## **Nore Kernels**

CPSC 532S: Modern Statistical Learning Theory 9 March 2022 cs.ubc.ca/~dsuth/532S/22/

# Admin: Projects

- Literature survey option:
  - Read several related papers on a learning theory topic
  - assumptions, etc
- **Extension** option:
  - Extend/analyze 1-2 learning theory papers
  - Maybe do some experiments checking assumptions/conclusions/etc
- Novel analysis option:
  - Analyze an algorithm/setting that hasn't been (satisfyingly) analyzed yet

  - Failure okay if you show why it should have worked + why it didn't
  - But probably have a survey or extension "backup plan"

• Write a document that overviews the results + proof techniques, relates their

• Maybe weaken some assumptions in the paper, prove interesting corollary, etc • Write a document overviewing the paper + proof and describing new results

Analysis should be nontrivial; can be based on class or related techniques

# Admin: Projects

- Do in groups of 1-3; counts as one assignment but can't be dropped
- Suggestions for topics will be up soon, but you can also pick your own
- - Make a private Piazza post with me + your group
  - I'll give you feedback ASAP
  - Can change topic afterwards if needed, but talk to me if significant
- 20 points: in-class presentation, on Wed April 6
  - Around 5-10 mins depending on # of groups
  - Come in person if you can, otherwise can do by Zoom let me know if an issue
  - Explain the topic, new results if relevant, 1-2 papers inc. proof if survey
- 70 points: the project report, due on Fri April 8
  - NeurIPS format, 4-10 pages (plus appendices if necessary)

10 points: a very short proposal (~1 paragraph, including papers), by Wed Mar 16





## Reproducing kernel Hilbert space (RKHS)

•  $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is a positive semidefinite kernel

• For all  $n \ge 1, x_1, \dots, x_n \in \mathcal{X}$ , the matrix  $[k(x_i, x_j)]_{ii}$  is psd

**Reproducing kernel Hilbert space (RKHS)** •  $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is a positive semidefinite kernel  $[k(x_{i_1}, x_{i_1}) \cdots k(x_{i_r}, x_{i_r})]$ arka 20 positive semidefinite - q°Kq20 VaGIR<sup>n</sup>, 2min(K)20 "positive definite" is strictly positive definite: at Ka >0 Hato; 2min(K)>0







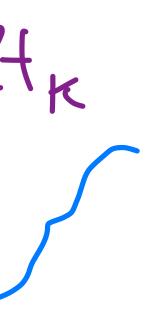
## **Reproducing kernel Hilbert space (RKHS)**

- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is a positive semidefinite kernel • For all  $n \ge 1, x_1, \dots, x_n \in \mathcal{X}$ , the matrix  $[k(x_i, x_j)]_{ii}$  is psd • Equivalent: there is some Hilbert space  $\mathscr{H}'$  and  $\phi':\mathscr{X}\to\mathscr{H}'$
- - where  $k(x, y) = \langle \phi'(x), \phi'(y) \rangle_{\mathscr{H}'}$

## **Reproducing kernel Hilbert space (RKHS)**

- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is a positive semidefinite kernel • For all  $n \ge 1, x_1, \dots, x_n \in \mathcal{X}$ , the matrix  $[k(x_i, x_j)]_{ii}$  is psd • Equivalent: there is some Hilbert space  $\mathscr{H}'$  and  $\phi':\mathscr{X}\to\mathscr{H}'$ where  $k(x, y) = \langle \phi'(x), \phi'(y) \rangle_{\mathscr{H}'}$  $\langle \kappa(x, \cdot), \kappa(y, \cdot) \rangle_{H_{x}}^{2} = \kappa(x, y)$

- An **RKHS** with kernel  $k, \mathcal{H}_k$ , is a Hilbert space of functions  $f: \mathcal{X} \to \mathbb{R}$  with  $\forall \mathbf{x}, \quad k(x, \cdot) = \left[ y \mapsto k(x, y) \right] \in \mathcal{H}_k \quad \text{and} \quad f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}_k} \quad \forall f \in \mathcal{H}_k$  $f_{K}(x, 1) : \mathcal{X} \rightarrow \mathbb{R} \qquad \mathcal{G}(Y) = \mathbb{K}(X, Y)$ g=functods.partiak (K,X,



• Building  $\mathcal{H}$  for a given psd k: • Start with  $\mathcal{H}_0 = \operatorname{span}(\{k(x, \cdot) : x \in \mathcal{X}\})$ 

- Building  $\mathcal{H}$  for a given psd • Start with  $\mathcal{H}_0 = \operatorname{span}(-1)$ 
  - Define  $\langle \cdot, \cdot 
    angle_{\mathcal{H}_0}$  from  $\langle k($

$$egin{aligned} k&:\ \{k(x,\cdot):x\in\mathcal{X}\})\ (x,\cdot),k(y,\cdot)
angle_{\mathcal{H}_0}&=k(x,y) \end{aligned}$$

- Building  $\mathcal{H}$  for a given psd • Start with  $\mathcal{H}_0 = \operatorname{span}(-1)$ 
  - Define  $\langle \cdot, \cdot 
    angle_{\mathcal{H}_0}$  from  $\langle k($
  - Take  $\mathcal H$  to be completion of  $\mathcal H_0$  in the metric from  $\langle \cdot, \cdot 
    angle_{\mathcal H_0}$

 $\sum \alpha_i k(x, \cdot)$  $\int \alpha(x) k(x, \cdot) dx$ 

$$egin{aligned} k&:\ \{k(x,\cdot):x\in\mathcal{X}\})\ (x,\cdot),k(y,\cdot)
angle_{\mathcal{H}_0}&=k(x,y)\ n ext{ of }\mathcal{H}_0 ext{ in the metric from }\langle\cdot,\cdot
angle_{\mathcal{M}_0} \end{aligned}$$

- Building  $\mathcal{H}$  for a given psd • Start with  $\mathcal{H}_0 = \operatorname{span}(-1)$ 
  - Define  $\langle \cdot, \cdot 
    angle_{\mathcal{H}_0}$  from  $\langle k($
  - Take  $\mathcal{H}$  to be completion
  - Get that the reproducing

$$egin{aligned} k&:\ \{k(x,\cdot):x\in\mathcal{X}\})\ (x,\cdot),k(y,\cdot)
angle_{\mathcal{H}_0}&=k(x,y)\ & ext{n of }\mathcal{H}_0 ext{ in the metric from }\langle\cdot,\cdot
angle_{\mathcal{H}_0}\ & ext{g property holds for }k(x,\cdot) ext{ in }\mathcal{H} \end{aligned}$$

- Building  $\mathcal{H}$  for a given psd  $\mathcal{H}$ • Start with  $\mathcal{H}_0 = \operatorname{span}(\{$ 
  - Define  $\langle \cdot, \cdot 
    angle_{\mathcal{H}_0}$  from  $\langle k(\cdot) \rangle_{\mathcal{H}_0}$
  - Take  $\mathcal{H}$  to be completion
  - Get that the reproducing
  - Can also show uniqueness

$$egin{aligned} k&:\ \{k(x,\cdot):x\in\mathcal{X}\})\ (x,\cdot),k(y,\cdot)
angle_{\mathcal{H}_0}&=k(x,y)\ & ext{n of }\mathcal{H}_0 ext{ in the metric from }\langle\cdot,\cdot
angle_{\mathcal{H}_0}\ & ext{g property holds for }k(x,\cdot) ext{ in }\mathcal{H} \end{aligned}$$

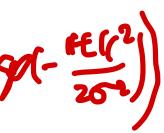
- Building  $\mathcal{H}$  for a given psd • Start with  $\mathcal{H}_0 = \operatorname{span}(-1)$ 
  - Define  $\langle \cdot, \cdot 
    angle_{\mathcal{H}_0}$  from  $\langle k($
  - Take  $\mathcal{H}$  to be completion
  - Get that the reproducing
  - Can also show uniqueness
- Theorem: k is psd iff it's the reproducing kernel of an RKHS  $\mathbf{\Sigma}$  $K: \mathcal{X} \times \mathcal{X} \rightarrow i\mathcal{R}$  with K(x,y) = K(y,x)

$$egin{aligned} k&:\ \{k(x,\cdot):x\in\mathcal{X}\})\ (x,\cdot),k(y,\cdot)
angle_{\mathcal{H}_0}&=k(x,y)\ & ext{n of }\mathcal{H}_0 ext{ in the metric from }\langle\cdot,\cdot
angle_{\mathcal{H}_0}\ & ext{g property holds for }k(x,\cdot) ext{ in }\mathcal{H} \end{aligned}$$

• If 
$$f(y) = \sum_{i=1}^n a_i k(x_i, g)$$

- Closure doesn't add anything here, since  $\mathbb{R}^d$  is closed • So, linear kernel gives you RKHS of linear functions

• 
$$\|f\|_{\mathcal{H}} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j)} = \|\sum_{i=1}^{n} a_i x_i\|$$
  
=  $\sqrt{\langle \xi, \xi \rangle} = \sqrt{\langle \xi, a_i \rangle}$ 





 $\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$ 

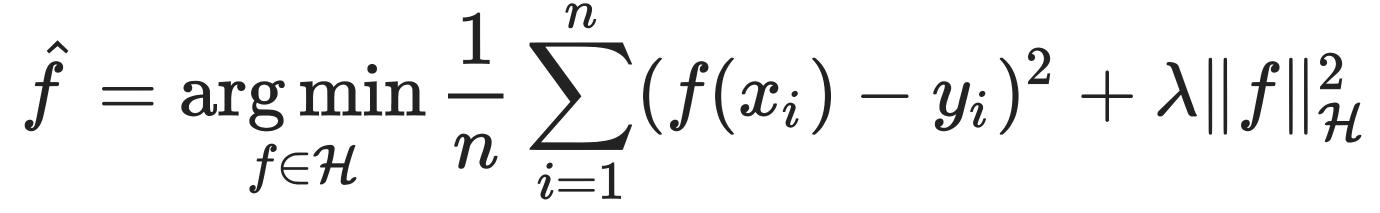
 $L_{c}(f)$ 

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

Linear kernel gives normal ridge regression:

$$\hat{f}\left(x
ight) = \hat{w}^{\mathsf{T}}x; \hspace{1em} \hat{w} = rgmin_{w\in \mathbb{R}^d} \sum_{i=1}^n (w^{\mathsf{T}}x_i - y_i)^2 + \lambda \|w\|^2$$

Nonlinear kernels will give nonlinear regression!



How to find f?

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} rac{1}{\sum_{i=1}^n}$$

 $\sum_{i=1}^{\infty} (f(x_i)-y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$ 

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2$$

How to find  $\hat{f}$ ? Representer Theorem

• Let  $\mathcal{H}_X = \operatorname{span}\{k(x_i, \cdot)\}_{i=1}^n$  $\mathcal{H}_{\perp}$  its orthogonal complement in  $\mathcal{H}$ 

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2$$

- Let  $\mathcal{H}_X = \operatorname{span}\{k(x_i, \cdot)\}_{i=1}^n$  $\mathcal{H}_{\perp}$  its orthogonal complement in  $\mathcal{H}$
- Decompose  $f=f_X+f_\perp$  with  $f_\mathcal{X}\in\mathcal{H}_X$  ,  $f_\perp\in\mathcal{H}_\perp$

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

- Let  $\mathcal{H}_X = \operatorname{span}\{k(x_i, \cdot)\}_{i=1}^n$  $\mathcal{H}_{\perp}$  its orthogonal complement in  $\mathcal{H}$
- Decompose  $f = f_X + f_\perp$
- $\bullet \ f(x_i) = \langle f_X + f_{\perp}, k(x_i, \cdot) \rangle_{\mathcal{H}} = \langle f_X, k(x_i, \cdot) \rangle_{\mathcal{H}}$

with 
$$f_{\mathcal{X}} \in \mathcal{H}_X$$
,  $f_{\perp} \in \mathcal{H}_{\perp}$ 

$$\langle f_{\perp}, k(x_{i}) \rangle_{q_{f}} = 0$$
  
 $\epsilon q_{f_{\chi}}$ 

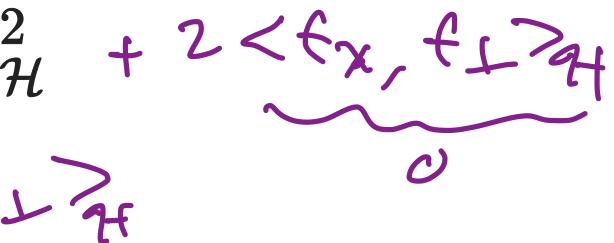
$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

- Let  $\mathcal{H}_X = \operatorname{span}\{k(x_i, \cdot)\}$  $\mathcal{H}_{\perp}$  its orthogonal complement in  $\mathcal{H}$
- Decompose  $f = f_X + f_\perp$
- $f(x_i) = \langle f_X + f_\perp, k(x_i,$
- $\|f\|_{\mathcal{H}}^2 = \|f_X\|_{\mathcal{H}}^2 + \|f_{\perp}\|_{\mathcal{H}}^2 + 2 < f_X, f_Y$ 
  - $= \langle f_x + f_y + f_x + f_y \rangle_{H}$

$${\stackrel{n}{\stackrel{}_{i=1}}}$$
ment in  ${\cal H}$ 

with 
$$f_{\mathcal{X}} \in \mathcal{H}_X$$
 ,  $f_\perp \in \mathcal{H}_\perp$ 

$$|\cdot\rangle_{\mathcal{H}} = \langle f_X, k(x_i, \cdot) 
angle_{\mathcal{H}}$$



$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

- Let  $\mathcal{H}_X = \operatorname{span}\{k(x_i,\cdot)\}$  $\mathcal{H}_{\perp}$  its orthogonal complet
- Decompose  $f = f_X + f_\perp$
- $f(x_i) = \langle f_X + f_\perp, k(x_i,$
- $ullet \|\|_{\mathcal{H}}^2 = \|f_X\|_{\mathcal{H}}^2 + \|f_{ot}\|_{\mathcal{H}}^2$
- Minimizer needs  $f_{\perp}=0$ , a

$$) \}_{i=1}^{n}$$
ement in  ${\cal H}$ 

with 
$$f_{\mathcal{X}} \in \mathcal{H}_X$$
,  $f_{\perp} \in \mathcal{H}_{\perp}$   
 $\langle \cdot \rangle \rangle_{\mathcal{H}} = \langle f_X, k(x_i, \cdot) \rangle_{\mathcal{H}}$   
 $\hat{\mathcal{H}}$   
 $\hat{\mathcal{H}}$   
 $\hat{\mathcal{H}}$   
 $\hat{\mathcal{H}}$   
 $\hat{f}(\tilde{x}) = \hat{z}_{i=1}^{n} \alpha_i k(x_i, \cdot)$   
 $\hat{f}(x_i, \cdot)$ 



$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2$$

' Theorem: 
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2$$

$$\sum_{i=1}^n \left(\sum_{j=1}^n lpha_j k(x_i,x_j)-y_i
ight)^2 = \sum_{i=1}^n \left([Klpha]_i-y_i
ight)^2$$

' Theorem: 
$$\widehat{f} = \sum_{i=1}^n \widehat{lpha}_i k(x_i, \cdot)$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2$$

$$\sum_{i=1}^n \left(\sum_{j=1}^n lpha_j k(x_i,x_j) - y_i
ight)^2 = \sum_{i=1}^n \left([Klpha]_i - y_i
ight)^2 = \|Klpha - y\|^2$$

' Theorem: 
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$egin{aligned} &\sum_{i=1}^n lpha_j k(x_i,x_j) - y_i \end{pmatrix}^2 &= \sum_{i=1}^n \left( [Klpha]_i - y_i 
ight)^2 = \|Klpha - y\|^2 \ &= lpha^\mathsf{T} K^2 lpha - 2y^\mathsf{T} K lpha + y^\mathsf{T} y \end{aligned}$$

' Theorem: 
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$egin{aligned} &\sum_{i=1}^n \left(\sum_{j=1}^n lpha_j k(x_i,x_j)-y_i
ight)^2 &=\sum_{i=1}^n \left([Klpha]_i-y_i
ight)^2 = \|Klpha-y\|^2 \ &=lpha^\mathsf{T} K^2 lpha-2y^\mathsf{T} K lpha+y^\mathsf{T} y \ && \left\|\sum_{i=1}^n lpha_i k(x_i,\cdot)
ight\|_\mathcal{H}^2 &=\sum_{i=1}^n \sum_{j=1}^n lpha_i k(x_i,x_j) lpha_j \end{aligned}$$

' Theorem: 
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$egin{aligned} &\sum_{i=1}^n \left(\sum_{j=1}^n lpha_j k(x_i,x_j)-y_i
ight)^2 &=\sum_{i=1}^n \left([Klpha]_i-y_i
ight)^2 = \|Klpha-y\|^2 \ &=lpha^{ op}K^2lpha-2y^{ op}Klpha+y^{ op}y \ && \left\|\sum_{i=1}^n lpha_i k(x_i,\cdot)
ight\|_{\mathcal{H}}^2 &=\sum_{i=1}^n \sum_{j=1}^n lpha_i k(x_i,x_j)lpha_j = lpha^{ op}Klpha \end{aligned}$$

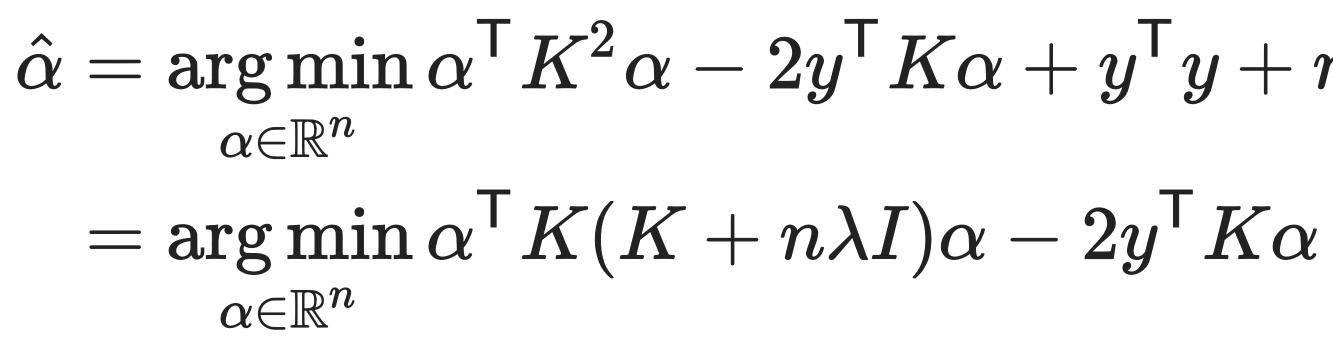
' Theorem: 
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2$$

 $lpha \in \mathbb{R}^n$ 

- How to find  $\hat{f}$ ? Representer Theorem:  $\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, \cdot)$ 
  - $\hat{\alpha} = rgmin \alpha^{\mathsf{T}} K^2 \alpha 2y^{\mathsf{T}} K \alpha + y^{\mathsf{T}} y + n \lambda \alpha^{\mathsf{T}} K \alpha$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$



' Theorem: 
$$\widehat{f} = \sum_{i=1}^n \widehat{lpha}_i k(x_i, \cdot)$$

$$2y^{\mathsf{T}}K\alpha + y^{\mathsf{T}}y + n\lambda\alpha^{\mathsf{T}}K\alpha$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

How to find  $\hat{f}$ ? Representer

$$egin{aligned} \hat{lpha} &= rg\min lpha^{\mathsf{T}} K^2 lpha - 2 y^{\mathsf{T}} K lpha + y^{\mathsf{T}} y + n \lambda lpha^{\mathsf{T}} K lpha \ &= rg\min lpha^{\mathsf{T}} K (K + n \lambda I) lpha - 2 y^{\mathsf{T}} K lpha \ &lpha \in \mathbb{R}^n \end{aligned}$$

Setting derivative to zero satisfied by  $\hat{\alpha}$ 

' Theorem: 
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

gives 
$$K(K+n\lambda I)\hat{lpha}=Ky,$$
 $=(K+n\lambda I)^{-1}y$ 

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$egin{aligned} \hat{lpha} &= rg\min_{lpha\in\mathbb{R}^n} lpha^\mathsf{T} K^2 lpha - 2y^\mathsf{T} K lpha + y^\mathsf{T} y + n\lambda lpha^\mathsf{T} K lpha \ &= rg\min_{lpha\in\mathbb{R}^n} lpha^\mathsf{T} K (K + n\lambda I) lpha - 2y^\mathsf{T} K lpha \end{aligned}$$

Setting derivative to zero gives 
$$K(K + n\lambda I)\hat{\alpha} = Ky$$
,  
satisfied by  $\hat{\alpha} = (K + n\lambda I)^{-1}y$   
 $\hat{f}(x) = \sum_{i=1}^{n} \hat{\alpha}_{i}k(x_{i}, x) = \hat{\alpha}^{\top}k_{S}(x) = y^{\top}(K + n\lambda I)^{-1}k_{S}(x)$   
 $k_{S}(x) = \begin{bmatrix} k(x_{1}, x) \\ \vdots \\ k(x_{n}, x) \end{bmatrix}$ 

' Theorem: 
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

### **Other kernel algorithms**

• Representer theorem applies if R strictly increasing:

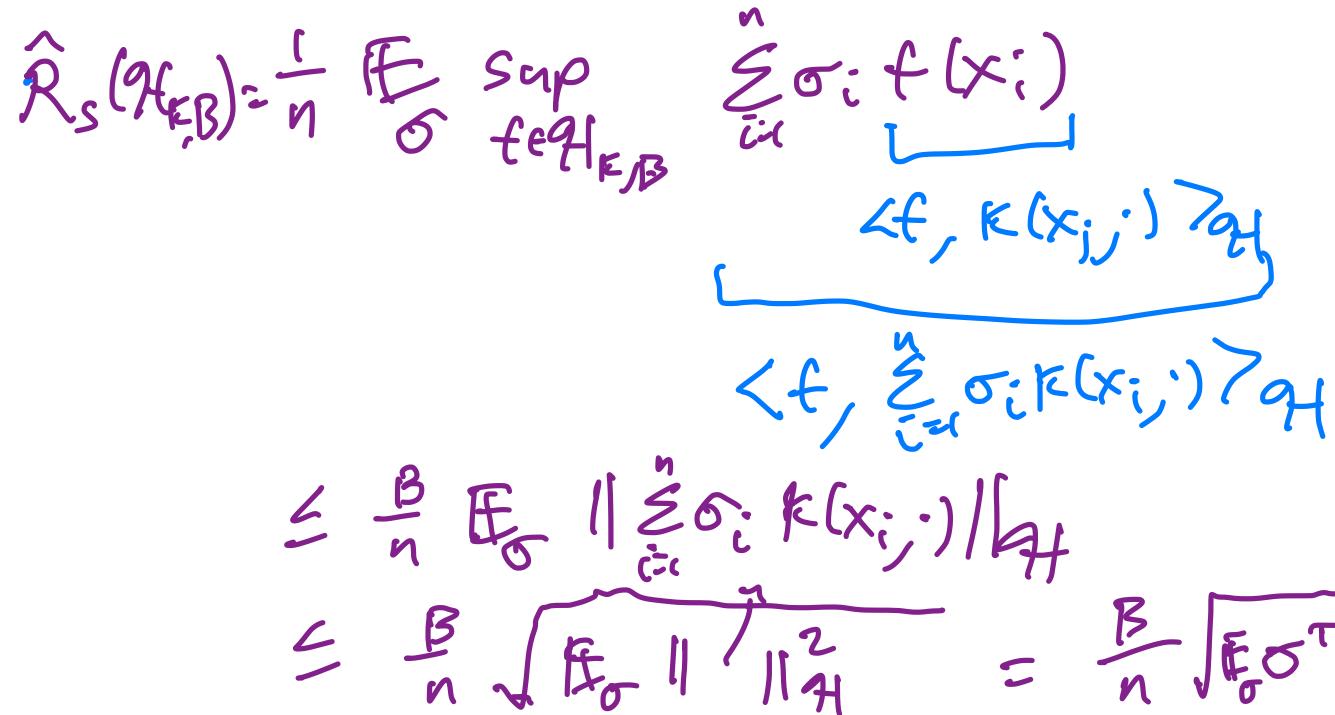
$$\min_{f\in\mathcal{H}}L(f(x_1),\cdot$$

- Classification algorithms:
- Support vector machines: L is hinge loss Kernel logistic regression: L is logistic loss • Principal component analysis, canonical correlation analysis
- Many, many more...

 $(\cdot, f(x_n)) + R(\|f\|_{\mathcal{H}})$ 

# **Rademacher complexity**

- Let  $\mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \le B\}$
- Let  $S = (x_1, \dots, x_n)$  have kernel matrix  $K \in \mathbb{R}^{n \times n}$ :  $K_{ii} = k(x_i, x_i)$



 $= \sum k(x_i, x_i) = Tr(k)$  $\leq B \sqrt{F_0 || / I_A} = B \sqrt{F_0 T K O} = B \sqrt{T_0 (K)} \leq BR \sqrt{T_0}$ if  $k(x, x) \leq R^2$ 



# Estimation error bounds: SVMs

• Same ramp loss analysis as before: if  $\mathbb{E}k(x, x) \leq R^2$ ,

 $\mathscr{L}_{\mathscr{D}}^{0-1}(\hat{f}) \leq \mathscr{L}_{\mathscr{D}}^{\mathrm{ramp}}(\hat{f}) + \frac{2RB}{\sqrt{n}} + \sqrt{\frac{1}{2n}\log\frac{1}{\delta}} \text{ for } \mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \leq B\}$ 



## **Estimation error bounds: SVMs**

Same ramp loss analysis as before: if 
$$\mathbb{E}k(x,x) \leq R^2$$
,  
 $\mathscr{L}_{\mathscr{D}}^{0-1}(\hat{f}) \leq \mathscr{L}_{\mathscr{D}}^{\mathrm{ramp}}(\hat{f}) + \frac{2RB}{\sqrt{n}} + \sqrt{\frac{1}{2n}\log\frac{1}{\delta}} \text{ for } \mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : ||f||_{\mathscr{H}_k} \leq C^{0-1}(\hat{f}) \leq C^$ 

• (or the version with  $B = 2 \max\{\|\hat{f}\|$ 

$$|_{\mathcal{H}_k}, 1$$
 and a  $\sqrt{\frac{1}{n} \log \log_2 \|\hat{f}\|_{\mathcal{H}_k}}$  penalty)



## **Estimation error bounds: SVMs**

Same ramp loss analysis as before: if 
$$\mathbb{E}k(x,x) \leq R^2$$
,  
 $\mathscr{L}_{\mathscr{D}}^{0-1}(\hat{f}) \leq \mathscr{L}_{\mathscr{D}}^{\mathrm{ramp}}(\hat{f}) + \frac{2RB}{\sqrt{n}} + \sqrt{\frac{1}{2n}\log\frac{1}{\delta}} \text{ for } \mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : ||f||_{\mathscr{H}_k} \leq C^{0-1}(\hat{f}) \leq C^$ 

- (or the version with  $B = 2 \max\{\|\hat{f}\|$
- Stability analysis also still works: if  $Pr(k(x, x) \le R^2) = 1$ ,

$$|_{\mathcal{H}_k}, 1$$
 and a  $\sqrt{\frac{1}{n} \log \log_2 ||\hat{f}||_{\mathcal{H}_k}}$  penalty)



## **Estimation error bounds: SVMs**

Same ramp loss analysis as before: if 
$$\mathbb{E}k(x,x) \leq R^2$$
,  
 $\mathscr{L}_{\mathscr{D}}^{0-1}(\hat{f}) \leq \mathscr{L}_{\mathscr{D}}^{\mathrm{ramp}}(\hat{f}) + \frac{2RB}{\sqrt{n}} + \sqrt{\frac{1}{2n}\log\frac{1}{\delta}} \text{ for } \mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : ||f||_{\mathscr{H}_k} \leq C^{0-1}(\hat{f}) \leq C^$ 

- (or the version with  $B = 2 \max\{\|\hat{f}\|$
- Stability analysis also still works: if Pr(  $\mathbb{E}_{S}[L_{\mathscr{D}}^{0-1}(\hat{f})] \leq \inf_{\|f\|_{\mathscr{H}_{k}} \leq B} L_{\mathscr{D}}^{\text{hinge}}(f) + \|f\|_{\mathscr{H}_{k}} \leq B$

$$|_{\mathcal{H}_k}, 1$$
 and a  $\sqrt{\frac{1}{n} \log \log_2 \|\hat{f}\|_{\mathcal{H}_k}}$  penalty)

$$(k(x, x) \le R^2) = 1,$$
  
 $2RB\sqrt{\frac{2}{n}}$  for Soft-SVM with  $\lambda = \frac{R}{B}\sqrt{\frac{2}{n}}$ 



• Assume  $Pr(k(x, x) \le R^2) = 1$ 

- Assume  $Pr(k(x, x) \le R^2) = 1$

• If targets y are bounded, say  $|y| \leq BR$  for simplicity: analyzed way back in lecture 8

- Assume  $Pr(k(x, x) \le R^2) = 1$
- - For  $\mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \le B\}$ , have  $|f(x)| \le B\sqrt{k(x,x)} \le BR$

• If targets y are bounded, say  $|y| \leq BR$  for simplicity: analyzed way back in lecture 8

- Assume  $Pr(k(x, x) \le R^2) = 1$
- If targets y are bounded, say  $|y| \leq BR$  for simplicity: analyzed way back in lecture 8 • For  $\mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \le B\}$ , have  $|f(x)| \le B\sqrt{k(x,x)} \le BR$ 

  - Makes square loss effectively (4BR)-Lipschitz and bounded in  $[0, 4B^2R^2]$ :

- Assume  $Pr(k(x, x) \le R^2) = 1$
- If targets y are bounded, say  $|y| \leq BR$  for simplicity: analyzed way back in lecture 8 • For  $\mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \le B\}$ , have  $|f(x)| \le B\sqrt{k(x,x)} \le BR$ 

  - Makes square loss effectively (4BR)-Lipschitz and bounded in  $[0, 4B^2R^2]$ : • Get that  $\sup_{f \in \mathcal{H}_{k,B}} L_{\mathscr{D}}^{\mathrm{sq}}(f) - L_{S}^{\mathrm{sq}}(f) \le \frac{4B^2R^2}{\sqrt{n}} \left(1 + \sqrt{\frac{1}{2}\log\frac{1}{\delta}}\right)$

- Assume  $Pr(k(x, x) \le R^2) = 1$
- If targets y are bounded, say  $|y| \leq BR$  for simplicity: analyzed way back in lecture 8 • For  $\mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \le B\}$ , have  $|f(x)| \le B\sqrt{k(x,x)} \le BR$ 

  - Makes square loss effectively (4BR)-Lipschitz and bounded in  $[0, 4B^2R^2]$ : • Get that  $\sup_{f \in \mathcal{H}_{k,B}} L^{\mathrm{sq}}_{\mathcal{D}}(f) - L^{\mathrm{sq}}_{S}(f) \le \frac{4B^2R^2}{\sqrt{n}} \left(1 + \sqrt{\frac{1}{2}\log\frac{1}{\delta}}\right)$

• Stability analysis also works: if  $Pr(k(x, x) \le R^2) = 1$ ,

- Assume  $Pr(k(x, x) \le R^2) = 1$
- If targets y are bounded, say  $|y| \leq BR$  for simplicity: analyzed way back in lecture 8 • For  $\mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \le B\}$ , have  $|f(x)| \le B\sqrt{k(x,x)} \le BR$ 

  - Makes square loss effectively (4BR)-Lipschitz and bounded in  $[0, 4B^2R^2]$ : • Get that  $\sup_{f \in \mathcal{H}_{kB}} L^{\mathrm{sq}}_{\mathscr{D}}(f) - L^{\mathrm{sq}}_{S}(f) \le \frac{4B^2R^2}{\sqrt{n}} \left(1 + \sqrt{\frac{1}{2}\log\frac{1}{\delta}}\right)$

• Stability analysis also works: if  $Pr(k(x, x) \le R^2) = 1$ , •  $\mathbb{E}_{S}[L_{\mathscr{D}}^{\mathrm{sq}}(\hat{f})] \leq \inf_{\|f\|_{\mathscr{H}_{k}} \leq B} L_{\mathscr{D}}^{\mathrm{sq}}(f) + RB\sqrt{\frac{150}{n}} \quad \text{for KRR with } \lambda = \frac{R}{B}\sqrt{\frac{50}{3n}}$ 

• What about that  $L_S(f)$  or  $\inf_{\|f\|_{\mathscr{H}_k}} L_{\mathscr{D}}(f)$  term?

We stopped here in class. will do (most of) the rest on Monday

• What about that  $L_S(f)$  or  $\inf_{\|f\|_{\mathscr{H}_k}} L_{\mathscr{D}}(f)$  term?

• A continuous kernel on a compact metric space  $\mathscr{X}$  is universal if  $\mathscr{H}_k$  is dense in  $C(\mathscr{X})$ : for every continuous  $g: \mathcal{X} \to \mathbb{R}$ , every  $\varepsilon > 0$ , there is an  $f \in \mathcal{H}_k$ with  $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$  $x \in \mathcal{X}$ 

• What about that  $L_S(f)$  or  $\inf_{\|f\|_{\mathscr{H}_k}} L_{\mathscr{D}}(f)$  term?

- A continuous kernel on a compact metric space  $\mathscr{X}$  is universal if  $\mathscr{H}_k$  is dense in  $C(\mathscr{X})$ : for every continuous  $g: \mathcal{X} \to \mathbb{R}$ , every  $\varepsilon > 0$ , there is an  $f \in \mathcal{H}_k$ with  $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$  $x \in \mathcal{X}$ 
  - If  $\mathscr{X}$  is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13) lacksquare

• What about that  $L_S(f)$  or  $\inf_{\|f\|_{\mathscr{H}_k}} L_{\mathscr{D}}(f)$  term?

- A continuous kernel on a compact metric space  $\mathscr{X}$  is universal if  $\mathscr{H}_k$  is dense in  $C(\mathscr{X})$ : for every continuous  $g: \mathcal{X} \to \mathbb{R}$ , every  $\varepsilon > 0$ , there is an  $f \in \mathcal{H}_k$ with  $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$  $x \in \mathcal{X}$ 
  - If  $\mathscr{X}$  is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)  $\bullet$
  - Separates compact sets: if  $X_1 \cap X_2 = \emptyset$  are compact subsets of  $\mathcal{X}$ , is an  $f \in \mathcal{H}_k$  with f(x) > 0 for  $x \in X_1$ , f(x) < 0 for  $x \in X_2$  (so VCdim =  $\infty$ )

• What about that  $L_S(f)$  or  $\inf_{\|f\|_{\mathscr{H}_{L}}} L_{\mathscr{D}}(f)$  term?

- A continuous kernel on a compact metric space  $\mathscr{X}$  is universal if  $\mathscr{H}_k$  is dense in  $C(\mathscr{X})$ : for every continuous  $g: \mathcal{X} \to \mathbb{R}$ , every  $\varepsilon > 0$ , there is an  $f \in \mathcal{H}_k$ with  $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$  $x \in \mathcal{X}$ 
  - If  $\mathscr{X}$  is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)
  - Separates compact sets: if  $X_1 \cap X_2 = \emptyset$  are compact subsets of  $\mathcal{X}$ , is an  $f \in \mathcal{H}_k$  with f(x) > 0 for  $x \in X_1$ , f(x) < 0 for  $x \in X_2$  (so VCdim =  $\infty$ ) • Implies that as  $B \to \infty$ , get  $\inf_{\mathscr{K}_{k,B}} L_{S}(f) \to 0$ ,  $\inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \to \text{Bayes error}$  if  $\mathscr{D}$  has compact support



• What about that  $L_S(f)$  or  $\inf_{\|f\|_{\mathscr{H}_{L}}} L_{\mathscr{D}}(f)$  term?

- A continuous kernel on a compact metric space  $\mathscr{X}$  is universal if  $\mathscr{H}_k$  is dense in  $C(\mathscr{X})$ : for every continuous  $g: \mathcal{X} \to \mathbb{R}$ , every  $\varepsilon > 0$ , there is an  $f \in \mathcal{H}_k$ with  $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$  $x \in \mathcal{X}$ 
  - If  $\mathscr{X}$  is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)
  - Separates compact sets: if  $X_1 \cap X_2 = \emptyset$  are compact subsets of  $\mathcal{X}$ , is an  $f \in \mathcal{H}_k$  with f(x) > 0 for  $x \in X_1$ , f(x) < 0 for  $x \in X_2$  (so VCdim =  $\infty$ ) • Implies that as  $B \to \infty$ , get  $\inf_{\mathscr{K}_{k,B}} L_{S}(f) \to 0$ ,  $\inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \to \text{Bayes error}$  if  $\mathscr{D}$  has compact support
  - Can show universality via Stone-Weierstrass, or Fourier properties



• What about that  $L_S(f)$  or  $\inf_{\|f\|_{\mathscr{H}_{L}}} L_{\mathscr{D}}(f)$  term?

- A continuous kernel on a compact metric space  $\mathscr{X}$  is universal if  $\mathscr{H}_k$  is dense in  $C(\mathscr{X})$ : for every continuous  $g: \mathcal{X} \to \mathbb{R}$ , every  $\varepsilon > 0$ , there is an  $f \in \mathcal{H}_k$ with  $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$  $x \in \mathcal{X}$ 
  - If  $\mathscr{X}$  is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)
  - Separates compact sets: if  $X_1 \cap X_2 = \emptyset$  are compact subsets of  $\mathcal{X}$ , is an  $f \in \mathcal{H}_k$  with f(x) > 0 for  $x \in X_1$ , f(x) < 0 for  $x \in X_2$  (so VCdim =  $\infty$ ) • Implies that as  $B \to \infty$ , get  $\inf_{\mathscr{H}_{k,B}} L_{S}(f) \to 0$ ,  $\inf_{\mathscr{H}_{k,B}} L_{\mathscr{D}}(f) \to \text{Bayes error}$  if  $\mathscr{D}$  has compact support
  - Can show universality via Stone-Weierstrass, or Fourier properties

• 
$$\exp(x^{\mathsf{T}}y)$$
,  $\exp(-\frac{1}{2\sigma^2}||x-y||^2)$ ,  $\exp(-\frac{1}{\sigma^2}||x-y||^2)$ 

 $\|x - y\|$ ) are universal on compact subsets of  $\mathbb{R}^d$ 



• What about that  $L_S(f)$  or  $\inf_{\|f\|_{\mathscr{H}_{L}}} L_{\mathscr{D}}(f)$  term?

- A continuous kernel on a compact metric space  $\mathscr{X}$  is universal if  $\mathscr{H}_k$  is dense in  $C(\mathscr{X})$ : for every continuous  $g: \mathcal{X} \to \mathbb{R}$ , every  $\varepsilon > 0$ , there is an  $f \in \mathcal{H}_k$ with  $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$  $x \in \mathcal{X}$ 
  - If  $\mathscr{X}$  is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)
  - Separates compact sets: if  $X_1 \cap X_2 = \emptyset$  are compact subsets of  $\mathcal{X}$ , is an  $f \in \mathcal{H}_k$  with f(x) > 0 for  $x \in X_1$ , f(x) < 0 for  $x \in X_2$  (so VCdim =  $\infty$ ) • Implies that as  $B \to \infty$ , get  $\inf_{\mathscr{H}_{k,B}} L_{S}(f) \to 0$ ,  $\inf_{\mathscr{H}_{k,B}} L_{\mathscr{D}}(f) \to \text{Bayes error}$  if  $\mathscr{D}$  has compact support
  - Can show universality via Stone-Weierstrass, or Fourier properties

• 
$$\exp(x^{\mathsf{T}}y)$$
,  $\exp(-\frac{1}{2\sigma^2}||x-y||^2)$ ,  $\exp(-\frac{1}{\sigma^2}||x-y||^2)$ 

Never true for finite-dimensional kernels

 $-\|x-y\|$ ) are universal on compact subsets of  $\mathbb{R}^d$ 



- Know that as  $B \to \infty$ , get  $\inf_{\mathscr{K}_{k,B}} L_S(f) \to 0$ ,  $\inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \to Bayes$  error
  - for compactly supported  $\mathcal{D}$  (can use broader notion of universality in general)

- Know that as  $B \to \infty$ , get  $\inf_{\mathscr{K}_{k,B}} L_S(f) \to 0$ ,  $\inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \to Bayes$  error

  - But the rate at which this happens depends on  $\mathscr{D}$

for compactly supported  $\mathcal{D}$  (can use broader notion of universality in general)

- Know that as  $B \to \infty$ , get  $\inf L_S(f)$   $\mathcal{H}_{k,B}$ 
  - for compactly supported  $\mathcal{D}$  (can use broader notion of universality in general)
  - But the rate at which this happens depends on  ${\mathscr D}$
- Usually compare to the regression function  $f_{\mathcal{D}}(x) = \mathbb{E}[y \mid x]$

$$\rightarrow 0, \inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \rightarrow \text{Bayes error}$$

• Know that as  $B \to \infty$ , get  $\inf L_S(f)$  –  $\mathcal{H}_{k,B}$ 

for compactly supported  $\mathcal{D}$  (can use broader notion of universality in general) - But the rate at which this happens depends on  ${\mathscr D}$ 

- Usually compare to the regression function  $f_{\mathcal{O}}(x) = \mathbb{E}[y \mid x]$ 
  - If  $f_{\mathcal{D}} \in \mathcal{H}_k$ , called well-specified:

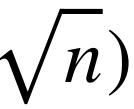
$$\rightarrow 0, \inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \rightarrow \text{Bayes error}$$

• Know that as  $B \to \infty$ , get  $\inf L_S(f)$  –  $\mathcal{H}_{kB}$ 

for compactly supported  $\mathcal{D}$  (can use broader notion of universality in general) • But the rate at which this happens depends on  $\mathscr{D}$ 

- Usually compare to the regression function  $f_{\mathcal{P}}(x) = \mathbb{E}[y \mid x]$ 
  - If  $f_{\mathcal{D}} \in \mathcal{H}_k$ , called well-specified: • Stability for  $B = \|f_{\mathcal{D}}\|_{\mathcal{H}_k}$ :  $\inf_{\|f\|_{\mathcal{H}_k} \leq B} L_{\mathcal{D}}(f)$  = Bayes error, excess error  $\leq \mathcal{O}(1/\sqrt{n})$

$$\rightarrow 0, \inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \rightarrow \text{Bayes error}$$



- . Know that as  $B \to \infty$ , get  $\inf_{\mathscr{K}_{k,B}} L_S(f) = \mathscr{K}_{k,B}$ 

  - But the rate at which this happens depends on  $\mathscr{D}$
- Usually compare to the regression function  $f_{\mathcal{D}}(x) = \mathbb{E}[y \mid x]$ 
  - If  $f_{\mathcal{D}} \in \mathcal{H}_k$ , called well-specified: • Stability for  $B = \|f_{\mathcal{D}}\|_{\mathcal{H}_k}$ :  $\inf_{\|f\|_{\mathcal{H}_k} \leq B} L_{\mathcal{D}}(f)$  = Bayes error, excess error  $\leq \mathcal{O}(1/\sqrt{n})$

$$\rightarrow 0, \inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \rightarrow \text{Bayes error}$$

for compactly supported  $\mathcal{D}$  (can use broader notion of universality in general)

• Better rates (minimax-optimal) with "range-space condition" if  $f_{\mathcal{D}}$  is "nice" in  $\mathscr{H}_k$ 



- Know that as  $B \to \infty$ , get  $\inf_{\mathscr{K}_{k,B}} L_S(f) = \mathscr{K}_{k,B}$ 

  - But the rate at which this happens depends on  $\mathscr{D}$
- Usually compare to the regression function  $f_{\mathcal{D}}(x) = \mathbb{E}[y \mid x]$ 
  - If  $f_{\mathcal{D}} \in \mathcal{H}_k$ , called well-specified: • Stability for  $B = \|f_{\mathcal{D}}\|_{\mathscr{H}_k}$ :  $\inf_{\|f\|_{\mathscr{H}_k} \leq B} L_{\mathcal{D}}(f) = \text{Bayes error, excess error} \leq \mathcal{O}(1/\sqrt{n})$ 
    - - Pretty different style of analysis, based on  $\|\hat{f} f_{\mathcal{D}}\|_{\mathcal{H}_k}$

$$\rightarrow 0, \inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \rightarrow \text{Bayes error}$$

for compactly supported  $\mathscr{D}$  (can use broader notion of universality in general)

- Better rates (minimax-optimal) with "range-space condition" if  $f_{\mathcal{D}}$  is "nice" in  $\mathscr{H}_k$ 



- Know that as  $B \to \infty$ , get  $\inf_{\mathscr{K}_{k,B}} L_S(f) \mathscr{K}_{k,B}$ 

  - But the rate at which this happens depends on  $\mathscr{D}$
- Usually compare to the regression function  $f_{\mathcal{D}}(x) = \mathbb{E}[y \mid x]$ 
  - If  $f_{\mathcal{D}} \in \mathcal{H}_k$ , called well-specified: • Stability for  $B = \|f_{\mathcal{D}}\|_{\mathscr{H}_k}$ :  $\inf_{\|f\|_{\mathscr{H}_k} \leq B} L_{\mathcal{D}}(f) = \text{Bayes error, excess error} \leq \mathcal{O}(1/\sqrt{n})$ 
    - - Pretty different style of analysis, based on  $\|\hat{f} f_{\mathcal{D}}\|_{\mathcal{H}_{k}}$

$$\rightarrow 0, \inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \rightarrow \text{Bayes error}$$

for compactly supported  $\mathscr{D}$  (can use broader notion of universality in general)

- Better rates (minimax-optimal) with "range-space condition" if  $f_{\mathcal{D}}$  is "nice" in  $\mathscr{H}_k$ 

Misspecified case: more complicated analyses based on "approximation spaces"



# • $f \sim \operatorname{GP}(m, k)$ is a random function $f : \mathscr{X} \to \mathbb{R}$ s.t., for any $x_1, \dots, x_n$ , $\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathscr{N}\left( \begin{bmatrix} m(x_1) \\ \vdots \\ m(x_n) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix} \right)$

# • $f \sim \operatorname{GP}(m, k)$ is a random function $f \colon \mathscr{X} \to \mathbb{R}$ s.t., for any $x_1, \dots, x_n$ , $\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathscr{N} \left( \begin{bmatrix} m(x_1) \\ \vdots \\ m(x_n) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix} \right)$

- Mean function  $m: \mathcal{X} \to \mathbb{R}$  can be any function; usually use 0

# • $f \sim \operatorname{GP}(m, k)$ is a random function $f : \mathscr{X} \to \mathbb{R}$ s.t., for any $x_1, \dots, x_n$ , $\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathscr{N}\left( \begin{bmatrix} m(x_1) \\ \vdots \\ m(x_n) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix} \right)$

- Mean function  $m: \mathcal{X} \to \mathbb{R}$  can be any function; usually use 0 • will see that we can just shift everything by m so that this is WLOG

# • $f \sim GP(m, k)$ is a **random function** $f : \mathcal{X} \to \mathbb{R}$ s.t., for any $x_1, \ldots, x_n$ , $\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathcal{N} \left( \begin{bmatrix} m(x_1) \\ \vdots \\ m(x_n) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix} \right)$

- Mean function  $m: \mathcal{X} \to \mathbb{R}$  can be any function; usually use 0 will see that we can just shift everything by m so that this is WLOG
- Covariance function  $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  can be any psd function, i.e. any kernel

• Assume a **prior**  $f \sim GP(m, k)$ 

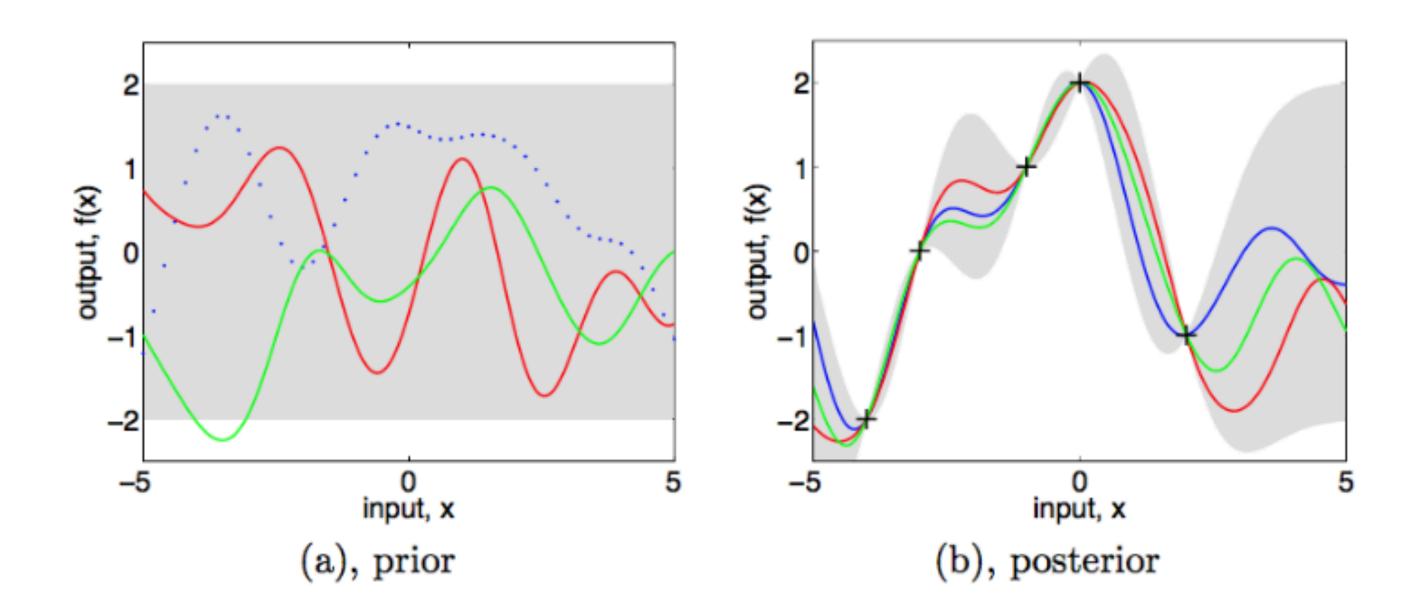
- Assume a **prior**  $f \sim GP(m, k)$
- Assume likelihood of observations by  $y_i \sim \mathcal{N}(f(x_i), \sigma^2)$

- Assume a prior  $f \sim GP(m, k)$
- Assume likelihood of observations by  $y_i \sim \mathcal{N}(f(x_i), \sigma^2)$ 
  - $\mathbb{E}[y_i] = \mathbb{E}[f(x_i)], \quad \operatorname{Cov}(y_i, y_i) = \operatorname{Cov}(f(x_i), f(x_i)) + \sigma^2 \delta_{ii}$

- Assume a prior  $f \sim GP(m, k)$
- $\mathbb{E}[y_i] = \mathbb{E}[f(x_i)], \quad \operatorname{Cov}(y_i, y_i) = \operatorname{Cov}(f(x_i), f(x_i)) + \sigma^2 \delta_{ii}$  $f \mid S \sim GP\left(\left[x \mapsto y^{\top}(K_{S} + \sigma^{2}I)^{-1}k_{S}(x)\right], \left[(x, x') \mapsto k(x, x') - k_{S}(x)^{\top}(K_{S} + \sigma^{2}I)^{-1}k_{S}(x')\right]\right)$
- Assume likelihood of observations by  $y_i \sim \mathcal{N}(f(x_i), \sigma^2)$ • The **posterior** works out to be (via Kolmogorov Extension Theorem)



- Assume a prior  $f \sim GP(m, k)$
- Assume likelihood of observations
  - $\mathbb{E}[y_i] = \mathbb{E}[f(x_i)], \quad \operatorname{Cov}(y_i, y_j) =$
- The **posterior** works out to be (via k $f \mid S \sim \text{GP}\left(\left[x \mapsto y^{\top}(K_S + \sigma^2 I)^{-1}k_S(x)\right]\right)$



by 
$$y_i \sim \mathcal{N}(f(x_i), \sigma^2)$$
  
 $\operatorname{Cov}(f(x_i), f(x_j)) + \sigma^2 \delta_{ij}$   
Kolmogorov Extension Theorem)  
 $0], [(x, x') \mapsto k(x, x') - k_S(x)^{\top} (K_S + \sigma^2 I)^{-1} k_S(x))]$ 



# **More Gaussian Processes**

- GP regression: can get posterior contraction rates
- Understanding posterior variance can be very useful!
  - e.g. Bayesian optimization / active learning / bandits / …

Look like KRR analysis for the mean, plus posterior variance decreasing

GP classifiers: usual choice corresponds to kernel logistic regression

# **More resources**

- Foundations: Berlinet and Thomas-Agnan, <u>RKHSes in Probability and Stats</u> (2004) Including more hardcore details: Steinwart and Christmann, <u>SVMs</u> (2008)
- Ridge regression analyses:
  - <u>Smale and Zhou (2007)</u> fairly readable

  - Caponnetto and de Vito (2007) minimax rate for "mostly"-well-specified, harder • <u>Steinwart et al. (2009)</u> – minimax in Sobolev spaces
- Rasmussen and Williams, <u>Gaussian Processes for Machine Learning</u> (2006)
- Connections between kernels and GPs: Kanagawa et al. (2018) • Mean embeddings (slides after this, if we get there): Muandet et al. (2016)



This is "bonns material" we probably won't Cover

• Represent point  $x \in \mathcal{X}$  as  $\phi(x)$ ,  $f(x) = \langle f, k(x, \cdot) 
angle_{\mathcal{H}}$ 

- Represent distribution  $\mathbb P$  as  $\mu_\mathbb P$ ,  $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_\mathbb P 
  angle_{\mathcal H}$

- Represent point  $x \in \mathcal{X}$  as  $\phi(x)$ ,  $f(x) = \langle f, k(x, \cdot) 
angle_{\mathcal{H}}$ 

- Represent point  $x \in \mathcal{X}$  as
- Represent distribution  $\mathbb P$  as  $\mu_\mathbb P$ ,  $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_\mathbb P 
  angle_{\mathcal H}$ 
  - $\mathbb{E}_{X\sim\mathbb{P}} f(X) = \mathbb{E}_{X\sim\mathbb{P}} \langle f, k(X,\cdot) 
    angle_{\mathcal{H}} = \langle f, \mathbb{E}_{X\sim\mathbb{P}} \ k(X,\cdot) 
    angle_{\mathcal{H}}$

$$\phi(x)$$
,  $f(x) = \langle f, k(x, \cdot) 
angle_{\mathcal{H}}$ 

- Represent point  $x \in \mathcal{X}$  as
- Represent distribution  $\mathbb P$  as  $\mu_{\mathbb P}$ ,  $\mathbb E_{X\sim \mathbb P} f(X) = \langle f, \mu_{\mathbb P} 
  angle_{\mathcal H}$ 
  - $\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot) \rangle_{\mathcal{H}} = \langle f, \mathbb{E}_{X \sim \mathbb{P}} | k(X, \cdot) \rangle_{\mathcal{H}}$

$$\phi(x)$$
,  $f(x) = \langle f, k(x, \cdot) 
angle_{\mathcal{H}}$ 

- Represent point  $x \in \mathcal{X}$  as
- Represent distribution  $\mathbb P$  as  $\mu_\mathbb P$ ,  $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_\mathbb P 
  angle_{\mathcal H}$ 
  - $\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot) \rangle_{\mathcal{H}} = \langle f, \mathbb{E}_{X \sim \mathbb{P}} | k(X, \cdot) \rangle_{\mathcal{H}}$ 
    - Last step assumed e.g

$$\phi(x)$$
,  $f(x) = \langle f, k(x, \cdot) 
angle_{\mathcal{H}}$ 

g. 
$$\mathbb{E}\sqrt{k(X,X)} < \infty$$

- Represent point  $x \in \mathcal{X}$  as
- Represent distribution  $\mathbb P$  as  $\mu_{\mathbb P}$ ,  $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_{\mathbb P} 
  angle_{\mathcal H}$

Last step assumed e.

• Okay. Why?

$$\phi(x)$$
,  $f(x) = \langle f, k(x, \cdot) 
angle_{\mathcal{H}}$ 

 $\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot) \rangle_{\mathcal{H}} = \langle f, \mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot) \rangle_{\mathcal{H}}$ 

g. 
$$\mathbb{E}\sqrt{k(X,X)} < \infty$$

- Represent point  $x \in \mathcal{X}$  as
- Represent distribution  $\mathbb P$  as  $\mu_{\mathbb P}$ ,  $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_{\mathbb P} 
  angle_{\mathcal H}$

Last step assumed e.g

• Okay. Why?

$$\phi(x)$$
,  $f(x) = \langle f, k(x, \cdot) 
angle_{\mathcal{H}}$ 

 $\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot) \rangle_{\mathcal{H}} = \langle f, \mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot) \rangle_{\mathcal{H}}$ 

g. 
$$\mathbb{E}\sqrt{k(X,X)} < \infty$$

One reason: ML on distributions [Szabó+ JMLR-16]

- Represent point  $x \in \mathcal{X}$  as
- Represent distribution  $\mathbb P$  as  $\mu_{\mathbb P}$ ,  $\mathbb E_{X\sim\mathbb P} f(X) = \langle f, \mu_{\mathbb P} \rangle_{\mathcal H}$

- Last step assumed e.g
- Okay. Why? One reason: ML on distributions [Szabó+ JMLR-16]
  - More common reason: comparing distributions

$$\phi(x)$$
,  $f(x) = \langle f, k(x, \cdot) 
angle_{\mathcal{H}}$ 

 $\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot) \rangle_{\mathcal{H}} = \langle f, \mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot) \rangle_{\mathcal{H}}$ 

g. 
$$\mathbb{E}\sqrt{k(X,X)} < \infty$$

- $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} \mu_{\mathbb{Q}}\|_{\mathcal{H}}$  $\|f\|_{\mathcal{H}} \leq 1$ 
  - $\|f\|_{\mathcal{H}} \leq 1$

 $= \sup \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_{\mathcal{H}}$  $= \sup \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$ 

- $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} \mu_{\mathbb{Q}}\|_{\mathcal{H}}$  $\|f\|_{\mathcal{H}} \leq 1$ 
  - $\|f\|_{\mathcal{H}} \leq 1$
- Last line is Integral Probability Metric (IPM) form

 $= \sup \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_{\mathcal{H}}$ 

 $= \sup \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{O}} f(Y)$ 

- $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} \mu_{\mathbb{Q}}\|_{\mathcal{H}}$  $\|f\|_{\mathcal{H}} \leq 1$ 
  - $\|f\|_{\mathcal{H}} \leq 1$
- Last line is Integral Probability Metric (IPM) form

 $= \sup \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_{\mathcal{H}}$ 

 $= \sup \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{O}} f(Y)$ 

• f is called "witness function" or "critic": high on  $\mathbb{P}$ , low on  $\mathbb{Q}$ 

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}}\|$ = sup  $\|f\|_{\mathcal{H}}{\leq}1$ 

> = sup  $\|f\|_{\mathcal{H}} \leq 1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on  $\mathbb{P}$ , low on  $\mathbb{Q}$

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{O}}, k(t) \rangle$ 

$$- \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} 
angle_{\mathcal{H}}$$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

$$\langle ,\cdot 
angle 
angle _{\mathcal{H}}=\mathbb{E}_{\mathbb{P}}\ k(t,X)-\mathbb{E}_{\mathbb{Q}}\ k(t,Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} -$ = sup  $\|f\|_{\mathcal{H}}{\leq}1$ 

> = sup  $\|f\|_{\mathcal{H}} \leq 1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on  $\mathbb{P}$ , low on  $\mathbb{Q}$

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{O}}, k(t_{\mathbb{P}}) \rangle$ 

$$- \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} 
angle_{\mathcal{H}}$$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

$$\langle \cdot 
angle 
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} \, k(t,X) - \mathbb{E}_{\mathbb{Q}} \, k(t,Y)$$



 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}}\|$ = sup  $\|f\|_{\mathcal{H}} \leq 1$ 

> = sup  $\|f\|_{\mathcal{H}} \leq 1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on  $\mathbb{P}$ , low on  $\mathbb{Q}$

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{O}}, k(t) \rangle$ 



$$- \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} 
angle_{\mathcal{H}}$$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

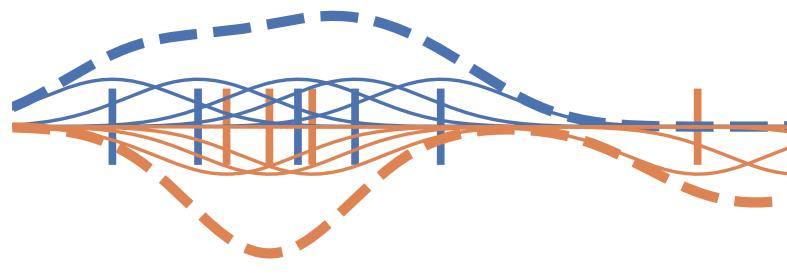
$$\langle \cdot 
angle 
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} \, k(t,X) - \mathbb{E}_{\mathbb{Q}} \, k(t,Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} -$ = sup  $\|f\|_{\mathcal{H}} \leq 1$ 

> = sup  $\|f\|_{\mathcal{H}} \leq 1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on  $\mathbb{P}$ , low on  $\mathbb{Q}$

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{O}}, k(t) \rangle$ 



$$- \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} 
angle_{\mathcal{H}}$$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

$$\langle \cdot, \cdot 
angle 
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} k(t, X) - \mathbb{E}_{\mathbb{Q}} k(t, Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} -$ = sup  $\|f\|_{\mathcal{H}}{\leq}1$ 

> = sup  $\|f\|_{\mathcal{H}}{\leq}1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on  $\mathbb{P}$ , low on  $\mathbb{Q}$

$$f^{*}(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, k(t, \cdot) \rangle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} k(t, X) - \mathbb{E}_{\mathbb{Q}} k(t, Y)$$

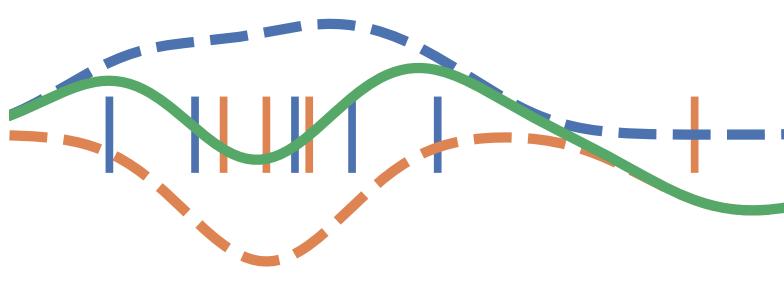
$$- \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} 
angle_{\mathcal{H}}$$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}$ 

 $= \sup \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{O}} f(Y)$  $\|f\|_{\mathcal{H}} \leq 1$ 

- Last line is Integral Probability Metric (IPM) form



 $= \sup \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} 
angle_{\mathcal{H}}$  $\|f\|_{\mathcal{H}} \leq 1$ 

• f is called "witness function" or "critic": high on  $\mathbb{P}$ , low on  $\mathbb{Q}$ 

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{O}}, k(t, \cdot) 
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} \, k(t, X) - \mathbb{E}_{\mathbb{O}} \, k(t, Y)$ 

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}$ 

= sup  $\|f\|_{\mathcal{H}} \leq 1$ 

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on  $\mathbb{P}$ , low on  $\mathbb{Q}$

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{O}}, k(t) \rangle$ 

 $= \sup \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} 
angle_{\mathcal{H}}$  $\|f\|_{\mathcal{H}} \leq 1$ 

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

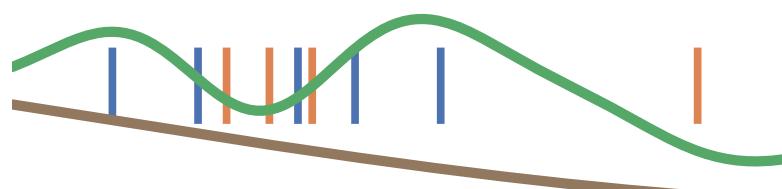
$$\langle \cdot, \cdot 
angle 
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} \, k(t,X) - \mathbb{E}_{\mathbb{Q}} \, k(t,Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} -$ = sup  $\|f\|_{\mathcal{H}}{\leq}1$ 

> = sup  $\|f\|_{\mathcal{H}}{\leq}1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on  $\mathbb{P}$ , low on  $\mathbb{Q}$

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, k(t) 
angle$ 



$$- \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} 
angle_{\mathcal{H}}$$

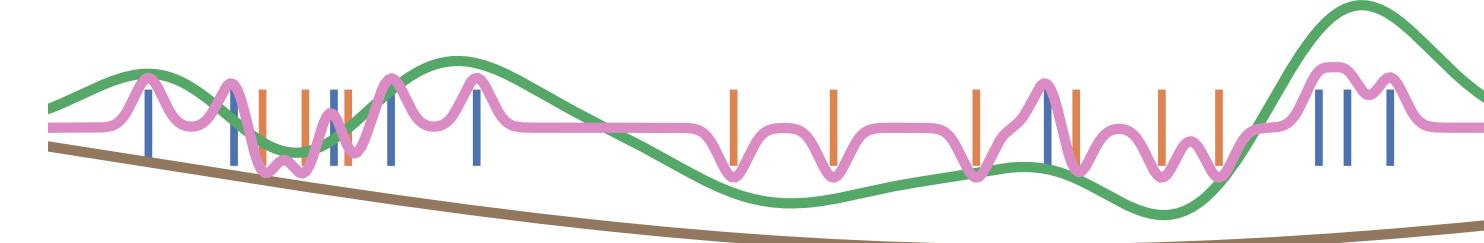
$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

$$\langle \cdot,\cdot
angle
angle_{\mathcal{H}}=\mathbb{E}_{\mathbb{P}}\,k(t,X)-\mathbb{E}_{\mathbb{Q}}\,k(t,Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}$ 

 $= \sup \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{O}} f(Y)$  $\|f\|_{\mathcal{H}} \leq 1$ 

- Last line is Integral Probability Metric (IPM) form



 $= \sup \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} 
angle_{\mathcal{H}}$  $\|f\|_{\mathcal{H}} \leq 1$ 

• f is called "witness function" or "critic": high on  $\mathbb{P}$ , low on  $\mathbb{Q}$ 

 $f^*(t) \propto \langle \mu_\mathbb{P} - \mu_\mathbb{O}, k(t,\cdot) 
angle_\mathcal{H} = \mathbb{E}_\mathbb{P} \: k(t,X) - \mathbb{E}_\mathbb{O} \: k(t,Y)$