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Admin: Projects
• Literature survey option:

• Read several related papers on a learning theory topic

• Write a document that overviews the results + proof techniques, relates their 

assumptions, etc

• Extension option:

• Extend/analyze 1-2 learning theory papers

• Maybe do some experiments checking assumptions/conclusions/etc

• Maybe weaken some assumptions in the paper, prove interesting corollary, etc

• Write a document overviewing the paper + proof and describing new results


• Novel analysis option:

• Analyze an algorithm/setting that hasn’t been (satisfyingly) analyzed yet

• Analysis should be nontrivial; can be based on class or related techniques

• Failure okay if you show why it should have worked + why it didn’t

• But probably have a survey or extension “backup plan”



Admin: Projects
• Do in groups of 1-3; counts as one assignment but can’t be dropped

• Suggestions for topics will be up soon, but you can also pick your own

• 10 points: a very short proposal (~1 paragraph, including papers), by Wed Mar 16 
• Make a private Piazza post with me + your group

• I’ll give you feedback ASAP

• Can change topic afterwards if needed, but talk to me if significant


• 20 points: in-class presentation, on Wed April 6

• Around 5-10 mins depending on # of groups

• Come in person if you can, otherwise can do by Zoom – let me know if an issue

• Explain the topic, new results if relevant, 1-2 papers inc. proof if survey


• 70 points: the project report, due on Fri April 8

• NeurIPS format, 4-10 pages (plus appendices if necessary)
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Reproducing kernel Hilbert space (RKHS)

•  is a positive semidefinite kernelk : ! × ! → ℝ
• For all , , the matrix  is psdn ≥ 1 x1, …, xn ∈ ! [k(xi, xj)]ij

• Equivalent: there is some Hilbert space  and  
where  

ℋ′ ϕ′ : ! → ℋ′ 

k(x, y) = ⟨ϕ′ (x), ϕ′ (y)⟩ℋ′ 

• An RKHS with kernel , , is a Hilbert space of functions  with 
                  and      

k ℋk f : ! → ℝ
k(x, ⋅ ) = [y ↦ k(x, y)] ∈ ℋk f(x) = ⟨ f, k(x, ⋅ )⟩ℋk
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̂f(x) =
n

∑
i=1

α̂ik(xi, x) = α̂⊤kS(x) = y⊤(K + nλI)−1kS(x) kS(x) =
k(x1, x)

⋮
k(xn, x)



!lOHi×YHi\HZ×;ZN^iPlO[j!lOHi×YHi\HZ×;ZN^iPlO[j



Rademacher complexity
• Let 


• Let  have kernel matrix : 
ℋk,B = {f ∈ ℋk : ∥f∥ℋk

≤ B}
S = (x1, …, xn) K ∈ ℝn×n Kij = k(xi, xj)
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• Same ramp loss analysis as before: if , 

  for 

3k(x, x) ≤ R2

ℒ0−1
5 ( ̂f ) ≤ ℒramp

5 ( ̂f ) + 2RB
n

+ 1
2n

log 1
δ

ℋk,B = {f ∈ ℋk : ∥f∥ℋk
≤ B}

• (or the version with  and a  penalty) B = 2 max{∥ ̂f∥ℋk
,1} 1

n log log2∥ ̂f∥ℋk

• Stability analysis also still works: if ,Pr(k(x, x) ≤ R2) = 1

•   for Soft-SVM with 3S[L0−1
5 ( ̂f )] ≤ inf

∥f∥ℋk≤B
Lhinge

5 ( f ) + 2RB 2
n λ = R

B
2
n
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• Makes square loss effectively -Lipschitz and bounded in :(4BR) [0,4B2R2]

• Get that  sup
f∈ℋk,B

Lsq
5 ( f ) − Lsq

S ( f ) ≤ 4B2R2

n (1 + 1
2 log 1

δ )
• Stability analysis also works: if ,Pr(k(x, x) ≤ R2) = 1

•      for KRR with 3S[Lsq
5 ( ̂f )] ≤ inf

∥f∥ℋk≤B
Lsq

5 ( f ) + RB
150
n

λ = R
B

50
3n
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• Better rates (minimax-optimal) with “range-space condition” if  is “nice” in f5 ℋk

• Pretty different style of analysis, based on ∥ ̂f − f5∥ℋk

• Misspecified case: more complicated analyses based on “approximation spaces”
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k(xn, x1) … k(xn, xn)

• Mean function  can be any function; usually use 0m : ! → ℝ
• will see that we can just shift everything by  so that this is WLOGm

• Covariance function  can be any psd function, i.e. any kernelk : ! × ! → ℝ
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More Gaussian Processes

• GP regression: can get posterior contraction rates 
• Look like KRR analysis for the mean, plus posterior variance decreasing  

• Understanding posterior variance can be very useful!

• e.g. Bayesian optimization / active learning / bandits / … 

• GP classifiers: usual choice corresponds to kernel logistic regression

39



More resources
• Foundations: Berlinet and Thomas-Agnan, RKHSes in Probability and Stats (2004)

• Including more hardcore details: Steinwart and Christmann, SVMs (2008)

• Ridge regression analyses:

• Smale and Zhou (2007) – fairly readable

• Caponnetto and de Vito (2007) – minimax rate for “mostly”-well-specified, harder

• Steinwart et al. (2009) – minimax in Sobolev spaces


• Rasmussen and Williams, Gaussian Processes for Machine Learning (2006) 

• Connections between kernels and GPs: Kanagawa et al. (2018)

• Mean embeddings (slides after this, if we get there): Muandet et al. (2016)

https://link.springer.com/book/10.1007/978-1-4419-9096-9
https://link.springer.com/book/10.1007/978-0-387-77242-4
https://link.springer.com/article/10.1007/s00365-006-0659-y
https://link.springer.com/article/10.1007/s10208-006-0196-8
https://www.cs.mcgill.ca/~colt2009/papers/038.pdf
http://www.gaussianprocess.org/gpml/
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/1605.09522
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