \), there is an \(f \in \mathcal{H}_k \)
with \(\|f - g\|_{\infty} = \sup_{x \in \mathcal{X}} |f(x) - g(x)| \leq \varepsilon \)

 • If \(\mathcal{X} \) is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

• Separates compact sets: if \(X_1 \cap X_2 = \emptyset \) are compact subsets of \(\mathcal{X} \),
there’s an \(f \in \mathcal{H}_k \) with \(f(x) > 0 \) for \(x \in X_1 \), \(f(x) < 0 \) for \(x \in X_2 \) (so VCdim = \(\infty \))

 • Implies that as \(B \to \infty \), get \(\inf_{\mathcal{H}_k,B} L_S(f) \to 0 \), \(\inf_{\mathcal{H}_k,B} L_{\mathcal{D}}(f) \to \) Bayes error if \(\mathcal{D} \) has compact support

• Can show universality via Stone-Weierstrass (more later), or Fourier properties

 • \(\exp(x^\top y), \exp(-\frac{1}{2\sigma^2} \|x - y\|^2), \exp(-\frac{1}{\sigma} \|x - y\|) \) are universal on compact subsets of \(\mathbb{R}^d \)

• Never true for finite-dimensional kernels
Approximation error

Know that as $B \to \infty$, get $\inf_{\mathcal{H}_{k,B}} L_S(f) \to 0$, $\inf_{\mathcal{H}_{k,B}} L_{\mathcal{D}}(f) \to \text{Bayes error}$ for compactly supported \mathcal{D} (can use broader notion of universality in general)
Approximation error

Know that as $B \to \infty$, get $\inf_{\mathcal{H}_{k,B}} L_S(f) \to 0$, $\inf_{\mathcal{H}_{k,B}} L_D(f) \to \text{Bayes error}$ for compactly supported \mathcal{D} (can use broader notion of universality in general)

- But the rate at which this happens depends on \mathcal{D}
Approximation error

- Know that as $B \to \infty$, get $\inf_{\mathcal{H}_{k,B}} L_S(f) \to 0$, $\inf_{\mathcal{H}_{k,B}} L_{\mathcal{D}}(f) \to$ Bayes error

for compactly supported \mathcal{D} (can use broader notion of universality in general)

- But the rate at which this happens depends on \mathcal{D}

- Usually compare to the regression function $f_{\mathcal{D}}(x) = \mathbb{E}[y \mid x]$
Approximation error

• Know that as $B \to \infty$, get $\inf_{\mathcal{H}_{k,B}} L_S(f) \to 0$, $\inf_{\mathcal{H}_{k,B}} L_\mathcal{D}(f) \to$ Bayes error

for compactly supported \mathcal{D} (can use broader notion of universality in general)

• But the rate at which this happens depends on \mathcal{D}

• Usually compare to the regression function $f_\mathcal{D}(x) = \mathbb{E}[y | x]$

• If $f_\mathcal{D} \in \mathcal{H}_k$, called well-specified:
Approximation error

Know that as $B \to \infty$, get $\inf_{\mathcal{H}_{k,B}} L_S(f) \to 0$, $\inf_{\mathcal{H}_{k,B}} L_{\mathcal{D}}(f) \to$ Bayes error

for compactly supported \mathcal{D} (can use broader notion of universality in general)

- But the rate at which this happens depends on \mathcal{D}
- Usually compare to the regression function $f_\mathcal{D}(x) = \mathbb{E}[y \mid x]$
- If $f_\mathcal{D} \in \mathcal{H}_k$, called well-specified:
 - Stability for $B = \|f_\mathcal{D}\|_{\mathcal{H}_k}$: $\inf_{\|f\|_{\mathcal{H}_k} \leq B} L_{\mathcal{D}}(f) = \text{Bayes error}, \text{excess error} \leq \mathcal{O}(1/\sqrt{n})$
Approximation error

- Know that as $B \to \infty$, get $\inf_{H_{k,B}} L_S(f) \to 0$, $\inf_{H_{k,B}} L_{D}(f) \to \text{Bayes error}$ for compactly supported D (can use broader notion of universality in general)

- But the rate at which this happens depends on D

- Usually compare to the **regression function** $f_D(x) = \mathbb{E}[y \mid x]$

- If $f_D \in H_k$, called **well-specified**:
 - Stability for $B = \|f_D\|_{H_k}$: $\inf_{\|f\|_{H_k} \leq B} L_{D}(f) = \text{Bayes error}$, excess error $\leq O(1/\sqrt{n})$
 - Better rates (minimax-optimal) with “range-space condition” if f_D is “nice” in H_k
Approximation error

Know that as $B \to \infty$, get $\inf_{\mathcal{H}_{k,B}} L_S(f) \to 0$, $\inf_{\mathcal{H}_{k,B}} L_\mathcal{D}(f) \to \text{Bayes error}$ for compactly supported \mathcal{D} (can use broader notion of universality in general)

- But the rate at which this happens depends on \mathcal{D}

- Usually compare to the regression function $f_\mathcal{D}(x) = \mathbb{E}[y \mid x]$

 - If $f_\mathcal{D} \in \mathcal{H}_k$, called well-specified:
 - Stability for $B = \|f_\mathcal{D}\|_{\mathcal{H}_k} : \inf_{\|f\|_{\mathcal{H}_k} \leq B} L_\mathcal{D}(f) = \text{Bayes error, excess error} \leq \mathcal{O}(1/\sqrt{n})$
 - Better rates (minimax-optimal) with “range-space condition” if $f_\mathcal{D}$ is “nice” in \mathcal{H}_k

 - Pretty different style of analysis, based on $\|\hat{f} - f_\mathcal{D}\|_{\mathcal{H}_k}$
Approximation error

• Know that as $B \to \infty$, get $\inf_{\mathcal{H}_{k,B}} L_S(f) \to 0$, $\inf_{\mathcal{H}_{k,B}} L_D(f) \to \text{Bayes error}$

for compactly supported \mathcal{D} (can use broader notion of universality in general)

• But the rate at which this happens depends on \mathcal{D}

• Usually compare to the regression function $f_{\mathcal{D}}(x) = \mathbb{E}[y \mid x]$

• If $f_{\mathcal{D}} \in \mathcal{H}_k$, called well-specified:

 • Stability for $B = \|f_{\mathcal{D}}\|_{\mathcal{H}_k}$: $\inf_{\|f\|_{\mathcal{H}_k} \leq B} L_{\mathcal{D}}(f) = \text{Bayes error}$, excess error $\leq \mathcal{O}(1/\sqrt{n})$

• Better rates (minimax-optimal) with “range-space condition” if $f_{\mathcal{D}}$ is “nice” in \mathcal{H}_k

 • Pretty different style of analysis, based on $\|\hat{f} - f_{\mathcal{D}}\|_{\mathcal{H}_k}$

• Misspecified case: more complicated analyses based on “approximation spaces”
Gaussian processes

• $f \sim \text{GP}(m, k)$ is a random function $f : \mathcal{X} \rightarrow \mathbb{R}$ s.t., for any $x_1, \ldots, x_n,$

$$
\begin{bmatrix}
 f(x_1) \\
 \vdots \\
 f(x_n)
\end{bmatrix}
\sim
\mathcal{N}

\left(
\begin{bmatrix}
 m(x_1) \\
 \vdots \\
 m(x_n)
\end{bmatrix},
\begin{bmatrix}
 k(x_1, x_1) & \cdots & k(x_1, x_n) \\
 \vdots & \ddots & \vdots \\
 k(x_n, x_1) & \cdots & k(x_n, x_n)
\end{bmatrix}
\right)$$
Gaussian processes

• $f \sim \text{GP}(m, k)$ is a random function $f : \mathcal{X} \to \mathbb{R}$ s.t., for any x_1, \ldots, x_n,

$$
\begin{bmatrix}
 f(x_1) \\
 \vdots \\
 f(x_n)
\end{bmatrix}
\sim
\mathcal{N}
\begin{pmatrix}
 \begin{bmatrix}
 m(x_1) \\
 \vdots \\
 m(x_n)
 \end{bmatrix},
 \begin{bmatrix}
 k(x_1, x_1) & \cdots & k(x_1, x_n) \\
 \vdots & \ddots & \vdots \\
 k(x_n, x_1) & \cdots & k(x_n, x_n)
 \end{bmatrix}
\end{pmatrix}
$$

• Mean function $m : \mathcal{X} \to \mathbb{R}$ can be any function; usually use 0
Gaussian processes

- \(f \sim \text{GP}(m, k) \) is a random function \(f : \mathcal{X} \rightarrow \mathbb{R} \) s.t., for any \(x_1, \ldots, x_n \),

\[
\begin{bmatrix}
 f(x_1) \\
 \vdots \\
 f(x_n)
\end{bmatrix}
\sim \mathcal{N}
\begin{pmatrix}
 \begin{bmatrix}
 m(x_1) \\
 \vdots \\
 m(x_n)
 \end{bmatrix}, \\
 \begin{bmatrix}
 k(x_1, x_1) & \cdots & k(x_1, x_n) \\
 \vdots & \ddots & \vdots \\
 k(x_n, x_1) & \cdots & k(x_n, x_n)
 \end{bmatrix}
\end{pmatrix}
\]

- Mean function \(m : \mathcal{X} \rightarrow \mathbb{R} \) can be any function; usually use 0
 - will see that we can just shift everything by \(m \) so that this is WLOG
Gaussian processes

• $f \sim \text{GP}(m, k)$ is a \textbf{random function} $f : \mathcal{X} \to \mathbb{R}$ s.t., for any x_1, \ldots, x_n,

$$
\begin{bmatrix}
 f(x_1) \\
 \vdots \\
 f(x_n)
\end{bmatrix}
\sim
\mathcal{N}
\begin{bmatrix}
 m(x_1) \\
 \vdots \\
 m(x_n)
\end{bmatrix},
\begin{bmatrix}
 k(x_1, x_1) & \cdots & k(x_1, x_n) \\
 \vdots & \ddots & \vdots \\
 k(x_n, x_1) & \cdots & k(x_n, x_n)
\end{bmatrix}
$$

• Mean function $m : \mathcal{X} \to \mathbb{R}$ can be any function; usually use 0
 • will see that we can just shift everything by m so that this is WLOG
• Covariance function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ can be any psd function, i.e. any kernel
Gaussian processes

• \(f \sim \text{GP}(m, k) \) is a random function \(f : \mathcal{X} \rightarrow \mathbb{R} \) s.t., for any \(x_1, \ldots, x_n \),

\[
\begin{bmatrix}
 f(x_1) \\
 \vdots \\
 f(x_n)
\end{bmatrix}
\sim \mathcal{N}
\begin{bmatrix}
 m(x_1) \\
 \vdots \\
 m(x_n)
\end{bmatrix},
\begin{bmatrix}
 k(x_1, x_1) & \cdots & k(x_1, x_n) \\
 \vdots & \ddots & \vdots \\
 k(x_n, x_1) & \cdots & k(x_n, x_n)
\end{bmatrix}
\]

• Mean function \(m : \mathcal{X} \rightarrow \mathbb{R} \) can be any function; usually use 0
 • will see that we can just shift everything by \(m \) so that this is WLOG
• Covariance function \(k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) can be any psd function, i.e. any kernel

• Note: samples \(f \) are almost surely not in \(\mathcal{H}_k \), for infinite-dim \(\mathcal{H}_k \)
Gaussian processes

- $f \sim \text{GP}(m, k)$ is a random function $f : \mathcal{X} \rightarrow \mathbb{R}$ s.t., for any x_1, \ldots, x_n,

$$
\begin{bmatrix}
 f(x_1) \\
 \vdots \\
 f(x_n)
\end{bmatrix} \sim \mathcal{N}
\begin{bmatrix}
 m(x_1) \\
 \vdots \\
 m(x_n)
\end{bmatrix},
\begin{bmatrix}
 k(x_1, x_1) & \cdots & k(x_1, x_n) \\
 \vdots & \ddots & \vdots \\
 k(x_n, x_1) & \cdots & k(x_n, x_n)
\end{bmatrix}
$$

- Mean function $m : \mathcal{X} \rightarrow \mathbb{R}$ can be any function; usually use 0
 - will see that we can just shift everything by m so that this is WLOG
 - Covariance function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ can be any psd function, i.e. any kernel

- Note: samples f are almost surely not in \mathcal{H}_k, for infinite-dim \mathcal{H}_k
 - but they are almost surely in a “slightly bigger” RKHS
 - see e.g. Section 4 of Kanagawa et al. (2018)
Gaussian process regression

- Assume a prior $f \sim \text{GP}(m, k)$
Gaussian process regression

- Assume a prior $f \sim \text{GP}(m, k)$
- Assume likelihood of observations by $y_i \sim \mathcal{N}(f(x_i), \sigma^2)$
Gaussian process regression

- Assume a prior $f \sim \text{GP}(m, k)$
- Assume **likelihood** of observations by $y_i \sim \mathcal{N}(f(x_i), \sigma^2)$
 - $\mathbb{E}[y_i] = \mathbb{E}[f(x_i)]$, $\text{Cov}(y_i, y_j) = \text{Cov}(f(x_i), f(x_j)) + \sigma^2 \delta_{ij}$
Gaussian process regression

- Assume a prior $f \sim \text{GP}(m, k)$
- Assume likelihood of observations by $y_i \sim \mathcal{N}(f(x_i), \sigma^2)$
 - $\mathbb{E}[y_i] = \mathbb{E}[f(x_i)], \quad \text{Cov}(y_i, y_j) = \text{Cov}(f(x_i), f(x_j)) + \sigma^2 \delta_{ij}$
- The posterior works out to be (via Kolmogorov Extension Theorem)
 $$f \mid S \sim \text{GP}\left(\left[x \mapsto y^\top (K_S + \sigma^2 I)^{-1} k_S(x) \right], \left[(x, x') \mapsto k(x, x') - k_S(x)^\top (K_S + \sigma^2 I)^{-1} k_S(x') \right] \right)$$
Gaussian process regression

- Assume a prior \(f \sim \text{GP}(m, k) \)
- Assume likelihood of observations by \(y_i \sim \mathcal{N}(f(x_i), \sigma^2) \)
 - \(\mathbb{E}[y_i] = \mathbb{E}[f(x_i)], \quad \text{Cov}(y_i, y_j) = \text{Cov}(f(x_i), f(x_j)) + \sigma^2 \delta_{ij} \)
- The posterior works out to be (via Kolmogorov Extension Theorem)
 \[
 f \mid S \sim \text{GP} \left(\left[x \mapsto y^\top (K_S + \sigma^2 I)^{-1} k_S(x) \right], \left[(x, x') \mapsto k(x, x') - k_S(x) \top (K_S + \sigma^2 I)^{-1} k_S(x') \right] \right)
 \]
More Gaussian Processes

• GP regression: can get \textit{posterior contraction rates}
 • Look like KRR analysis for the mean, plus posterior variance decreasing

• Understanding posterior variance can be very useful!
 • e.g. Bayesian optimization / active learning / bandits / …

• GP classifiers: usual choice corresponds to kernel logistic regression
More kernel resources

- Including more hardcore details: Steinwart and Christmann, SVMs (2008)
- Ridge regression analyses:
 - Smale and Zhou (2007) – fairly readable
 - Caponnetto and de Vito (2007) – minimax rate for “mostly”-well-specified, including regression with a kernel output as well
 - Steinwart et al. (2009) – minimax in Sobolev spaces with Matérn kernels (hard)
- Rasmussen and Williams, Gaussian Processes for Machine Learning (2006)
- Connections between kernels and GPs: Kanagawa et al. (2018)
- Mean embeddings: Muandet et al. (2016)
 - v. related to a lot of my research; there are slides in L16, but won’t get to them
\(K(x, x') = \mathcal{I}_g(x / \sqrt{\mathcal{I}_g(x')}) \)

\[\Phi : \mathcal{X} \rightarrow \mathbb{R}^p \]

\(K(x, x') = \mathcal{X}(\Phi(x), \Phi(x')) \)

(pause)

\[\Phi : \mathcal{X} \rightarrow \mathbb{R}^d \]

Gaussian or similar.
Deep learning

- Mostly assuming **fully-connected, feedforward** nets ("multilayer perceptrons"):
Deep learning

• Mostly assuming **fully-connected, feedforward** nets (“multilayer perceptrons”):
 • \(f^{(0)}(x) = x \)
 • \(f^{(\ell)}(x) = \sigma_\ell(W_\ell f^{(\ell-1)}(x) + b_\ell) \)
 • \(f(x) = f^{(L)}(x) \)
Deep learning

• Mostly assuming **fully-connected, feedforward** nets (“multilayer perceptrons”):

 \[f^{(0)}(x) = x \quad f^{(\ell)}(x) = \sigma_{\ell}(W_{\ell} f^{(\ell-1)}(x) + b_{\ell}) \quad f(x) = f^{(L)}(x) \]

 \[W_{\ell} \in \mathbb{R}^{d_{\ell} \times d_{\ell-1}} \quad b_{\ell} \in \mathbb{R}^{d_{\ell}} \quad \sigma_{\ell} : \mathbb{R}^{d_{\ell}} \to \mathbb{R}^{d_{\ell}} \quad (\text{usually } d_{\ell}' = d_{\ell}) \]
Deep learning

- Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
 \[f^{(0)}(x) = x \quad f^{(\ell)}(x) = \sigma_\ell(W_\ell f^{(\ell-1)}(x) + b_\ell) \quad f(x) = f^{(L)}(x) \]

 \[W_\ell \in \mathbb{R}^{d_\ell \times d_{\ell-1}} \quad b_\ell \in \mathbb{R}^{d_\ell} \quad \sigma_\ell : \mathbb{R}^{d_\ell} \to \mathbb{R}^{d_\ell} \quad \text{(usually } d'_\ell = d_\ell) \]

- Can think of this as a directed, acyclic computation graph, organized in layers
Deep learning

- Mostly assuming **fully-connected, feedforward** nets ("multilayer perceptrons"):

 \[f^{(0)}(x) = x \quad f^{(\ell)}(x) = \sigma_\ell(W_\ell f^{(\ell-1)}(x) + b_\ell) \quad f(x) = f^{(L)}(x) \]

 - \(W_\ell \in \mathbb{R}^{d_\ell \times d_{\ell-1}} \)
 - \(b_\ell \in \mathbb{R}^{d_\ell} \)
 - \(\sigma_\ell : \mathbb{R}^{d_\ell} \to \mathbb{R}^{d_\ell} \) (usually \(d'_\ell = d_\ell \))

- Can think of this as a directed, acyclic computation graph, organized in **layers**
- Usually \(\sigma_L(x) = x \); intermediate layers called **hidden layers**
Deep learning

- Mostly assuming **fully-connected, feedforward** nets ("multilayer perceptrons"):

 \[f^{(0)}(x) = x \]
 \[f^{(\ell)}(x) = \sigma^{\ell}(W^{\ell} f^{(\ell-1)}(x) + b^{\ell}) \]
 \[f(x) = f^{(L)}(x) \]

 - \(W^{\ell} \in \mathbb{R}^{d^{\ell} \times d^{\ell-1}} \)
 - \(b^{\ell} \in \mathbb{R}^{d^{\ell}} \)
 - \(\sigma^{\ell} : \mathbb{R}^{d^{\ell}} \to \mathbb{R}^{d^{\ell}} \) (usually \(d^{\ell'} = d^{\ell} \))

- Can think of this as a directed, acyclic computation graph, organized in **layers**

- Usually \(\sigma^{L}(x) = x \); intermediate layers called **hidden layers**

- Common choices for **activations** \(\sigma \):
Deep learning

• Mostly assuming fully-connected, feedforward nets ("multilayer perceptrons"):
 \[f^{(0)}(x) = x \quad f^{(\ell)}(x) = \sigma_\ell(W_\ell f^{(\ell-1)}(x) + b_\ell) \quad f(x) = f^{(L)}(x) \]

• \(W_\ell \in \mathbb{R}^{d_{\ell} \times d_{\ell-1}} \), \(b_\ell \in \mathbb{R}^{d_\ell} \), \(\sigma_\ell : \mathbb{R}^{d_\ell} \to \mathbb{R}^{d_\ell} \) (usually \(d'_\ell = d_\ell \))

• Can think of this as a directed, acyclic computation graph, organized in layers

• Usually \(\sigma_L(x) = x \); intermediate layers called hidden layers

• Common choices for activations \(\sigma \):
 • Componentwise: ReLU(\(z \)) = \(\max\{z,0\} \), sigmoid(\(z \)) = \(1/(1 + \exp(-z)) \)
Deep learning

- Mostly assuming **fully-connected, feedforward** nets ("multilayer perceptrons"):
 \[
 f^{(0)}(x) = x \quad f^{(\ell)}(x) = \sigma_\ell(W_\ell f^{(\ell-1)}(x) + b_\ell) \quad f(x) = f^{(L)}(x)
 \]

- \(W_\ell \in \mathbb{R}^{d_\ell \times d_{\ell-1}} \quad b_\ell \in \mathbb{R}^{d_\ell} \quad \sigma_\ell : \mathbb{R}^{d_\ell} \to \mathbb{R}^{d_\ell} \) (usually \(d'_\ell = d_\ell \))

- Can think of this as a directed, acyclic computation graph, organized in **layers**
- Usually \(\sigma_L(x) = x \); intermediate layers called **hidden layers**
- Common choices for **activations** \(\sigma \):
 - Componentwise: \(\text{ReLU}(z) = \max\{z,0\}, \text{sigmoid}(z) = 1/(1 + \exp(-z)) \)
 - \(\text{softmax}(z)_i = \exp(z_i) / \sum_j \exp(z_j) \), max pooling, attention, …
Deep learning

- Mostly assuming **fully-connected, feedforward** nets ("multilayer perceptrons"):
 \[f^{(0)}(x) = x \quad f^{(\ell)}(x) = \sigma_\ell(W_\ell f^{(\ell-1)}(x) + b_\ell) \quad f(x) = f^{(L)}(x) \]

 \[W_\ell \in \mathbb{R}^{d_\ell \times d_{\ell-1}} \quad b_\ell \in \mathbb{R}^{d_\ell} \quad \sigma_\ell : \mathbb{R}^{d_\ell} \rightarrow \mathbb{R}^{d_\ell} \text{ (usually } d'_\ell = d_\ell) \]

- Can think of this as a directed, acyclic computation graph, organized in **layers**
- Usually \(\sigma_L(x) = x \); intermediate layers called **hidden layers**
- Common choices for **activations** \(\sigma \):
 - Componentwise: \(\text{ReLU}(z) = \max\{z,0\} \), \(\text{sigmoid}(z) = 1/(1 + \exp(-z)) \)
 - \(\text{softmax}(z)_i = \exp(z_i)/\sum_j \exp(z_j) \), max pooling, attention, …
- Usually train via SGD, but it’s **non-convex**: in general, possibility of local minima
Deep learning

- Mostly assuming **fully-connected, feedforward** nets (“multilayer perceptrons”):
 - \(f^{(0)}(x) = x \)
 - \(f^{(\ell)}(x) = \sigma^{\ell}(W^{\ell} f^{(\ell-1)}(x) + b^{\ell}) \)
 - \(f(x) = f^{(L)}(x) \)

- \(W^{\ell} \in \mathbb{R}^{d^{\ell} \times d^{\ell-1}} \)
- \(b^{\ell} \in \mathbb{R}^{d^{\ell}} \)
- \(\sigma^{\ell} : \mathbb{R}^{d^{\ell}} \rightarrow \mathbb{R}^{d^{\ell}} \) (usually \(d^{\ell'} = d^{\ell} \))

- Can think of this as a directed, acyclic computation graph, organized in **layers**
- Usually \(\sigma^{L}(x) = x \); intermediate layers called **hidden layers**
- Common choices for **activations** \(\sigma \):
 - Componentwise: ReLU\((z) = \max\{z,0\}\), sigmoid\((z) = 1/(1 + \exp(-z))\)
 - softmax\((z)_i = \exp(z_i)/\sum_j \exp(z_j)\), max pooling, attention, ...

- Usually train via SGD, but it’s **non-convex**: in general, possibility of local minima
- ERM is NP-hard, even with 1 ReLU, even for square loss (Goel et al. ITCS 2021)
Universal approximation in \mathbb{R}

Theorem: Let $g : \mathbb{R} \to \mathbb{R}$ be ρ-Lipschitz. For any $\varepsilon > 0$, there is a two-layer network f with $m := \left\lceil \frac{\rho}{\varepsilon} \right\rceil$ hidden nodes, $\sigma_1(z) = 1(z \geq 0)$, with

$$\sup_{x \in [0,1]} |f(x) - g(x)| \leq \varepsilon.$$
Universal approximation in \mathbb{R}

Theorem: Let $g : \mathbb{R} \rightarrow \mathbb{R}$ be ρ-Lipschitz. For any $\varepsilon > 0$, there is a two-layer network f with $m := \lceil \frac{\rho}{\varepsilon} \rceil$ hidden nodes, $\sigma_1(z) = \mathbb{1}(z \geq 0)$, with $\sup_{x \in [0,1]} |f(x) - g(x)| \leq \varepsilon$.

\[
\begin{align*}
b_i &= \frac{i\varepsilon}{\rho} \\
a_0 &= g(0) \\
a_i &= g(b_i) - g(b_{i-1}) \\
f(x) &= \sum_{i=0}^{m-1} a_i \mathbb{1}(x_i \geq b_i)
\end{align*}
\]
Universal approximation in \mathbb{R}

Theorem: Let $g : \mathbb{R} \to \mathbb{R}$ be ρ-Lipschitz. For any $\varepsilon > 0$, there is a two-layer network f with $m := \lceil \frac{\rho}{\varepsilon} \rceil$ hidden nodes, $\sigma_1(z) = \mathbb{1}(z \geq 0)$, with

$$\sup_{x \in [0,1]} |f(x) - g(x)| \leq \varepsilon.$$

$$b_i = \frac{i \varepsilon}{\rho} \quad a_0 = g(0) \quad a_i = g(b_i) - g(b_{i-1}) \quad f(x) = \sum_{i=0}^{m-1} a_i \mathbb{1}(x_i \geq b_i)$$

$$|g(x) - f(x)|$$
Universal approximation in \mathbb{R}

Theorem: Let $g : \mathbb{R} \to \mathbb{R}$ be ρ-Lipschitz. For any $\varepsilon > 0$, there is a two-layer network f with $m := \lceil \frac{\rho}{\varepsilon} \rceil$ hidden nodes, $\sigma_1(z) = \mathbb{1}(z \geq 0)$, with $\sup_{x \in [0,1]} |f(x) - g(x)| \leq \varepsilon$.

$$b_i = \frac{i\varepsilon}{\rho} \quad a_0 = g(0) \quad a_i = g(b_i) - g(b_{i-1}) \quad f(x) = \sum_{i=0}^{m-1} a_i \mathbb{1}(x_i \geq b_i)$$

$$k = \max\{k : b_k \leq x\}$$

$$|g(x) - f(x)| \leq |g(x) - g(b_k)| + |g(b_k) - f(b_k)| + |f(b_k) - f(x)|$$
Universal approximation in \mathbb{R}

Theorem: Let $g : \mathbb{R} \to \mathbb{R}$ be ρ-Lipschitz. For any $\varepsilon > 0$, there is a two-layer network f with $m := \left\lceil \frac{\rho}{\varepsilon} \right\rceil$ hidden nodes, $\sigma_1(z) = \mathbb{1}(z \geq 0)$, with $\sup_{x \in [0,1]} |f(x) - g(x)| \leq \varepsilon$.

\[
\begin{align*}
 b_i &= \frac{i\varepsilon}{\rho} \\
 a_0 &= g(0) \\
 a_i &= g(b_i) - g(b_{i-1}) \\
 f(x) &= \sum_{i=0}^{m-1} a_i \mathbb{1}(x_i \geq b_i)
\end{align*}
\]

\[
k = \max\{k : b_k \leq x\}
\]
\[
|g(x) - f(x)| \leq |g(x) - g(b_k)| + |g(b_k) - f(b_k)| + |f(b_k) - f(x)| \leq \rho |x - b_k|
\]
Universal approximation in \mathbb{R}

Theorem: Let $g : \mathbb{R} \to \mathbb{R}$ be ρ-Lipschitz. For any $\varepsilon > 0$, there is a two-layer network f with $m := \left\lceil \frac{\rho}{\varepsilon} \right\rceil$ hidden nodes, $\sigma_1(z) = \mathbb{1}(z \geq 0)$, with $\sup_{x \in [0,1]} |f(x) - g(x)| \leq \varepsilon$.

\[
\begin{align*}
 b_i &= \frac{i\varepsilon}{\rho} \\
 a_0 &= g(0) \\
 a_i &= g(b_i) - g(b_{i-1}) \\
 f(x) &= \sum_{i=0}^{m-1} a_i \mathbb{1}(x_i \geq b_i)
\end{align*}
\]

\[
k = \max\{k : b_k \leq x\}
\]

\[
|g(x) - f(x)| \leq |g(x) - g(b_k)| + |g(b_k) - f(b_k)| + |f(b_k) - f(x)|
\]

\[
\leq \rho |x - b_k|
\]

\[
\leq \rho \frac{\varepsilon}{\rho} = \varepsilon
\]

$\leq \rho \frac{\varepsilon}{\rho}$
Universal approximation in \mathbb{R}

Theorem: Let $g : \mathbb{R} \to \mathbb{R}$ be ρ-Lipschitz. For any $\varepsilon > 0$, there is a two-layer network f with $m := \left\lceil \frac{\rho}{\varepsilon} \right\rceil$ hidden nodes, $\sigma_1(z) = \mathbb{I}(z \geq 0)$, with $$\sup_{x \in [0,1]} |f(x) - g(x)| \leq \varepsilon.$$

$$b_i = \frac{i\varepsilon}{\rho} \quad a_0 = g(0) \quad a_i = g(b_i) - g(b_{i-1}) \quad f(x) = \sum_{i=0}^{m-1} a_i \mathbb{I}(x_i \geq b_i)$$

$$k = \max\{k : b_k \leq x\}$$

$$|g(x) - f(x)| \leq |g(x) - g(b_k)| + |g(b_k) - f(b_k)| + |f(b_k) - f(x)|$$

$$\leq \rho |x - b_k|$$

$$\leq \rho \frac{\varepsilon}{\rho} = \varepsilon$$

Can do better by depending on total variation of g
Universal approximation in \mathbb{R}^d

Theorem: Let $g : \mathbb{R}^d \rightarrow \mathbb{R}$ be continuous. For any $\varepsilon > 0$, choose $\delta > 0$ so that $\|x - x'\|_\infty \leq \delta$ implies $|g(x) - g(x')| \leq \varepsilon$. Then there is a three-layer ReLU network f with $\Omega \left(\frac{1}{\delta^d} \right)$ nodes satisfying $\int_{[0,1]^d} |f(x) - g(x)| \, dx \leq 2\varepsilon$.
Universal approximation in \mathbb{R}^d

Theorem: Let $g : \mathbb{R}^d \to \mathbb{R}$ be continuous. For any $\varepsilon > 0$, choose $\delta > 0$ so that $\|x - x'\|_\infty \leq \delta$ implies $|g(x) - g(x')| \leq \varepsilon$. Then there is a three-layer ReLU network f with $\Omega \left(\frac{1}{\delta^d} \right)$ nodes satisfying $\int_{[0,1]^d} |f(x) - g(x)| \, dx \leq 2\varepsilon$.

Proof approximates continuous g by piecewise-constant h, then uses a two-layer ReLU net to check if x is in each piece, roughly like in 1d. (Telgarsky’s Theorem 2.1.)
Universal approximation in \mathbb{R}^d, one hidden layer

Stone-Weierstrass Theorem: Let \mathcal{F} be a set of functions such that

1. Each $f \in \mathcal{F}$ is continuous.
2. For each x, there is at least one $f \in \mathcal{F}$ with $f(x) \neq 0$.
3. Separates points: for each $x \neq x'$, there is at least one $f \in \mathcal{F}$ with $f(x) \neq f(x')$.
4. \mathcal{F} is an algebra: for $f, g \in \mathcal{F}$, $\alpha f + g \in \mathcal{F}$ and $fg = (x \mapsto f(x)g(x)) \in \mathcal{F}$.

Then \mathcal{F} is dense in $C(X)$ w.r.t. $\|\cdot\|_{\infty}$.
Universal approximation in \mathbb{R}^d, one hidden layer

Stone-Weierstrass Theorem: Let \mathcal{F} be a set of functions such that

1. Each $f \in \mathcal{F}$ is continuous.
2. For each x, there is at least one $f \in \mathcal{F}$ with $f(x) \neq 0$.
3. Separates points: for each $x \neq x'$, there is at least one $f \in \mathcal{F}$ with $f(x) \neq f(x')$.
4. \mathcal{F} is an algebra: for $f, g \in \mathcal{F}$, $\alpha f + g \in \mathcal{F}$ and $fg = (x \mapsto f(x)g(x)) \in \mathcal{F}$.

Conditions hold for $\sigma_1 = \exp$, $\sigma_2 = \text{Id}$, so that $\mathcal{F}_{\exp} = \{x \mapsto \sum_{i=1}^{m} a_i \exp(w_i^T x)\}$
Universal approximation in \mathbb{R}^d, one hidden layer

Stone-Weierstrass Theorem: Let \mathcal{F} be a set of functions such that

1. Each $f \in \mathcal{F}$ is continuous.
2. For each x, there is at least one $f \in \mathcal{F}$ with $f(x) \neq 0$.
3. Separates points: for each $x \neq x'$, there is at least one $f \in \mathcal{F}$ with $f(x) \neq f(x')$.
4. \mathcal{F} is an algebra: for $f, g \in \mathcal{F}$, $\alpha f + g \in \mathcal{F}$ and $fg = (x \mapsto f(x)g(x)) \in \mathcal{F}$.

Conditions hold for $\sigma_1 = \exp$, $\sigma_2 = \text{Id}$, so that $\mathcal{F}_{\exp} = \{x \mapsto \sum_{i=1}^m a_i \exp(w_i^Tx)\}$

If $\sigma : \mathbb{R} \to \mathbb{R}$ is continuous, $\lim_{z \to -\infty} \sigma(z) = 0$, $\lim_{z \to -\infty} \sigma(z) = 1$, works too:

Approximate g by $h \in \mathcal{F}_{\exp}$ with $\frac{\epsilon}{2}$ error, and replace each \exp with a 1d σ-based net
Universal approximation in \mathbb{R}^d, one hidden layer

Stone-Weierstrass Theorem: Let \mathcal{F} be a set of functions such that

1. Each $f \in \mathcal{F}$ is continuous.
2. For each x, there is at least one $f \in \mathcal{F}$ with $f(x) \neq 0$.
3. Separates points: for each $x \neq x'$, there is at least one $f \in \mathcal{F}$ with $f(x) \neq f(x')$.
4. \mathcal{F} is an algebra: for $f, g \in \mathcal{F}$, $\alpha f + g \in \mathcal{F}$ and $fg = (x \mapsto f(x)g(x)) \in \mathcal{F}$.

Conditions hold for $\sigma_1 = \exp$, $\sigma_2 = \text{Id}$, so that $\mathcal{F}_{\exp} = \{x \mapsto \sum_{i=1}^{m} a_i \exp(w_i^T x)\}$

If $\sigma : \mathbb{R} \to \mathbb{R}$ is continuous, $\lim_{z \to -\infty} \sigma(z) = 0$, $\lim_{z \to -\infty} \sigma(z) = 1$, works too:

Approximate g by $h \in \mathcal{F}_{\exp}$ with $\frac{\epsilon}{2}$ error, and replace each \exp with a 1d σ-based net

Generally: universal approximator iff σ is not a polynomial
Circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions $\{\pm 1\}^d \rightarrow \{\pm 1\}$
Circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions \(\{ \pm 1 \}^d \rightarrow \{ \pm 1 \} \)
 • (remember that computers always represent things as \(\{0,1\}^d \) …)
Circuit complexity

SSBD chapter 20:

- 2 layer nets with sign activations can represent all functions $\{\pm 1\}^d \rightarrow \{\pm 1\}$
- (remember that computers always represent things as $\{0,1\}^d$)
- ...but, it takes exponential width to do that
Circuit complexity

SSBD chapter 20:

• 2 layer nets with sign activations can represent all functions \(\{\pm 1\}^d \to \{\pm 1\} \)
 • (remember that computers always represent things as \(\{0,1\}^d \)…)

• …but, it takes exponential width to do that

• …but, there’s a network of size \(\mathcal{O}(T^2) \) that can implement all boolean functions that can be computed in maximum runtime \(T \)
Limits of universal approximation

• Curse of dimensionality: usually requires # of units exponential in dimension
 • Also usually requires exponential norm of weights

• Doesn’t say anything about whether ERM finds a good network, just that one exists
 • Let alone anything about whether (S)GD finds it