More Kernels

CPSC 532S: Modern Statistical Learning Theory
9 March 2022
cs.ubc.ca/~dsuth/5325/22/



https://www.cs.ubc.ca/~dsuth/532S/22/

Admin: Projects

* Literature survey option:
 Read several related papers on a learning theory topic

 Write a document that overviews the results + proof techniques, relates their
assumptions, etc

 Extension option:

 Extend/analyze 1-2 learning theory papers

 Maybe do some experiments checking assumptions/conclusions/etc

» Maybe weaken some assumptions in the paper, prove interesting corollary, etc

* Write a document overviewing the paper + proof and describing new results
 Novel analysis option:

* Analyze an algorithm/setting that hasn’t been (satisfyingly) analyzed yet

* Analysis should be nontrivial; can be based on class or related technigues

* Failure okay if you show why it should have worked + why it didn’t

 But probably have a survey or extension “backup plan”




Admin: Projects

Do in groups of 1-3; counts as one assignment but can’t be dropped

Suggestions for topics will be up soon, but you can also pick your own

10 points: a very short proposal (~1 paragraph, including papers), by Wed Mar 16
 Make a private Piazza post with me + your group

* |'ll give you feedback ASAP

 Can change topic afterwards if needed, but talk to me if significant

20 points: in-class presentation, on Wed April 6

* Around 5-10 mins depending on # of groups

« Come in person if you can, otherwise can do by Zoom - let me know if an issue
 EXxplain the topic, new results if relevant, 1-2 papers inc. proof if survey

/0 points: the project report, due on Fri April 8

* NeurlPS format, 4-10 pages (plus appendices if necessary)
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e k: X' XX — Ris a positive semidefinite kernel
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Reproducing kernel Hilbert space (RKHS)

e k: X' XX — Ris a positive semidefinite kernel
. Foralln>1,x,...,x, €, the matrix [k(xl-, xj)] _is psd
if

 Equivalent: there is some Hilbert space Z 'and ¢’ : & — '’
where k(x,y) = (¢§'(x), '(¥)) %



Reproducing kernel Hilbert space (RKHS)

e k: X' XX — Ris a positive semidefinite kernel
. Foralln>1,x,...,x, €, the matrix [k(xl-, xj)] _is psd
if

 Equivalent: there is some Hilbert space Z 'and ¢’ : & — '’

h k . p— ! . / /
where k(x,y) = (¢'(x) éb()’»% A T‘—(V,'3?@["’ l<()</7>

C

 An RKHS with kernel k, #, is a Hilbert space of functions f : & — R with
¥r, k()= [y ky)| € #  and  f0) = (fk(x, )y, U EeTh

NI/ Redi 2(7) = €l y)
|
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Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(x,-) : ¢ € X'})
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Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Ho = span({k(z,:) : ¢ € X})

= Define <', '>’HO from <k(£l3, ')7 k(ya )>7'l() — k‘(il?, y)
= Take H to be completion of # in the metric from (-, )%
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Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(x,-) : ¢ € X'})
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= Take H to be completion of H in the metric from (-, -) %,

= Get that the reproducing property holds for k(zx, -) in H



Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(x,-) : ¢ € X'})

= Define <', '>’HO from <k(£13, ')7 k(ya )>7'l() — k‘(il?, y)
= Take H to be completion of H in the metric from (-, -) %,

= Get that the reproducing property holds for k(zx, -) in H
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Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(x,-) : ¢ € X'})

= Define <', '>’HO from <k(£l?, ')7 k(ya )>7'l() — k‘(il?, y)
= Take H to be completion of H in the metric from (-, -) %,

= Get that the reproducing property holds for k(zx, -) in H

= Can also show uniqueness

e Theorem: k is psd iff it's the reproducing kernel of an RKHS
%
F; T < & WY KCX,y)‘—' K(}’/K)
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| Zou; (%) \[%K = q° l;‘\ *’\M
= EFUED) T i il - e )
A quick check: linear kernels

e k(z,y) =2z yon X =R*  [lx,) ~ [/ ">)Q/:l

e T

o If f(y Zaz zi,y), then f(y) = [>_;, aizi] y

e Closure doesn't add anything here, since R% is closed

e S0, linear kernel gives you RKHS of linear functions
o I flle =/ 2im 2ojm aiagk(@, @) = (1205 asil|
=<6 = Jcsarx; , for x>
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Kernel ridge regression
A 1 &
f=argmin— » (f(z:) —u)* + A f3,
fen T :
L5 (€)
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Kernel ridge regression

f = arg min l Z(f(al‘z) — yi)z T )‘HfH’?{

fen N3

Linear kernel gives normal ridge regression:

n

f(m) — W'z, W= argmin%Z(wai —y;)? + Aw||?

weR? 1=1

Nonlinear kernels will give nonlinear regression!
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Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T )‘HfH’?{

fen N3

How to find f? Representer Theorem

o Let Hx = span{k(z;,-)},
H | its orthogonal complement in H

e Decompose f = fx + fiL with fx € Hx, f1 € H.1
o flzi) = (fx + fo,k(zs,-)n = (fx, k(Ti,-))n
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Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T )‘HfH’?{

fen N3

How to find f? Representer Theorem

o Let Hx = span{k(z;,-)},
H | its orthogonal complement in H

e Decompose f = fx + fiwithfy € Hx, f1 € H]
o flzi) = (fx + fo,k(zs,-)n = (fx, k(Ti,-))n

o [[fl15, = [Ifx N3 + [Fll3 + 2<%, €2y
N\ ——

= <€x+'€‘_{,/'€x'f'(ly>1_€ &
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Kernel ridge regression

n

f = arg min l Z(f(al‘z) — yi)z T )‘HfH’?{

fen N3

How to find f? Representer Theorem

o Let Hx = span{k(z;,-)},
H | its orthogonal complement in H

e Decompose f = fx + fiwithfy € Hx, f1 € H]
o f(zi) = (fx + for, k(zi, ) = (fx, k(zi,-))n

A2 = [ FxliZ, + £, Lty S kG5

e Minimizer needs f| = 0, and so f = S v aik(zg, -
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Kernel ridge regression

f = arg min l Z(f(al‘z) — yi)z T )‘HfH’?{

fen N4

How to find f? Representer Theorem: f — Z?:l a;k(z;,-)
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fer T3
How to find f? Representer Theorem: f — Z?:l a;k(z;,-)

n n

Z (En: ajk(zi, ;) — yz) = Z ([Kal; — yz')2

=1 1=1
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How to find f? Representer Theorem: f — Z?:l a;k(z;,-)

n
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) — ' 1=1



Kernel ridge regression

f = arg min l Z(f(al‘z) — %)2 T )‘HfH’?{

fer T3
How to find f? Representer Theorem: f — Z?:l a;k(z;,-)

n

En: (2"’: ajk(zi, ;) — Z/z) = Z ([Kali — yz')2 = ||Ka — y||2

) — ' 1=1

—a' K2a—2y' Ka+y'y




Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T )‘HfH’?{

fen T3
How to find f? Representer Theorem: f — Z?:l a;k(z;,-)

n

f: (En: ajk(zi, ;) — yz) = Z ([Kali — yz')2 = ||Ka — y||2

= ' 1=1

—a' K2a—2y' Ka+y'y

n n n

Zaik(xi, ) — Zaik(a:i,a:j)aj

i=1 5 i=1 j=1




Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T )‘HfH’?{

fen T3
How to find f? Representer Theorem: f — Z?:l a;k(z;,-)

n

f: (En: ajk(zi, ;) — yz) = Z ([Kali — yz')2 = ||Ka — y||2

= ' 1=1

—a' K2a—2y' Ka+y'y

n n n

Zaik(xi,-) = Zaik(a:i,a:j)aj =a' Ka

i=1 5 i=1 j=1




Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T )‘HfH’?{

fen N3

A

How to find f? Representer Theorem: f = Z?:l a;k(z;,-)

& =argmina' K?a—2y' Ka+vy'y+nia' Ka

acR"



Kernel ridge regression

f — arg min l Z(f(al‘z) — yi)z T )‘HfH’?{

fen N3

A

How to find f? Representer Theorem: f = Z?:l a;k(z;,-)

& =argmina' K2a—2y' Ka+vy'y+ nia' Ka
acR"
— argmina' K(K 4+ n\)a —2y' Ka

acR"



Kernel ridge regression

f = arg min l Z(f(al‘z) — %)2 T )‘HfH’?{

fen N3

A

How to find f? Representer Theorem: f = Z?:l a;k(z;,-)

& =argmina' K?a—2y' Ka+vy'y+nia' Ka

acR"

— argmina' K(K 4+ n\)a —2y' Ka

acR"

Setting derivative to zero gives K(K + nAl)a = Ky,
satisfied by & = (K +n\l) 'y



Kernel ridge regression

f = arg min l Z(f(mz) — yi)z T )‘HfH’?L{

fen T
How to find f? Representer Theorem: f — Z?:l &z’k(xia )

& =argmina' K2a—2y' Ka+vy'y+ nia' Ka
acR"
— argmina' K(K 4+ n\)a —2y' Ka

acR"

Setting derivative to zero gives K(K + nAl)a = Ky,

satisfied by & = (K + nA\I) 1y k(xy, x)

f(x) = Zl ak(x,x) = a'kox) =y (K + nil)ky(x) 0= k(x,i, X)



Other kernel algorithms

Representer theorem applies if R strictly increasing:

min L(f(z1),- - -, f(xn)) + R(|| fll#)

feH
Classification algorithms:
= Support vector machines: L is hinge loss
= Kernel logistic regression: L is logistic loss
Principal component analysis, canonical correlation analysis

Many, many more...



Rademacher complexity

e LetH p=1fE X Hf”%k < Bj
. LetS = (xy,...,x,) have kernel matrix K € R"**". K,-- = k(x;, Xj)

,;-—(— r-b St ;,Hx: % S Kd
Ry G 5 Zoe b rper k)

t—f—_)
< % A AtY )70)_(
/ T 4 = <
L P E (26 ki .)/@ = £kl ry) = W)
—~ " e © v 2 F R
B T -~ — | = T
2 £ (g | N «fW' 7 VR "

¢ 1x, ) £ R
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Estimation error bounds: SVMs

» Same ramp loss analysis as before: if Ek(x, x) < R?,

FO-I(f)y < FPMP(f) 2RB + L10 ! for Z p = {f € # : |Ifllr, < B}

. (or the version with B = 2 max{ Hﬂ\%,l} and a 4 / % log longfH%k penalty)

. Stability analysis also still works: if Pr(k(x,x) < R?) = 1,

CEJQLSIHT < inf LEMS(f) + 2RB\[ for Soft-SVM with 4 = —\[
/1l <B




Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1



Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1
» If targets y are bounded, say |y| < BR for simplicity: analyzed way back in lecture 8



Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1
» If targets y are bounded, say |y| < BR for simplicity: analyzed way back in lecture 8
« ForZ p=1{f€ X, : Hfl\%k < B}, have |f(x)| < B\/k(x,x) < BR



Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1
» If targets y are bounded, say |y| < BR for simplicity: analyzed way back in lecture 8
« ForZ p=1{f€ X, : Hfl\%k < B}, have |f(x)| < B\/k(x,x) < BR

. Makes square loss effectively (4BR)-Lipschitz and bounded in [0,4B°R?]:



Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1
» If targets y are bounded, say |y| < BR for simplicity: analyzed way back in lecture 8
« ForZ p=1{f€ X, : Hfl\%k < B}, have |f(x)| < B\/k(x,x) < BR

. Makes square loss effectively (4BR)-Lipschitz and bounded in [0,4B°R?]:

4B*R* | /—11 1
+ 3 Ogg

_ Getthat sup L;Zq( 1) —LSSq(f) <
fEZ p ﬁ




Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1
» If targets y are bounded, say |y| < BR for simplicity: analyzed way back in lecture 8
« ForZ p=1{f€ X, : Hfl\%k < B}, have |f(x)| < B\/k(x,x) < BR

. Makes square loss effectively (4BR)-Lipschitz and bounded in [0,4B°R?]:
4B*R* Cr T et
+ 3 O g

. Stability analysis also works: if Pr(k(x, x) < R%) = 1,

_ Getthat sup L;Zq( 1) —LSSq(f) <
fEZ p ﬁ



Estimation error bounds: KRR

. Assume Pr(k(x,x) < R%) =1
» If targets y are bounded, say |y| < BR for simplicity: analyzed way back in lecture 8
« ForZ p=1{f€ X, : Hfl\%k < B}, have |f(x)| < B\/k(x,x) < BR

. Makes square loss effectively (4BR)-Lipschitz and bounded in [0,4B°R?]:
4B*R? Cr T et
+ 3 O g
. Stability analysis also works: if Pr(k(x, x) < R?) = 1,

L < inf L) +RB\/—150 for KRR with 4 = —y /22
- WI = —4 [ —
C 2T T s 2 , =\ 3

_ Getthat sup L;Zq( 1) —LSSq(f) <
JEX B ﬁ




Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

We  stopped here a clas

w ([ dp (mesy o) The rest
0N MOV\C{"\7


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(SZ‘)
for every continuous g 2 — R, every € > 0, there is anfe %k

with [|f — gl = sup [f(x) —gx)| < &
xed




Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(SZ‘)
for every continuous g 2 — R, every € > 0, there is anfe %k

with [|f — gl = sup [f(x) —gx)| < &
xed

« If 2 is atopological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)




Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(%)
for every continuous g 2 — R, every € > 0, there is anfe %k

with [|f — gl = sup [f(x) —gx)| < &
xed

« If 2 is atopological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

» Separates compact sets: if X; N X, = @& are compact subsets of I,
isan f € #, with f(x) > Oforx € X, f(x) <Oforx € X, (soVCdim = o)




Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(%)
for every continuous g 2 — R, every € > 0, there is anfe %k

with [|f — gl = sup [f(x) —gx)| < &
xed

« If 2 is atopological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

» Separates compact sets: if X; N X, = @& are compact subsets of I,
isan f € #, with f(x) > Oforx € X, f(x) <Oforx € X, (soVCdim = o)

. Implies that as B — oo, get Inf LS(f) — O, inf L@(f) — Bayes error it & has compact support
%k,B %k,B




Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(%)
for every continuous g 2 — R, every € > 0, there is anfe %k

with [|f — gl = sup [f(x) —gx)| < &
xed

If 2 is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

» Separates compact sets: if X; N X, = @& are compact subsets of I,
isan f € #, with f(x) > Oforx € X, f(x) <Oforx € X, (soVCdim = o)

. Implies that as B — oo, get Inf LS(f) — O, inf L@(f) — Bayes error it & has compact support
%k,B %k,B
e Can show universality via Stone-Welierstrass, or Fourier properties




Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(%)
for every continuous g 2 — R, every € > 0, there is anfe %k

with [|f — gl = sup [f(x) —gx)| < &
xed

« If 2 is atopological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

» Separates compact sets: if X; N X, = @& are compact subsets of I,
isan f € #, with f(x) > Oforx € X, f(x) <Oforx € X, (soVCdim = o)

. Implies that as B — oo, get Inf LS(f) — O, inf L@(f) — Bayes error it & has compact support
%k,B %k,B
e Can show universality via Stone-Welierstrass, or Fourier properties

. exp(x'y), exp(—z%sz — (1%, exp(—;Hx — y||) are universal on compact subsets of [



Universal kernels

. What about that Lg(f) or 1nt Lg(f) term?
/1152,

e A continuous kernel on a compact metric space A is universal if %k IS dense In C(%)

for every continuous g : X — R, every € > 0, thereisanf € #,

with [|f — gl = sup [f(x) —gx)| < &
xed

If 2 is a topological space not generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)

» Separates compact sets: if X; N X, = @& are compact subsets of I,
isan f € #, with f(x) > Oforx € X, f(x) <Oforx € X, (soVCdim = o)

. Implies that as B — oo, get Inf LS(f) — O, inf L@(f) — Bayes error it & has compact support
%k,B %k,B
e Can show universality via Stone-Welierstrass, or Fourier properties

. exp(x'y), exp(—z%sz — (1%, exp(—;Hx — y||) are universal on compact subsets of [

e Never true for finite-dimensional kernels
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Approximation error

. Know thatas B — oo, get int L(f) — O, inf L,(f) — Bayes error
%k,B %k,B

for compactly supported & (can use broader notion of universality in general)
» But the rate at which this happens depends on &

» Usually compare to the regression function fg,(x) = E[y | x]

e If fo, € A, called well-specified:

. Stability for B = ||fg|¢: 1nt Lg(f) = Bayes error, excess error < @(l/ﬁ)
/1l <B

» Better rates (minimax-optimal) with “range-space condition” if /g, is “nice” in Z,
. Pretty different style of analysis, based on ||f — /g || %,
 Misspecified case: more complicated analyses based on “approximation spaces”
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Gaussian processes

» f~ GP(m, k) is arandom function f: & — R s.t,, forany x, ..., x

f(x1) m(x;) k(x,x;) ... k(x;,x)
: ~ N : , E :
fx,) m(x,) k(x,,x;) ... k(x,x)

« Mean function m : & — R can be any function; usually use 0

o will see that we can just shift everything by m so that this is WLOG

e Covariance function k : X X & — R can be any psd function, i.e. any kernel

37
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» Assume a prior f ~ GP(m, k)
» Assume likelihood of observations by y. ~ 4/ (f(x;), o°)

(Gaussian process regression

. Ely] = E[fix)], Cov(y,y) = Cov(f(x),f(x)) + 65,

 The posterior works out to be (via Kolmogorov Extension Theorem)

f\SrvGP([x

- y (Kg + 6 ) kg0, [(x, x7)
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Gaussian process regression

» Assume a prior f ~ GP(m, k)
» Assume likelihood of observations by y. ~ 4/ (f(x;), o°)
e Ely;] = El[f(x)], Cov(y;, Yj) = Cov(f(x), f (xj)) T 02517
 The posterior works out to be (via Kolmogorov Extension Theorem)
flS~GP ( x =y (Kg + 0?D) 7 kg(0)], [, x) o k(x, x) = k() T(K + 621) ™ kg(x)| )

2 2
1| =/ . 1
ol < of
"/ =
. \. | 3
-1 ! —1
-2 - —-20\

(a), prior posterlor

output, f(x)




More Gaussian Processes

 GP regression: can get posterior contraction rates
* Look like KRR analysis for the mean, plus posterior variance decreasing

 Understanding posterior variance can be very useful!
* e.g. Bayesian optimization / active learning / bandits / ...

 GP classifiers: usual choice corresponds to kernel logistic regression

39



More resources

Foundations: Berlinet and Thomas-Agnan, RKHSes in Probability and Stats (2004)
Including more hardcore details: Steinwart and Christmann, SVMs (2008)

Ridge regression analyses:

 Smale and Zhou (2007) — fairly readable

e Caponnetto and de Vito (2007) — minimax rate for “mostly”-well-specified, harder
o Steinwart et al. (2009) - minimax in Sobolev spaces

Rasmussen and Williams, Gaussian Processes for Machine Learning (2006)

Connections between kernels and GPs: Kanagawa et al. (2018)
Mean embeddings (slides after this, if we get there): Muandet et al. (2016)



https://link.springer.com/book/10.1007/978-1-4419-9096-9
https://link.springer.com/book/10.1007/978-0-387-77242-4
https://link.springer.com/article/10.1007/s00365-006-0659-y
https://link.springer.com/article/10.1007/s10208-006-0196-8
https://www.cs.mcgill.ca/~colt2009/papers/038.pdf
http://www.gaussianprocess.org/gpml/
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1605.09522
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Mean embeddings of distributions

e Represent pointx € X as ¢(x), f(x) = (f, k(x,-))n
o Represent distribution P as up, Exp f(X) = (f, up)n

L X~ P f(X) = Exp <f7 k(X7 )>'H — <f7 LX~P k(X7 )>7'l

= Last step assumed e.g. E 4 /k(X, X) < o0

e Okay. Why?
= One reason: ML on distributions [Szabd+ |MLR-16]

= More common reason: comparing distributions
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