More Kernels

CPSC 532S: Modern Statistical Learning Theory
9 March 2022
cs.ubc.ca/~dsuth/5325/22/

https://www.cs.ubc.ca/~dsuth/532S/22/

Admin: Projects

* Literature survey option:
 Read several related papers on a learning theory topic

 Write a document that overviews the results + proof techniques, relates their
assumptions, etc

 Extension option:

 Extend/analyze 1-2 learning theory papers

 Maybe do some experiments checking assumptions/conclusions/etc

» Maybe weaken some assumptions in the paper, prove interesting corollary, etc

* Write a document overviewing the paper + proof and describing new results
 Novel analysis option:

* Analyze an algorithm/setting that hasn’t been (satisfyingly) analyzed yet

* Analysis should be nontrivial; can be based on class or related technigues

* Failure okay if you show why it should have worked + why it didn’t

 But probably have a survey or extension “backup plan”

Admin: Projects

Do in groups of 1-3; counts as one assignment but can’t be dropped

Suggestions for topics will be up soon, but you can also pick your own

10 points: a very short proposal (~1 paragraph, including papers), by Wed Mar 16
 Make a private Piazza post with me + your group

* |'ll give you feedback ASAP

 Can change topic afterwards if needed, but talk to me if significant

20 points: in-class presentation, on Wed April 6

* Around 5-10 mins depending on # of groups

« Come in person if you can, otherwise can do by Zoom - let me know if an issue
 EXxplain the topic, new results if relevant, 1-2 papers inc. proof if survey

/0 points: the project report, due on Fri April 8

* NeurlPS format, 4-10 pages (plus appendices if necessary)

Reproducing kernel Hilbert space (RKHS)

e k: X' XX — Ris a positive semidefinite kernel

Reproducing kernel Hilbert space (RKHS)
rccvf\,x,) Kb‘al, xnﬁ
~)

o k: X XA — Ris a positive semidefinite kernel CORWKD 7 SEER S
[
. Foralln>1,x,...,x, €, the matrix [k(xl-, xj)] _is psd
ij

"p ot ve detrnte X <;

- 0 %o (0
Srictly PRie deCoire . oo 20 V AEO. XuylK

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Reproducing kernel Hilbert space (RKHS)

e k: X' XX — Ris a positive semidefinite kernel
. Foralln>1,x,...,x, €, the matrix [k(xl-, xj)] _is psd
if

 Equivalent: there is some Hilbert space Z 'and ¢’ : & — '’
where k(x,y) = (¢§'(x), '(¥)) %

Reproducing kernel Hilbert space (RKHS)

e k: X' XX — Ris a positive semidefinite kernel
. Foralln>1,x,...,x, €, the matrix [k(xl-, xj)] _is psd
if

 Equivalent: there is some Hilbert space Z 'and ¢’ : & — '’

h k . p— ! . / /
where k(x,y) = (¢'(x) éb()’»% A T‘—(V,'3?@["’ l<()</7>

C

 An RKHS with kernel k, #, is a Hilbert space of functions f : & — R with
¥r, k()= [y ky)| € # and f0) = (fk(x,)y, U EeTh

NI/ Redi 2(7) = €l y)
|

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(x,-) : ¢ € X'})

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Ho = span({k(z,:) : ¢ € X})

= Define <°, '>’HO from <k(£13, ')7 k(ya ')>'Ho — k‘(:l?, y)

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Ho = span({k(z,:) : ¢ € X})

= Define <', '>’HO from <k(£l3, ')7 k(ya)>7'l() — k‘(il?, y)
= Take H to be completion of # in the metric from (-,)%

ZOCE kCX/')
5&()4) K(st oL X

0

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(x,-) : ¢ € X'})

= Define <', '>7—[0 from <k‘(£l3, ')7 k(ya)>'Ho — k‘(il?, y)
= Take H to be completion of H in the metric from (-, -) %,

= Get that the reproducing property holds for k(zx, -) in H

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(x,-) : ¢ € X'})

= Define <', '>’HO from <k(£13, ')7 k(ya)>7'l() — k‘(il?, y)
= Take H to be completion of H in the metric from (-, -) %,

= Get that the reproducing property holds for k(zx, -) in H

= Can also show uniqueness

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(x,-) : ¢ € X'})

= Define <', '>’HO from <k(£l?, ')7 k(ya)>7'l() — k‘(il?, y)
= Take H to be completion of H in the metric from (-, -) %,

= Get that the reproducing property holds for k(zx, -) in H

= Can also show uniqueness

e Theorem: k is psd iff it's the reproducing kernel of an RKHS
%
F; T < & WY KCX,y)‘—' K(}’/K)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

| Zou; (%) \[%K = q° l;‘\ *’\M
= EFUED) T i il - e)
A quick check: linear kernels

e k(z,y) =2z yon X =R* [lx,) ~ [/ ">)Q/:l

e T

o If f(y Zaz zi,y), then f(y) = [>_;, aizi] y

e Closure doesn't add anything here, since R% is closed

e S0, linear kernel gives you RKHS of linear functions
o I flle =/ 2im 2ojm aiagk(@, @) = (1205 asil|
=<6 = Jcsarx; , for x>

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel ridge regression
A 1 &
f=argmin— » (f(z:) —u)* + A f3,
fen T :
L5 (€)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel ridge regression

f = arg min l Z(f(al‘z) — yi)z T)‘HfH’?{

fen N3

Linear kernel gives normal ridge regression:

n

f(m) — W'z, W= argmin%Z(wai —y;)? + Aw||?

weR? 1=1

Nonlinear kernels will give nonlinear regression!

Kernel ridge regression

f = arg min l Z(f(al‘z) — yi)z T)‘HfH’?{

fen N3

How to find f?

Kernel ridge regression

f = arg min l Z(f(al‘z) — yi)z T)‘HfH’?{

fen N3

How to find f? Representer Theorem

Kernel ridge regression

f = arg min l Z(f(al‘z) — %)2 T)‘HfH’?{

fen N3

How to find f? Representer Theorem

o Let Hx = span{k(z;,-)},
H | its orthogonal complement in H

Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T)‘HfH’?{

fen N3

How to find f? Representer Theorem

o Let Hx = span{k(z;,-)},
H | its orthogonal complement in H

e Decompose f = fx + f with fy € Hx, f1L € H|

Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T)‘HfH’?{

fen N3

How to find f? Representer Theorem

o Let Hx = span{k(z;,-)},
H | its orthogonal complement in H

e Decompose f = fx + fiL with fx € Hx, f1 € H.1
o flzi) = (fx + fo,k(zs,-)n = (fx, k(Ti,-))n

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T)‘HfH’?{

fen N3

How to find f? Representer Theorem

o Let Hx = span{k(z;,-)},
H | its orthogonal complement in H

e Decompose f = fx + fiwithfy € Hx, f1 € H]
o flzi) = (fx + fo,k(zs,-)n = (fx, k(Ti,-))n

o [[fl15, = [Ifx N3 + [Fll3 + 2<%, €2y
N\ ——

= <€x+'€‘_{,/'€x'f'(ly>1_€ &

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel ridge regression

n

f = arg min l Z(f(al‘z) — yi)z T)‘HfH’?{

fen N3

How to find f? Representer Theorem

o Let Hx = span{k(z;,-)},
H | its orthogonal complement in H

e Decompose f = fx + fiwithfy € Hx, f1 € H]
o f(zi) = (fx + for, k(zi,) = (fx, k(zi,-))n

A2 = [FxliZ, + £, Lty S kG5

e Minimizer needs f| = 0, and so f = S v aik(zg, -

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel ridge regression

f = arg min l Z(f(al‘z) — yi)z T)‘HfH’?{

fen N4

How to find f? Representer Theorem: f — Z?:l a;k(z;,-)

Kernel ridge regression

f = arg min l Z(f(al‘z) — %)2 T)‘HfH’?{

fer T3
How to find f? Representer Theorem: f — Z?:l a;k(z;,-)

n n

Z (En: ajk(zi, ;) — yz) = Z ([Kal; — yz')2

=1 1=1

Kernel ridge regression

f = arg min l Z(f(al‘z) — %)2 T)‘HfH’?{

fer T3
How to find f? Representer Theorem: f — Z?:l a;k(z;,-)

n

En: (2"’: ajk(zi, ;) — Z/z) = Z ([Kali — yz')2 = ||Ka — y||2

) — ' 1=1

Kernel ridge regression

f = arg min l Z(f(al‘z) — %)2 T)‘HfH’?{

fer T3
How to find f? Representer Theorem: f — Z?:l a;k(z;,-)

n

En: (2"’: ajk(zi, ;) — Z/z) = Z ([Kali — yz')2 = ||Ka — y||2

) — ' 1=1

—a' K2a—2y' Ka+y'y

Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T)‘HfH’?{

fen T3
How to find f? Representer Theorem: f — Z?:l a;k(z;,-)

n

f: (En: ajk(zi, ;) — yz) = Z ([Kali — yz')2 = ||Ka — y||2

= ' 1=1

—a' K2a—2y' Ka+y'y

n n n

Zaik(xi,) — Zaik(a:i,a:j)aj

i=1 5 i=1 j=1

Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T)‘HfH’?{

fen T3
How to find f? Representer Theorem: f — Z?:l a;k(z;,-)

n

f: (En: ajk(zi, ;) — yz) = Z ([Kali — yz')2 = ||Ka — y||2

= ' 1=1

—a' K2a—2y' Ka+y'y

n n n

Zaik(xi,-) = Zaik(a:i,a:j)aj =a' Ka

i=1 5 i=1 j=1

Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T)‘HfH’?{

fen N3

A

How to find f? Representer Theorem: f = Z?:l a;k(z;,-)

& =argmina' K?a—2y' Ka+vy'y+nia' Ka

acR"

Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T)‘HfH’?{

fen N3

A

How to find f? Representer Theorem: f = Z?:l a;k(z;,-)

& =argmina' K2a—2y' Ka+vy'y+ nia' Ka
acR"
— argmina' K(K 4+ n\)a —2y' Ka

acR"

Kernel ridge regression

f = arg min l Z(f(al‘z) — %)2 T)‘HfH’?{

fen N3

A

How to find f? Representer Theorem: f = Z?:l a;k(z;,-)

& =argmina' K?a—2y' Ka+vy'y+nia' Ka

acR"

— argmina' K(K 4+ n\)a —2y' Ka

acR"

Setting derivative to zero gives K(K + nAl)a = Ky,
satisfied by & = (K +n\l) 'y

Kernel ridge regression

f = arg min l Z(f(mz) — yi)z T)‘HfH’?L{

fen T
How to find f? Representer Theorem: f — Z?:l &z’k(xia)

& =argmina' K2a—2y' Ka+vy'y+ nia' Ka
acR"
— argmina' K(K 4+ n\)a —2y' Ka

acR"

Setting derivative to zero gives K(K + nAl)a = Ky,

satisfied by & = (K + nA\I) 1y k(xy, x)

f(x) = Zl ak(x,x) = a'kox) =y (K + nil)ky(x) 0= k(x,i, X)

Other kernel algorithms

Representer theorem applies if R strictly increasing:

min L(f(z1),- - -, f(xn)) + R(|| fll#)

feH
Classification algorithms:
= Support vector machines: L is hinge loss
= Kernel logistic regression: L is logistic loss
Principal component analysis, canonical correlation analysis

Many, many more...

Rademacher complexity

e LetH p=1fE X Hf”%k < Bj
. LetS = (xy,...,x,) have kernel matrix K € R"**". K,-- = k(x;, Xj)

,;-—(— r-b St ;,Hx: % S Kd
Ry G 5 Zoe b rper k)

t—f—_)
< % A AtY)70)_(
/ T 4 = <
L P E (26 ki .)/@ = £kl ry) = W)
—~ " e © v 2 F R
B T -~ — | = T
2 £ (g | N «fW' 7 VR "

¢ 1x,) £ R

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Estimation error bounds: SVMs

» Same ramp loss analysis as before: if Ek(x, x) < R?,

0—1, ¢ ramp, 2RB 1 1
g@ (f) Sg@ (f)‘l‘ + _lOg_ fOr%k’B= {fE %k: Hf”%kSB}

ﬁ 2n)

Estimation error bounds: SVMs

» Same ramp loss analysis as before: if Ek(x, x) < R?,

A1y < 0 (Fy + 20 L L log < for H,p = (fE€ %, Iflly < B)
2 T), ﬁ N & S k,B k H —

. (or the version with B = 2 max{ Hﬂ\%,l} and a 4 / % log longfH%k penalty)

Estimation error bounds: SVMs

» Same ramp loss analysis as before: if Ek(x, x) < R?,

A1y < 0 (Fy + 20 L L log < for H,p = (fE€ %, Iflly < B)
2 T), ﬁ N & S k,B k H —

. (or the version with B = 2 max{ Hﬂ\%,l} and a 4 / % log longfH%k penalty)

. Stability analysis also still works: if Pr(k(x,x) < R?) = 1,

Estimation error bounds: SVMs

» Same ramp loss analysis as before: if Ek(x, x) < R?,

FO-I(f)y < FPMP(f) 2RB + L10 ! for Z p = {f € # : |Ifllr, < B}

. (or the version with B = 2 max{ Hﬂ\%,l} and a 4 / % log longfH%k penalty)

. Stability analysis also still works: if Pr(k(x,x) < R?) = 1,

CEJQLSIHT < inf LEMS(f) + 2RB\[for Soft-SVM with 4 = —\[
/1l <B

Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1

Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1
» If targets y are bounded, say |y| < BR for simplicity: analyzed way back in lecture 8

Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1
» If targets y are bounded, say |y| < BR for simplicity: analyzed way back in lecture 8
« ForZ p=1{f€ X, : Hfl\%k < B}, have |f(x)| < B\/k(x,x) < BR

Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1
» If targets y are bounded, say |y| < BR for simplicity: analyzed way back in lecture 8
« ForZ p=1{f€ X, : Hfl\%k < B}, have |f(x)| < B\/k(x,x) < BR

. Makes square loss effectively (4BR)-Lipschitz and bounded in [0,4B°R?]:

Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1
» If targets y are bounded, say |y| < BR for simplicity: analyzed way back in lecture 8
« ForZ p=1{f€ X, : Hfl\%k < B}, have |f(x)| < B\/k(x,x) < BR

. Makes square loss effectively (4BR)-Lipschitz and bounded in [0,4B°R?]:

4B*R* | /—11 1
+ 3 Ogg

_ Getthat sup L;Zq(1) —LSSq(f) <
fEZ p ﬁ

Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1
» If targets y are bounded, say |y| < BR for simplicity: analyzed way back in lecture 8
« ForZ p=1{f€ X, : Hfl\%k < B}, have |f(x)| < B\/k(x,x) < BR

. Makes square loss effectively (4BR)-Lipschitz and bounded in [0,4B°R?]:
4B*R* Cr T et
+ 3 O g

. Stability analysis also works: if Pr(k(x, x) < R%) = 1,

_ Getthat sup L;Zq(1) —LSSq(f) <
fEZ p ﬁ

Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1
» If targets y are bounded, say |y| < BR for simplicity: analyzed way back in lecture 8
« ForZ p=1{f€ X, : Hfl\%k < B}, have |f(x)| < B\/k(x,x) < BR

. Makes square loss effectively (4BR)-Lipschitz and bounded in [0,4B°R?]:
4B*R? Cr T et
+ 3 O g
. Stability analysis also works: if Pr(k(x, x) < R?) = 1,

L < inf L) +RB\/—150 for KRR with 4 = —y /22
- WI = —4 [—
C 2T T s 2 , =\ 3

_ Getthat sup L;Zq(1) —LSSq(f) <
JEX B ﬁ

Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

We stopped here a clas

w ([dp (mesy o) The rest
0N MOV\C{"\7

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(SZ‘)
for every continuous g 2 — R, every € > 0, there is anfe %k

with [|f — gl = sup [f(x) —gx)| < &
xed

Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(SZ‘)
for every continuous g 2 — R, every € > 0, there is anfe %k

with [|f — gl = sup [f(x) —gx)| < &
xed

« If 2 is atopological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(%)
for every continuous g 2 — R, every € > 0, there is anfe %k

with [|f — gl = sup [f(x) —gx)| < &
xed

« If 2 is atopological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

» Separates compact sets: if X; N X, = @& are compact subsets of I,
isan f € #, with f(x) > Oforx € X, f(x) <Oforx € X, (soVCdim = o)

Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(%)
for every continuous g 2 — R, every € > 0, there is anfe %k

with [|f — gl = sup [f(x) —gx)| < &
xed

« If 2 is atopological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

» Separates compact sets: if X; N X, = @& are compact subsets of I,
isan f € #, with f(x) > Oforx € X, f(x) <Oforx € X, (soVCdim = o)

. Implies that as B — oo, get Inf LS(f) — O, inf L@(f) — Bayes error it & has compact support
%k,B %k,B

Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(%)
for every continuous g 2 — R, every € > 0, there is anfe %k

with [|f — gl = sup [f(x) —gx)| < &
xed

If 2 is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

» Separates compact sets: if X; N X, = @& are compact subsets of I,
isan f € #, with f(x) > Oforx € X, f(x) <Oforx € X, (soVCdim = o)

. Implies that as B — oo, get Inf LS(f) — O, inf L@(f) — Bayes error it & has compact support
%k,B %k,B
e Can show universality via Stone-Welierstrass, or Fourier properties

Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(%)
for every continuous g 2 — R, every € > 0, there is anfe %k

with [|f — gl = sup [f(x) —gx)| < &
xed

« If 2 is atopological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

» Separates compact sets: if X; N X, = @& are compact subsets of I,
isan f € #, with f(x) > Oforx € X, f(x) <Oforx € X, (soVCdim = o)

. Implies that as B — oo, get Inf LS(f) — O, inf L@(f) — Bayes error it & has compact support
%k,B %k,B
e Can show universality via Stone-Welierstrass, or Fourier properties

. exp(x'y), exp(—z%sz — (1%, exp(—;Hx — y||) are universal on compact subsets of [

Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(%)

for every continuous g : X — R, every € > 0, thereisanf € #,

with [|f — gl = sup [f(x) —gx)| < &
xed

If 2 is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

» Separates compact sets: if X; N X, = @& are compact subsets of I,
isan f € #, with f(x) > Oforx € X, f(x) <Oforx € X, (soVCdim = o)

. Implies that as B — oo, get Inf LS(f) — O, inf L@(f) — Bayes error it & has compact support
%k,B %k,B
e Can show universality via Stone-Welierstrass, or Fourier properties

. exp(x'y), exp(—z%sz — (1%, exp(—;Hx — y||) are universal on compact subsets of [

e Never true for finite-dimensional kernels

Approximation error

. Know thatas B — oo, get int L(f) — O, inf L,(f) — Bayes error
%k,B %k,B

for compactly supported & (can use broader notion of universality in general)

Approximation error

. Know thatas B — oo, get int L(f) — O, inf L,(f) — Bayes error
%k,B %k,B

for compactly supported & (can use broader notion of universality in general)
» But the rate at which this happens depends on &

Approximation error

. Know thatas B — oo, get int L(f) — O, inf L,(f) — Bayes error
%k,B %k,B

for compactly supported & (can use broader notion of universality in general)
» But the rate at which this happens depends on &

» Usually compare to the regression function fg,(x) = E[y | x]

Approximation error

. Know thatas B — oo, get int L(f) — O, inf L,(f) — Bayes error
%k,B %k,B

for compactly supported & (can use broader notion of universality in general)
» But the rate at which this happens depends on &

» Usually compare to the regression function fg,(x) = E[y | x]
e If fo, € A, called well-specified:

Approximation error

. Know thatas B — oo, get int L(f) — O, inf L,(f) — Bayes error
%k,B %k,B

for compactly supported & (can use broader notion of universality in general)
» But the rate at which this happens depends on &

» Usually compare to the regression function fg,(x) = E[y | x]
e If fo, € A, called well-specified:

. Stability for B = ||fg|¢: 1nt Lg(f) = Bayes error, excess error < @(l/ﬁ)
/1l <B

Approximation error

. Know thatas B — oo, get int L(f) — O, inf L,(f) — Bayes error
%k,B %k,B

for compactly supported & (can use broader notion of universality in general)
» But the rate at which this happens depends on &

» Usually compare to the regression function fg,(x) = E[y | x]
e If fo, € A, called well-specified:

. Stability for B = ||fg|¢: 1nt Lg(f) = Bayes error, excess error < @(l/ﬁ)
/1l <B

» Better rates (minimax-optimal) with “range-space condition” if f, is “nice” in A L

Approximation error

. Know thatas B — oo, get int L(f) — O, inf L,(f) — Bayes error
%k,B %k,B

for compactly supported & (can use broader notion of universality in general)
» But the rate at which this happens depends on &

» Usually compare to the regression function fg,(x) = E[y | x]
e If fo, € A, called well-specified:

. Stability for B = ||fg|¢: 1nt Lg(f) = Bayes error, excess error < @(l/ﬁ)
/1l <B

» Better rates (minimax-optimal) with “range-space condition” if f, is “nice” in A L
. Pretty different style of analysis, based on ||f — /g || %,

Approximation error

. Know thatas B — oo, get int L(f) — O, inf L,(f) — Bayes error
%k,B %k,B

for compactly supported & (can use broader notion of universality in general)
» But the rate at which this happens depends on &

» Usually compare to the regression function fg,(x) = E[y | x]

e If fo, € A, called well-specified:

. Stability for B = ||fg|¢: 1nt Lg(f) = Bayes error, excess error < @(l/ﬁ)
/1l <B

» Better rates (minimax-optimal) with “range-space condition” if /g, is “nice” in Z,
. Pretty different style of analysis, based on ||f — /g || %,
 Misspecified case: more complicated analyses based on “approximation spaces”

Gaussian processes

» f~ GP(m, k) is arandom function f: & — R s.t,, forany x, ..., x

f(x1) m(x;) k(x,x;) ... k(x;,x)
: ~ N : , E :
fx,) m(x,) k(x,,x;) ... k(x,x)

37

Gaussian processes

» f~ GP(m,k)is arandom functionf: & — R s.t., forany x;,...,x,,
f(x1) m(x;) k(x,x;) ... k(x;,x)
: ~ N : , E :
fx,) m(x,) k(x,,x;) ... k(x,x)

« Mean function m : & — R can be any function; usually use 0

37

Gaussian processes

» f~ GP(m, k) is arandom function f: & — R s.t,, forany x, ..., x

f(x1) m(x;) k(x,x;) ... k(x;,x)
: ~ N : , E :
fx,) m(x,) k(x,,x;) ... k(x,x)

« Mean function m : & — R can be any function; usually use 0

o will see that we can just shift everything by m so that this is WLOG

37

Gaussian processes

» f~ GP(m, k) is arandom function f: & — R s.t,, forany x, ..., x

f(x1) m(x;) k(x,x;) ... k(x;,x)
: ~ N : , E :
fx,) m(x,) k(x,,x;) ... k(x,x)

« Mean function m : & — R can be any function; usually use 0

o will see that we can just shift everything by m so that this is WLOG

e Covariance function k : X X & — R can be any psd function, i.e. any kernel

37

(Gaussian process regression

(Gaussian process regression

» Assume a prior f ~ GP(m, k)

(Gaussian process regression

» Assume a prior f ~ GP(m, k)
» Assume likelihood of observations by y. ~ 4/ (f(x;), o°)

(Gaussian process regression

» Assume a prior f ~ GP(m, k)
» Assume likelihood of observations by y. ~ 4/ (f(x;), o°)

. Ely] = E[fix)], Cov(y,y) = Cov(f(x),f(x)) + 65,

33

» Assume a prior f ~ GP(m, k)
» Assume likelihood of observations by y. ~ 4/ (f(x;), o°)

(Gaussian process regression

. Ely] = E[fix)], Cov(y,y) = Cov(f(x),f(x)) + 65,

 The posterior works out to be (via Kolmogorov Extension Theorem)

f\SrvGP([x

- y (Kg + 6) kg0, [(x, x7)

33

s k(x,x) — kg0 T (K + 02) k(1))

Gaussian process regression

» Assume a prior f ~ GP(m, k)
» Assume likelihood of observations by y. ~ 4/ (f(x;), o°)
e Ely;] = El[f(x)], Cov(y;, Yj) = Cov(f(x), f (xj)) T 02517
 The posterior works out to be (via Kolmogorov Extension Theorem)
flS~GP (x =y (Kg + 0?D) 7 kg(0)], [, x) o k(x, x) = k() T(K + 621) ™ kg(x)|)

2 2
1| =/ . 1
ol < of
"/ =
. \. | 3
-1 ! —1
-2 - —-20\

(a), prior posterlor

output, f(x)

More Gaussian Processes

 GP regression: can get posterior contraction rates
* Look like KRR analysis for the mean, plus posterior variance decreasing

 Understanding posterior variance can be very useful!
* e.g. Bayesian optimization / active learning / bandits / ...

 GP classifiers: usual choice corresponds to kernel logistic regression

39

More resources

Foundations: Berlinet and Thomas-Agnan, RKHSes in Probability and Stats (2004)
Including more hardcore details: Steinwart and Christmann, SVMs (2008)

Ridge regression analyses:

 Smale and Zhou (2007) — fairly readable

e Caponnetto and de Vito (2007) — minimax rate for “mostly”-well-specified, harder
o Steinwart et al. (2009) - minimax in Sobolev spaces

Rasmussen and Williams, Gaussian Processes for Machine Learning (2006)

Connections between kernels and GPs: Kanagawa et al. (2018)
Mean embeddings (slides after this, if we get there): Muandet et al. (2016)

https://link.springer.com/book/10.1007/978-1-4419-9096-9
https://link.springer.com/book/10.1007/978-0-387-77242-4
https://link.springer.com/article/10.1007/s00365-006-0659-y
https://link.springer.com/article/10.1007/s10208-006-0196-8
https://www.cs.mcgill.ca/~colt2009/papers/038.pdf
http://www.gaussianprocess.org/gpml/
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1605.09522

Mean embeddings of distributions
e Represent pointx € X as ¢(x), f(x) = (f, k(x, -))x

/[/VI(S 'S NIOOVW\S‘ MoToryol we
yomoqfo |7 won'e CoVer

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mean embeddings of distributions
e Represent pointx € X as ¢(x), f(x) = (f, k(x, -))x

e Represent distribution

as [p.

ix~p f(X) = (f, up)n

Mean embeddings of distributions

e Represent pointx € X as gb(a:) f(x) — <f7 k‘(x,)>’H
o Represent distribution P as up, Exp f(X) = (f, up)n

Cx~p f(X)

LX~P <f7 k(X7)>'H — <f7

Lx~p k(X,+))qy

Mean embeddings of distributions

e Represent pointx € X as ¢(33) f(x) — <f7 k‘(x,)>’H
o Represent distribution P as up, Exp f(X) = (f, up)n

Cx~p f(X)

L X ~P <f7 k(X7)>'H — <f7

Lx~p k(X,))gy

Mean embeddings of distributions

e Representpointz € X as ¢(x), f(z) = (f, k(z,))n
o Represent distribution P as up, Exp f(X) = (f, up)n

L X~ P f(X) = Exp <f7 k(X7)>'H — <f7 LX~P k(X7)>7'l

= Last step assumed e.g. E 4 /k(X, X) < o0

Mean embeddings of distributions

e Represent pointx € X as ¢(x), f(x) = (f, k(x,-))n
o Represent distribution P as up, Exp f(X) = (f, up)n

Lx~p f(X) = Exop(f, K(X,))n = (f, Exp B(X,)y

= Last step assumed e.g. E 4 /k(X, X) < o0

e Okay. Why?

Mean embeddings of distributions

e Representpointz € X as ¢(x), f(z) = (f, k(z,))n
o Represent distribution P as up, Exp f(X) = (f, up)n

L X~ P f(X) = Exp <f7 k(X7)>'H — <f7 LX~P k(X7)>7'l

= Last step assumed e.g. E 4 /k(X, X) < o0

e Okay. Why?
= One reason; ML on distributions [Szabd+ MLR-16]

Mean embeddings of distributions

e Represent pointx € X as ¢(x), f(x) = (f, k(x,-))n
o Represent distribution P as up, Exp f(X) = (f, up)n

L X~ P f(X) = Exp <f7 k(X7)>'H — <f7 LX~P k(X7)>7'l

= Last step assumed e.g. E 4 /k(X, X) < o0

e Okay. Why?
= One reason: ML on distributions [Szabd+ |MLR-16]

= More common reason: comparing distributions

Maximum Mean Discrepancy

MMD(

,Q) — ||MP> — N@HH

SUp <f7 HP — M@>’H

| fllg =1

sup
[£lly <1

Cx~p f(X) —

Maximum Mean Discrepancy

MMD(P, Q) = |lup — polls

— Sup <f7 HP — MQ>'H
I fll3 <1

= sup Ex.p f(X) — Ey.g f(Y)
| flly <1

e Lastline is Integral Probability Metric (IPM) form

Maximum Mean Discrepancy

MMD(P, Q) = |jup — pollu

— Sup <f7 HP — NQ>'H
I fll3 <1

= sup Ex.p f(X) — Ey-q f(Y)
£l <1

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on P, low on Q

Maximum Mean Discrepancy

MMD(P, Q) = |lup — polls

— Sup <f7 HP — MQ>'H
I fll3 <1

= sup Ex.p f(X) — Ey.g f(Y)
| flly <1

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on P, low on Q

f7(t) o< (up — HQ k(t,-))n = Ep k(t, X) — Q k(t,Y)

Maximum Mean Discrepancy

MMD(P, Q) = |jup — pollu
SUup <f7 HP — M@>’H

| fllg =1

sup
[£lly <1

e Lastline is Integral Probability Metric (IPM) form

o fis called “witness function” or “critic”: high on

fr(t) o< (pp — pq, k(t,-))n = Ep k(t, X) —

Lx~p [(X) — Ey.q f(Y)

? low on Q

20 k(t,Y)

—HHA |

| in

Maximum Mean Discrepancy

MMD(P, Q) = |lup — polls

— Sup <f7“’]P’ _MQ>'H

| fllg =1

= sup Ex.p f(X) -

| flly <1

e Lastline is Integral Probability Metric (IPM) form

f*(t) o< (pp — po, k(t,))n =

f is called “witness function” or “critic”: high on

i k(t, X) —

Ly~q f(Y)

? low on Q

Lo k(t,Y)

Maximum Mean Discrepancy

MMD(P, Q) = |lup — polls

— Sup <f7 HP —
1 £l <1

= sup Ex-p f(
[fll4 <1

MQ>H

X) — Ey~q f(Y)

e Lastline is Integral Probability Metric (IPM) form

o fis called “witness function” or “critic”: high on

f*(t) o< (pp — po, k(t,))n =

i k(t, X) —

- ~

o =\
— ST k ‘Q",;”/!.'"\

? low on Q

Lo k(t,Y)

Maximum Mean Discrepancy

MMD(P, Q) = |lup — polls

— Sup <f7 HP — MQ>'H
I fll3 <1

= sup Ex.p f(X) — Ey.g f(Y)
| flly <1

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on P, low on Q

£ (1) w — g, k(t,))u = Ee k(t, X) — Eq k(£,Y)

"\

-~L i I sl 11 ,H—I----———

§_

~

Maximum Mean Discrepancy

MMD(P, Q) = |[up — uolln

— Sup <f7 HP — MQ>'H
I fll3 <1

= sup Ex.p f(X) — Ey.g f(Y)
£l <1

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on P, low on Q

e =gyt) = B k(ts X) ~Eq k(1Y)

~+-+--LT"17 Jl—l—-

—=
—
“-

Maximum Mean Discrepancy

MMD(P, Q) = |jup — pollu

— Sup <f7l1’]P’ _“Q>'H

| fllg =1

= sup Ex.p f(X) —

| fllq <1

e Lastline is Integral Probability Metric (IPM) form

o fis called “witness function” or “critic”: high on

f*(t) o< (pp — po, k(t,))n =

T k(t, X) —

Ly~q f(Y)

? low on Q

20 k(t,Y)

Maximum Mean Discrepancy

MMD(P, Q) = |[up — uolln

SUp <f7 HP — M@>’H
I fll3 <1

sup

| fll4 <1

e Lastline is Integral Probability Metric (IPM) form

o fis called “witness function” or “critic”: high on

fr(t) o< (pp — pq, k(t,-))n = Ep k(t, X) —

Lx~p f(X) — Eyg f(Y)

? low on Q

Lo k(t,Y)

Maximum Mean Discrepancy

MMD(P, Q) = |jup — pollu

— Sup <f7 HP — “Q>'H
I fll3 <1

= sup Ex.p f(X) — Ey-q f(Y)
£l <1

e Lastline is Integral Probability Metric (IPM) form

e fis called “witness function” or “critic”: high on P, low on Q
f (t) X <:U]P’ — HQ> k(tv)>’H = Ep k(ta X) _ {1’@2 k(t7 Y)
TS A |_w4|\
\ \/

