
Some More Kernels
+ Deep Learning

CPSC 532S: Modern Statistical Learning Theory

14 March 2022

cs.ubc.ca/~dsuth/532S/22/

1

https://www.cs.ubc.ca/~dsuth/532S/22/

Admin
• A3 is up; due next Friday the 25th  

• This week only, Thursday office hours are instead Wednesday 10-11am

• both in X563 and on the class Zoom  

• Project proposals are due by Wednesday night

• An informal paragraph on Piazza: just tell me what you want to do

• Again, the scope of these is meant to be small

• A lit survey doesn’t require fully understanding the proofs or anything

• An “extension” could be just reading the proofs and talking about

when the assumptions hold, etc

2

Last time

• We defined the RKHS for a given kernel

• Representer theorem: 

• We can kernelize any algorithm that only depends on

• Applied previous bounds on generalization gap / suboptimality to kernels

• Dependence on becomes

• Dependence on becomes

k

argminf∈ℋ L(f(x1), …, f(xn)) + R(∥f∥ℋ) ∈ span({k(xi, ⋅)}n
i=1)

xi ⋅ xj

∥x∥ k(x, x)
∥w∥ ∥f∥ℋ

3

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal kernels
• What about that or term?LS(f) inf

∥f∥ℋk

L%(f)

4

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal kernels
• What about that or term?LS(f) inf

∥f∥ℋk

L%(f)

• A continuous kernel on a compact metric space is universal if is dense in :  
for every continuous , every , there is an  
with

& ℋk C(&)
g : & → ℝ ε > 0 f ∈ ℋk

∥f − g∥∞ = sup
x∈&

|f(x) − g(x)| ≤ ε

4

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal kernels
• What about that or term?LS(f) inf

∥f∥ℋk

L%(f)

• A continuous kernel on a compact metric space is universal if is dense in :  
for every continuous , every , there is an  
with

& ℋk C(&)
g : & → ℝ ε > 0 f ∈ ℋk

∥f − g∥∞ = sup
x∈&

|f(x) − g(x)| ≤ ε

• If is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)&

4

Universal kernels
• What about that or term?LS(f) inf

∥f∥ℋk

L%(f)

• A continuous kernel on a compact metric space is universal if is dense in :  
for every continuous , every , there is an  
with

& ℋk C(&)
g : & → ℝ ε > 0 f ∈ ℋk

∥f − g∥∞ = sup
x∈&

|f(x) − g(x)| ≤ ε

• If is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)&

• Separates compact sets: if are compact subsets of ,  
there’s an with for , for (so VCdim =)

X1 ∩ X2 = ∅ &
f ∈ ℋk f(x) > 0 x ∈ X1 f(x) < 0 x ∈ X2 ∞

4

Universal kernels
• What about that or term?LS(f) inf

∥f∥ℋk

L%(f)

• A continuous kernel on a compact metric space is universal if is dense in :  
for every continuous , every , there is an  
with

& ℋk C(&)
g : & → ℝ ε > 0 f ∈ ℋk

∥f − g∥∞ = sup
x∈&

|f(x) − g(x)| ≤ ε

• If is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)&

• Separates compact sets: if are compact subsets of ,  
there’s an with for , for (so VCdim =)

X1 ∩ X2 = ∅ &
f ∈ ℋk f(x) > 0 x ∈ X1 f(x) < 0 x ∈ X2 ∞

• Implies that as , get , Bayes error if has compact supportB → ∞ inf
ℋk,B

LS(f) → 0 inf
ℋk,B

L%(f) → %

4

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal kernels
• What about that or term?LS(f) inf

∥f∥ℋk

L%(f)

• A continuous kernel on a compact metric space is universal if is dense in :  
for every continuous , every , there is an  
with

& ℋk C(&)
g : & → ℝ ε > 0 f ∈ ℋk

∥f − g∥∞ = sup
x∈&

|f(x) − g(x)| ≤ ε

• If is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)&

• Separates compact sets: if are compact subsets of ,  
there’s an with for , for (so VCdim =)

X1 ∩ X2 = ∅ &
f ∈ ℋk f(x) > 0 x ∈ X1 f(x) < 0 x ∈ X2 ∞

• Implies that as , get , Bayes error if has compact supportB → ∞ inf
ℋk,B

LS(f) → 0 inf
ℋk,B

L%(f) → %

• Can show universality via Stone-Weierstrass (more later), or Fourier properties

4

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal kernels
• What about that or term?LS(f) inf

∥f∥ℋk

L%(f)

• A continuous kernel on a compact metric space is universal if is dense in :  
for every continuous , every , there is an  
with

& ℋk C(&)
g : & → ℝ ε > 0 f ∈ ℋk

∥f − g∥∞ = sup
x∈&

|f(x) − g(x)| ≤ ε

• If is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)&

• Separates compact sets: if are compact subsets of ,  
there’s an with for , for (so VCdim =)

X1 ∩ X2 = ∅ &
f ∈ ℋk f(x) > 0 x ∈ X1 f(x) < 0 x ∈ X2 ∞

• Implies that as , get , Bayes error if has compact supportB → ∞ inf
ℋk,B

LS(f) → 0 inf
ℋk,B

L%(f) → %

• Can show universality via Stone-Weierstrass (more later), or Fourier properties

• , , are universal on compact subsets of exp(x⊤y) exp(− 1
2σ2 ∥x − y∥2) exp(− 1

σ
∥x − y∥) ℝd

4

Universal kernels
• What about that or term?LS(f) inf

∥f∥ℋk

L%(f)

• A continuous kernel on a compact metric space is universal if is dense in :  
for every continuous , every , there is an  
with

& ℋk C(&)
g : & → ℝ ε > 0 f ∈ ℋk

∥f − g∥∞ = sup
x∈&

|f(x) − g(x)| ≤ ε

• If is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)&

• Separates compact sets: if are compact subsets of ,  
there’s an with for , for (so VCdim =)

X1 ∩ X2 = ∅ &
f ∈ ℋk f(x) > 0 x ∈ X1 f(x) < 0 x ∈ X2 ∞

• Implies that as , get , Bayes error if has compact supportB → ∞ inf
ℋk,B

LS(f) → 0 inf
ℋk,B

L%(f) → %

• Can show universality via Stone-Weierstrass (more later), or Fourier properties

• , , are universal on compact subsets of exp(x⊤y) exp(− 1
2σ2 ∥x − y∥2) exp(− 1

σ
∥x − y∥) ℝd

• Never true for finite-dimensional kernels
4

Approximation error
• Know that as , get , Bayes error 

for compactly supported (can use broader notion of universality in general)

B → ∞ inf
ℋk,B

LS(f) → 0 inf
ℋk,B

L%(f) →

%

5

Approximation error
• Know that as , get , Bayes error 

for compactly supported (can use broader notion of universality in general)

B → ∞ inf
ℋk,B

LS(f) → 0 inf
ℋk,B

L%(f) →

%
• But the rate at which this happens depends on %

5

Approximation error
• Know that as , get , Bayes error 

for compactly supported (can use broader notion of universality in general)

B → ∞ inf
ℋk,B

LS(f) → 0 inf
ℋk,B

L%(f) →

%
• But the rate at which this happens depends on %

• Usually compare to the regression function f%(x) = /[y ∣ x]

5

Approximation error
• Know that as , get , Bayes error 

for compactly supported (can use broader notion of universality in general)

B → ∞ inf
ℋk,B

LS(f) → 0 inf
ℋk,B

L%(f) →

%
• But the rate at which this happens depends on %

• Usually compare to the regression function f%(x) = /[y ∣ x]
• If , called well-specified:f% ∈ ℋk

5

Approximation error
• Know that as , get , Bayes error 

for compactly supported (can use broader notion of universality in general)

B → ∞ inf
ℋk,B

LS(f) → 0 inf
ℋk,B

L%(f) →

%
• But the rate at which this happens depends on %

• Usually compare to the regression function f%(x) = /[y ∣ x]
• If , called well-specified:f% ∈ ℋk

• Stability for : = Bayes error, excess errorB = ∥f%∥ℋk
inf

∥f∥ℋk≤B
L%(f) ≤ 1(1/ n)

5

Approximation error
• Know that as , get , Bayes error 

for compactly supported (can use broader notion of universality in general)

B → ∞ inf
ℋk,B

LS(f) → 0 inf
ℋk,B

L%(f) →

%
• But the rate at which this happens depends on %

• Usually compare to the regression function f%(x) = /[y ∣ x]
• If , called well-specified:f% ∈ ℋk

• Stability for : = Bayes error, excess errorB = ∥f%∥ℋk
inf

∥f∥ℋk≤B
L%(f) ≤ 1(1/ n)

• Better rates (minimax-optimal) with “range-space condition” if is “nice” in f% ℋk

5

Approximation error
• Know that as , get , Bayes error 

for compactly supported (can use broader notion of universality in general)

B → ∞ inf
ℋk,B

LS(f) → 0 inf
ℋk,B

L%(f) →

%
• But the rate at which this happens depends on %

• Usually compare to the regression function f%(x) = /[y ∣ x]
• If , called well-specified:f% ∈ ℋk

• Stability for : = Bayes error, excess errorB = ∥f%∥ℋk
inf

∥f∥ℋk≤B
L%(f) ≤ 1(1/ n)

• Better rates (minimax-optimal) with “range-space condition” if is “nice” in f% ℋk

• Pretty different style of analysis, based on ∥ ̂f − f%∥ℋk

5

Approximation error
• Know that as , get , Bayes error 

for compactly supported (can use broader notion of universality in general)

B → ∞ inf
ℋk,B

LS(f) → 0 inf
ℋk,B

L%(f) →

%
• But the rate at which this happens depends on %

• Usually compare to the regression function f%(x) = /[y ∣ x]
• If , called well-specified:f% ∈ ℋk

• Stability for : = Bayes error, excess errorB = ∥f%∥ℋk
inf

∥f∥ℋk≤B
L%(f) ≤ 1(1/ n)

• Better rates (minimax-optimal) with “range-space condition” if is “nice” in f% ℋk

• Pretty different style of analysis, based on ∥ ̂f − f%∥ℋk

• Misspecified case: more complicated analyses based on “approximation spaces”
5

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Gaussian processes
• is a random function s.t., for any , 

f ∼ GP(m, k) f : & → ℝ x1, …, xn

f(x1)
⋮

f(xn)
∼ 5

m(x1)
⋮

m(xn)
,

k(x1, x1) … k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) … k(xn, xn)

6

https://arxiv.org/abs/1807.02582

Gaussian processes
• is a random function s.t., for any , 

f ∼ GP(m, k) f : & → ℝ x1, …, xn

f(x1)
⋮

f(xn)
∼ 5

m(x1)
⋮

m(xn)
,

k(x1, x1) … k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) … k(xn, xn)

• Mean function can be any function; usually use 0m : & → ℝ

6

https://arxiv.org/abs/1807.02582

Gaussian processes
• is a random function s.t., for any , 

f ∼ GP(m, k) f : & → ℝ x1, …, xn

f(x1)
⋮

f(xn)
∼ 5

m(x1)
⋮

m(xn)
,

k(x1, x1) … k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) … k(xn, xn)

• Mean function can be any function; usually use 0m : & → ℝ
• will see that we can just shift everything by so that this is WLOGm

6

https://arxiv.org/abs/1807.02582

Gaussian processes
• is a random function s.t., for any , 

f ∼ GP(m, k) f : & → ℝ x1, …, xn

f(x1)
⋮

f(xn)
∼ 5

m(x1)
⋮

m(xn)
,

k(x1, x1) … k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) … k(xn, xn)

• Mean function can be any function; usually use 0m : & → ℝ
• will see that we can just shift everything by so that this is WLOGm

• Covariance function can be any psd function, i.e. any kernel  k : & × & → ℝ

6

https://arxiv.org/abs/1807.02582

Gaussian processes
• is a random function s.t., for any , 

f ∼ GP(m, k) f : & → ℝ x1, …, xn

f(x1)
⋮

f(xn)
∼ 5

m(x1)
⋮

m(xn)
,

k(x1, x1) … k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) … k(xn, xn)

• Mean function can be any function; usually use 0m : & → ℝ
• will see that we can just shift everything by so that this is WLOGm

• Covariance function can be any psd function, i.e. any kernel  k : & × & → ℝ

• Note: samples are almost surely not in , for infinite-dim f ℋk ℋk

6

https://arxiv.org/abs/1807.02582

Gaussian processes
• is a random function s.t., for any , 

f ∼ GP(m, k) f : & → ℝ x1, …, xn

f(x1)
⋮

f(xn)
∼ 5

m(x1)
⋮

m(xn)
,

k(x1, x1) … k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) … k(xn, xn)

• Mean function can be any function; usually use 0m : & → ℝ
• will see that we can just shift everything by so that this is WLOGm

• Covariance function can be any psd function, i.e. any kernel  k : & × & → ℝ

• Note: samples are almost surely not in , for infinite-dim f ℋk ℋk
• but they are almost surely in a “slightly bigger” RKHS
• see e.g. Section 4 of Kanagawa et al. (2018)

6

https://arxiv.org/abs/1807.02582

Gaussian process regression
• Assume a prior f ∼ GP(m, k)

7

Gaussian process regression
• Assume a prior f ∼ GP(m, k)
• Assume likelihood of observations by yi ∼ 5(f(xi), σ2)

7

Gaussian process regression
• Assume a prior f ∼ GP(m, k)
• Assume likelihood of observations by yi ∼ 5(f(xi), σ2)
• , /[yi] = /[f(xi)] Cov(yi, yj) = Cov(f(xi), f(xj)) + σ2δij

7

Gaussian process regression
• Assume a prior f ∼ GP(m, k)
• Assume likelihood of observations by yi ∼ 5(f(xi), σ2)
• , /[yi] = /[f(xi)] Cov(yi, yj) = Cov(f(xi), f(xj)) + σ2δij

• The posterior works out to be (via Kolmogorov Extension Theorem)  
 f ∣ S ∼ GP ([x ↦ y⊤(KS + σ2I)−1kS(x)], [(x, x′) ↦ k(x, x′) − kS(x)⊤(KS + σ2I)−1kS(x′)])

7

Gaussian process regression
• Assume a prior f ∼ GP(m, k)
• Assume likelihood of observations by yi ∼ 5(f(xi), σ2)
• , /[yi] = /[f(xi)] Cov(yi, yj) = Cov(f(xi), f(xj)) + σ2δij

• The posterior works out to be (via Kolmogorov Extension Theorem)  
 f ∣ S ∼ GP ([x ↦ y⊤(KS + σ2I)−1kS(x)], [(x, x′) ↦ k(x, x′) − kS(x)⊤(KS + σ2I)−1kS(x′)])

7

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

More Gaussian Processes

• GP regression: can get posterior contraction rates
• Look like KRR analysis for the mean, plus posterior variance decreasing  

• Understanding posterior variance can be very useful!

• e.g. Bayesian optimization / active learning / bandits / … 

• GP classifiers: usual choice corresponds to kernel logistic regression

8

More kernel resources
• Foundations: Berlinet and Thomas-Agnan, RKHSes in Probability and Stats (2004)

• Including more hardcore details: Steinwart and Christmann, SVMs (2008)

• Ridge regression analyses:

• Smale and Zhou (2007) – fairly readable

• Caponnetto and de Vito (2007) – minimax rate for “mostly”-well-specified,

including regression with a kernel output as well

• Steinwart et al. (2009) – minimax in Sobolev spaces with Matérn kernels (hard)

• Rasmussen and Williams, Gaussian Processes for Machine Learning (2006) 

• Connections between kernels and GPs: Kanagawa et al. (2018)

• Mean embeddings: Muandet et al. (2016)

• v. related to a lot of my research; there are slides in L16, but won’t get to them

9

https://link.springer.com/book/10.1007/978-1-4419-9096-9
https://link.springer.com/book/10.1007/978-0-387-77242-4
https://link.springer.com/article/10.1007/s00365-006-0659-y
https://link.springer.com/article/10.1007/s10208-006-0196-8
https://www.cs.mcgill.ca/~colt2009/papers/038.pdf
http://www.gaussianprocess.org/gpml/
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1605.09522

(pause)

10

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):

11

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

11

https://arxiv.org/abs/2011.13550
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

11

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers

11

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x

11

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x
• Common choices for activations :σ

11

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x
• Common choices for activations :σ
• Componentwise: ,ReLU(z) = max{z,0} sigmoid(z) = 1/(1 + exp(−z))

11

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x
• Common choices for activations :σ
• Componentwise: ,ReLU(z) = max{z,0} sigmoid(z) = 1/(1 + exp(−z))

• , max pooling, attention, …softmax(z)i = exp(zi)/∑
j

exp(zj)

11

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x
• Common choices for activations :σ
• Componentwise: ,ReLU(z) = max{z,0} sigmoid(z) = 1/(1 + exp(−z))

• , max pooling, attention, …softmax(z)i = exp(zi)/∑
j

exp(zj)

• Usually train via SGD, but it’s non-convex: in general, possibility of local minima

11

https://arxiv.org/abs/2011.13550

Deep learning
• Mostly assuming fully-connected, feedforward nets (“multilayer perceptrons”):
•  f (0)(x) = x f (ℓ)(x) = σℓ(Wℓ f (ℓ−1)(x) + bℓ) f(x) = f (L)(x)

• (usually) Wℓ ∈ ℝdℓ×dℓ−1 bℓ ∈ ℝd′ ℓ σℓ : ℝd′ ℓ → ℝdℓ d′ ℓ = dℓ

• Can think of this as a directed, acyclic computation graph, organized in layers
• Usually ; intermediate layers called hidden layersσL(x) = x
• Common choices for activations :σ
• Componentwise: ,ReLU(z) = max{z,0} sigmoid(z) = 1/(1 + exp(−z))

• , max pooling, attention, …softmax(z)i = exp(zi)/∑
j

exp(zj)

• Usually train via SGD, but it’s non-convex: in general, possibility of local minima
• ERM is NP-hard, even with 1 ReLU, even for square loss (Goel et al. ITCS 2021)

11

https://arxiv.org/abs/2011.13550

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) = <(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

12

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) = <(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

12

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai<(xi ≥ bi)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) = <(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

12

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai<(xi ≥ bi)

|g(x) − f(x) |

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) = <(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

12

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai<(xi ≥ bi)

|g(x) − f(x) | ≤ |g(x) − g(bk) | + |g(bk) − f(bk) | + | f(bk) − f(x) |
k = max{k : bk ≤ x}

Mobile User

Mobile User

Mobile User

Mobile User

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) = <(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

12

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai<(xi ≥ bi)

|g(x) − f(x) | ≤ |g(x) − g(bk) | + |g(bk) − f(bk) | + | f(bk) − f(x) |
k = max{k : bk ≤ x}

≤ ρ |x − bk |

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) = <(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

12

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai<(xi ≥ bi)

|g(x) − f(x) | ≤ |g(x) − g(bk) | + |g(bk) − f(bk) | + | f(bk) − f(x) |
k = max{k : bk ≤ x}

≤ ρ |x − bk |

≤ ρ
ε
ρ

= ε

Mobile User

Mobile User

Universal approximation in ℝ
Theorem: Let be -Lipschitz. For any , there is a two-layer network
 with hidden nodes, , with .

g : ℝ → ℝ ρ ε > 0
f m := ⌈ ρ

ε ⌉ σ1(z) = <(z ≥ 0) sup
x∈[0,1]

|f(x) − g(x)| ≤ ε

12

bi = iε
ρ a0 = g(0) ai = g(bi) − g(bi−1) f(x) =

m−1

∑
i=0

ai<(xi ≥ bi)

|g(x) − f(x) | ≤ |g(x) − g(bk) | + |g(bk) − f(bk) | + | f(bk) − f(x) |
k = max{k : bk ≤ x}

≤ ρ |x − bk |

≤ ρ
ε
ρ

= ε Can do better by depending on total variation of g

Universal approximation in ℝd
Theorem: Let be continuous. For any , choose so that

 implies . Then there is a three-layer ReLU network

with nodes satisfying .

g : ℝd → ℝ ε > 0 δ > 0
∥x − x′ ∥∞ ≤ δ |g(x) − g(x′)| ≤ ε f

Ω (1
δd) ∫[0,1]d

|f(x) − g(x)|dx ≤ 2ε

13

Universal approximation in ℝd
Theorem: Let be continuous. For any , choose so that

 implies . Then there is a three-layer ReLU network

with nodes satisfying .

g : ℝd → ℝ ε > 0 δ > 0
∥x − x′ ∥∞ ≤ δ |g(x) − g(x′)| ≤ ε f

Ω (1
δd) ∫[0,1]d

|f(x) − g(x)|dx ≤ 2ε

13

Proof approximates continuous by piecewise-constant , 
then uses a two-layer ReLU net to check if is in each piece, roughly like in 1d.

(Telgarsky’s Theorem 2.1.)

g h
x

https://mjt.cs.illinois.edu/dlt/#theorem:mv_bumps
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let be a set of functions such that

1. Each is continuous.

2. For each , there is at least one with .

3. Separates points: for each , there is at least one with .

4. is an algebra: for , and .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′)

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

14

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let be a set of functions such that

1. Each is continuous.

2. For each , there is at least one with .

3. Separates points: for each , there is at least one with .

4. is an algebra: for , and .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′)

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

14

Conditions hold for , , so that σ1 = exp σ2 = Id ℱexp = {x ↦
m

∑
i=1

ai exp(w⊤
i x)}

Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let be a set of functions such that

1. Each is continuous.

2. For each , there is at least one with .

3. Separates points: for each , there is at least one with .

4. is an algebra: for , and .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′)

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

14

If is continuous, , , works too:

Approximate by with error, and replace each with a 1d -based net

σ : ℝ → ℝ lim
z→−∞

σ(z) = 0 lim
z→−∞

σ(z) = 1
g h ∈ ℱexp

ε
2 exp σ

Conditions hold for , , so that σ1 = exp σ2 = Id ℱexp = {x ↦
m

∑
i=1

ai exp(w⊤
i x)}

Universal approximation in , one hidden layerℝd

Stone-Weierstrass Theorem: Let be a set of functions such that

1. Each is continuous.

2. For each , there is at least one with .

3. Separates points: for each , there is at least one with .

4. is an algebra: for , and .

ℱ
f ∈ ℱ

x f ∈ ℱ f(x) ≠ 0
x ≠ x′ f ∈ ℱ f(x) ≠ f(x′)

ℱ f, g ∈ ℱ αf + g ∈ ℱ fg = (x ↦ f(x)g(x)) ∈ ℱ

14

If is continuous, , , works too:

Approximate by with error, and replace each with a 1d -based net

σ : ℝ → ℝ lim
z→−∞

σ(z) = 0 lim
z→−∞

σ(z) = 1
g h ∈ ℱexp

ε
2 exp σ

Conditions hold for , , so that σ1 = exp σ2 = Id ℱexp = {x ↦
m

∑
i=1

ai exp(w⊤
i x)}

Generally: universal approximator iff is not a polynomialσ

Circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}

15

Circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

15

Circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that

15

Circuit complexity

SSBD chapter 20:
• 2 layer nets with sign activations can represent all functions {±1}d → {±1}
• (remember that computers always represent things as …){0,1}d

• …but, it takes exponential width to do that
• …but, there’s a network of size that can implement all boolean

functions that can be computed in maximum runtime
1(T2)

T

15

Limits of universal approximation

• Curse of dimensionality: usually requires # of units exponential in dimension

• Also usually requires exponential norm of weights 

• Doesn’t say anything about whether ERM finds a good network, just that one exists

• Let alone anything about whether (S)GD finds it

16

