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Admin
• A3 is up; due next Friday the 25th  

• This week only, Thursday office hours are instead Wednesday 10-11am

• both in X563 and on the class Zoom  

• Project proposals are due by Wednesday night

• An informal paragraph on Piazza: just tell me what you want to do

• Again, the scope of these is meant to be small

• A lit survey doesn’t require fully understanding the proofs or anything

• An “extension” could be just reading the proofs and talking about 

when the assumptions hold, etc
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Last time

• We defined the RKHS for a given kernel 

• Representer theorem: 

       


• We can kernelize any algorithm that only depends on 

• Applied previous bounds on generalization gap / suboptimality to kernels

• Dependence on  becomes 

• Dependence on  becomes 

k

argminf∈ℋ L( f(x1), …, f(xn)) + R(∥f∥ℋ) ∈ span({k(xi, ⋅ )}n
i=1)

xi ⋅ xj

∥x∥ k(x, x)
∥w∥ ∥f∥ℋ

3

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Universal kernels
• What about that  or  term?LS( f ) inf

∥f∥ℋk

L%( f )
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Universal kernels
• What about that  or  term?LS( f ) inf

∥f∥ℋk

L%( f )

• A continuous kernel on a compact metric space  is universal if  is dense in :  
for every continuous , every , there is an  
with 

& ℋk C(&)
g : & → ℝ ε > 0 f ∈ ℋk

∥f − g∥∞ = sup
x∈&

|f(x) − g(x)| ≤ ε
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& ℋk C(&)
g : & → ℝ ε > 0 f ∈ ℋk

∥f − g∥∞ = sup
x∈&

|f(x) − g(x)| ≤ ε

• If  is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)&
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4

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Universal kernels
• What about that  or  term?LS( f ) inf

∥f∥ℋk

L%( f )

• A continuous kernel on a compact metric space  is universal if  is dense in :  
for every continuous , every , there is an  
with 

& ℋk C(&)
g : & → ℝ ε > 0 f ∈ ℋk

∥f − g∥∞ = sup
x∈&

|f(x) − g(x)| ≤ ε

• If  is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)&

• Separates compact sets: if  are compact subsets of ,  
there’s an  with  for ,  for       (so VCdim = )

X1 ∩ X2 = ∅ &
f ∈ ℋk f(x) > 0 x ∈ X1 f(x) < 0 x ∈ X2 ∞

• Implies that as , get , Bayes error if  has compact supportB → ∞ inf
ℋk,B

LS( f ) → 0 inf
ℋk,B

L%( f ) → %

• Can show universality via Stone-Weierstrass (more later), or Fourier properties

• , ,  are universal on compact subsets of exp(x⊤y) exp(− 1
2σ2 ∥x − y∥2) exp(− 1

σ
∥x − y∥) ℝd

4



Universal kernels
• What about that  or  term?LS( f ) inf

∥f∥ℋk

L%( f )

• A continuous kernel on a compact metric space  is universal if  is dense in :  
for every continuous , every , there is an  
with 

& ℋk C(&)
g : & → ℝ ε > 0 f ∈ ℋk

∥f − g∥∞ = sup
x∈&

|f(x) − g(x)| ≤ ε

• If  is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)&

• Separates compact sets: if  are compact subsets of ,  
there’s an  with  for ,  for       (so VCdim = )

X1 ∩ X2 = ∅ &
f ∈ ℋk f(x) > 0 x ∈ X1 f(x) < 0 x ∈ X2 ∞

• Implies that as , get , Bayes error if  has compact supportB → ∞ inf
ℋk,B

LS( f ) → 0 inf
ℋk,B

L%( f ) → %

• Can show universality via Stone-Weierstrass (more later), or Fourier properties

• , ,  are universal on compact subsets of exp(x⊤y) exp(− 1
2σ2 ∥x − y∥2) exp(− 1

σ
∥x − y∥) ℝd

• Never true for finite-dimensional kernels
4



Approximation error
• Know that as , get , Bayes error 

for compactly supported              (can use broader notion of universality in general)

B → ∞ inf
ℋk,B

LS( f ) → 0 inf
ℋk,B

L%( f ) →

%
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inf
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L%( f ) ≤ 1(1/ n)

• Better rates (minimax-optimal) with “range-space condition” if  is “nice” in f% ℋk

• Pretty different style of analysis, based on ∥ ̂f − f%∥ℋk

• Misspecified case: more complicated analyses based on “approximation spaces”
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Gaussian processes
•  is a random function  s.t., for any , 

           

f ∼ GP(m, k) f : & → ℝ x1, …, xn

f(x1)
⋮

f(xn)
∼ 5

m(x1)
⋮

m(xn)
,

k(x1, x1) … k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) … k(xn, xn)

6
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• Mean function  can be any function; usually use 0m : & → ℝ
• will see that we can just shift everything by  so that this is WLOGm

• Covariance function  can be any psd function, i.e. any kernel  k : & × & → ℝ

• Note: samples  are almost surely not in , for infinite-dim f ℋk ℋk
• but they are almost surely in a “slightly bigger” RKHS
• see e.g. Section 4 of Kanagawa et al. (2018)
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Gaussian process regression
• Assume a prior f ∼ GP(m, k)
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More Gaussian Processes

• GP regression: can get posterior contraction rates 
• Look like KRR analysis for the mean, plus posterior variance decreasing  

• Understanding posterior variance can be very useful!

• e.g. Bayesian optimization / active learning / bandits / … 

• GP classifiers: usual choice corresponds to kernel logistic regression

8



More kernel resources
• Foundations: Berlinet and Thomas-Agnan, RKHSes in Probability and Stats (2004)

• Including more hardcore details: Steinwart and Christmann, SVMs (2008)

• Ridge regression analyses:

• Smale and Zhou (2007) – fairly readable

• Caponnetto and de Vito (2007) – minimax rate for “mostly”-well-specified, 

including regression with a kernel output as well

• Steinwart et al. (2009) – minimax in Sobolev spaces with Matérn kernels (hard)


• Rasmussen and Williams, Gaussian Processes for Machine Learning (2006) 

• Connections between kernels and GPs: Kanagawa et al. (2018)

• Mean embeddings: Muandet et al. (2016)

• v. related to a lot of my research; there are slides in L16, but won’t get to them

9

https://link.springer.com/book/10.1007/978-1-4419-9096-9
https://link.springer.com/book/10.1007/978-0-387-77242-4
https://link.springer.com/article/10.1007/s00365-006-0659-y
https://link.springer.com/article/10.1007/s10208-006-0196-8
https://www.cs.mcgill.ca/~colt2009/papers/038.pdf
http://www.gaussianprocess.org/gpml/
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1605.09522


(pause)
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• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x
• Common choices for activations :σ
• Componentwise: ,ReLU(z) = max{z,0} sigmoid(z) = 1/(1 + exp(−z))

• , max pooling, attention, …softmax(z)i = exp(zi)/∑
j

exp(zj)

• Usually train via SGD, but it’s non-convex: in general, possibility of local minima
• ERM is NP-hard, even with 1 ReLU, even for square loss (Goel et al. ITCS 2021)
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Universal approximation in ℝ
Theorem: Let  be -Lipschitz. For any , there is a two-layer network 
 with  hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) = <(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

12



Universal approximation in ℝ
Theorem: Let  be -Lipschitz. For any , there is a two-layer network 
 with  hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) = <(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

12

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai<(xi ≥ bi)
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 with  hidden nodes, , with .
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ε ⌉ σ1(z) = <(z ≥ 0) sup
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∑
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k = max{k : bk ≤ x}

≤ ρ |x − bk |

≤ ρ
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Universal approximation in ℝd
Theorem: Let  be continuous. For any , choose  so that 

 implies . Then there is a three-layer ReLU network  

with  nodes satisfying .

g : ℝd → ℝ ε > 0 δ > 0
∥x − x′ ∥∞ ≤ δ |g(x) − g(x′ )| ≤ ε f

Ω ( 1
δd ) ∫[0,1]d

|f(x) − g(x)|dx ≤ 2ε

13
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∥x − x′ ∥∞ ≤ δ |g(x) − g(x′ )| ≤ ε f

Ω ( 1
δd ) ∫[0,1]d

|f(x) − g(x)|dx ≤ 2ε

13

Proof approximates continuous  by piecewise-constant , 
then uses a two-layer ReLU net to check if  is in each piece, roughly like in 1d.

(Telgarsky’s Theorem 2.1.)

g h
x

https://mjt.cs.illinois.edu/dlt/#theorem:mv_bumps
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Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let  be a set of functions such that

1. Each  is continuous.

2. For each , there is at least one  with .

3. Separates points: for each , there is at least one  with .

4.  is an algebra: for ,       and   .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′ )

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

14

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let  be a set of functions such that

1. Each  is continuous.

2. For each , there is at least one  with .

3. Separates points: for each , there is at least one  with .

4.  is an algebra: for ,       and   .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′ )

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

14

Conditions hold for , , so that  σ1 = exp σ2 = Id ℱexp = {x ↦
m

∑
i=1

ai exp(w⊤
i x)}
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σ(z) = 1
g h ∈ ℱexp

ε
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If  is continuous, , , works too:


Approximate  by  with  error, and replace each  with a 1d -based net

σ : ℝ → ℝ lim
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σ(z) = 0 lim
z→−∞

σ(z) = 1
g h ∈ ℱexp

ε
2 exp σ

Conditions hold for , , so that  σ1 = exp σ2 = Id ℱexp = {x ↦
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∑
i=1

ai exp(w⊤
i x)}

Generally: universal approximator iff  is not a polynomialσ



Circuit complexity

SSBD chapter 20:
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Circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that
• …but, there’s a network of size  that can implement all boolean 

functions that can be computed in maximum runtime 
1(T2)

T

15



Limits of universal approximation

• Curse of dimensionality: usually requires # of units exponential in dimension

• Also usually requires exponential norm of weights 

• Doesn’t say anything about whether ERM finds a good network, just that one exists

• Let alone anything about whether (S)GD finds it

16


