Nore Kernels

CPSC 532S: Modern Statistical Learning Theory 9 March 2022 cs.ubc.ca/~dsuth/532S/22/

Admin: Projects

- Literature survey option:
 - Read several related papers on a learning theory topic
 - assumptions, etc
- **Extension** option:
 - Extend/analyze 1-2 learning theory papers
 - Maybe do some experiments checking assumptions/conclusions/etc
- Novel analysis option:
 - Analyze an algorithm/setting that hasn't been (satisfyingly) analyzed yet

 - Failure okay if you show why it should have worked + why it didn't
 - But probably have a survey or extension "backup plan"

• Write a document that overviews the results + proof techniques, relates their

• Maybe weaken some assumptions in the paper, prove interesting corollary, etc • Write a document overviewing the paper + proof and describing new results

Analysis should be nontrivial; can be based on class or related techniques

Admin: Projects

- Do in groups of 1-3; counts as one assignment but can't be dropped
- Suggestions for topics will be up soon, but you can also pick your own
- - Make a private Piazza post with me + your group
 - I'll give you feedback ASAP
 - Can change topic afterwards if needed, but talk to me if significant
- 20 points: in-class presentation, on Wed April 6
 - Around 5-10 mins depending on # of groups
 - Come in person if you can, otherwise can do by Zoom let me know if an issue
 - Explain the topic, new results if relevant, 1-2 papers inc. proof if survey
- 70 points: the project report, due on Fri April 8
 - NeurIPS format, 4-10 pages (plus appendices if necessary)

10 points: a very short proposal (~1 paragraph, including papers), by Wed Mar 16

Reproducing kernel Hilbert space (RKHS)

• $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a positive semidefinite kernel

• For all $n \ge 1, x_1, \dots, x_n \in \mathcal{X}$, the matrix $[k(x_i, x_j)]_{ii}$ is psd

Reproducing kernel Hilbert space (RKHS) • $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a positive semidefinite kernel $[k(x_{i_1}, x_{i_1}) \cdots k(x_{i_r}, x_{i_r})]$ arka 20 positive semidefinite - q°Kq20 VaGIRⁿ, 2min(K)20 "positive definite" is strictly positive definite: at Ka >0 Hato; 2min(K)>0

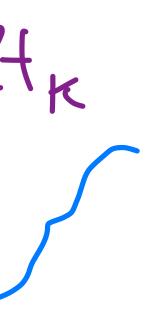
Reproducing kernel Hilbert space (RKHS)

- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a positive semidefinite kernel • For all $n \ge 1, x_1, \dots, x_n \in \mathcal{X}$, the matrix $[k(x_i, x_j)]_{ii}$ is psd • Equivalent: there is some Hilbert space \mathscr{H}' and $\phi':\mathscr{X}\to\mathscr{H}'$
- - where $k(x, y) = \langle \phi'(x), \phi'(y) \rangle_{\mathscr{H}'}$

Reproducing kernel Hilbert space (RKHS)

- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a positive semidefinite kernel • For all $n \ge 1, x_1, \dots, x_n \in \mathcal{X}$, the matrix $[k(x_i, x_j)]_{ii}$ is psd • Equivalent: there is some Hilbert space \mathscr{H}' and $\phi':\mathscr{X}\to\mathscr{H}'$ where $k(x, y) = \langle \phi'(x), \phi'(y) \rangle_{\mathscr{H}'}$ $\langle \kappa(x, \cdot), \kappa(y, \cdot) \rangle_{H_{x}}^{2} = \kappa(x, y)$

- An **RKHS** with kernel k, \mathcal{H}_k , is a Hilbert space of functions $f: \mathcal{X} \to \mathbb{R}$ with $\forall \mathbf{x}, \quad k(x, \cdot) = \left[y \mapsto k(x, y) \right] \in \mathcal{H}_k \quad \text{and} \quad f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}_k} \quad \forall f \in \mathcal{H}_k$ $f_{K}(x, 1) : \mathcal{X} \rightarrow \mathbb{R} \qquad \mathcal{G}(Y) = \mathbb{K}(X, Y)$ g=functods.partiak (K,X,



• Building \mathcal{H} for a given psd k: • Start with $\mathcal{H}_0 = \operatorname{span}(\{k(x, \cdot) : x \in \mathcal{X}\})$

- Building \mathcal{H} for a given psd • Start with $\mathcal{H}_0 = \operatorname{span}(-1)$
 - Define $\langle \cdot, \cdot
 angle_{\mathcal{H}_0}$ from $\langle k($

$$egin{aligned} k&:\ \{k(x,\cdot):x\in\mathcal{X}\})\ (x,\cdot),k(y,\cdot)
angle_{\mathcal{H}_0}&=k(x,y) \end{aligned}$$

- Building \mathcal{H} for a given psd • Start with $\mathcal{H}_0 = \operatorname{span}(-1)$
 - Define $\langle \cdot, \cdot
 angle_{\mathcal{H}_0}$ from $\langle k($
 - Take $\mathcal H$ to be completion of $\mathcal H_0$ in the metric from $\langle \cdot, \cdot
 angle_{\mathcal H_0}$

 $\sum \alpha_i k(x, \cdot)$ $\int \alpha(x) k(x, \cdot) dx$

$$egin{aligned} k&:\ \{k(x,\cdot):x\in\mathcal{X}\})\ (x,\cdot),k(y,\cdot)
angle_{\mathcal{H}_0}&=k(x,y)\ n ext{ of }\mathcal{H}_0 ext{ in the metric from }\langle\cdot,\cdot
angle_{\mathcal{M}_0} \end{aligned}$$

- Building \mathcal{H} for a given psd • Start with $\mathcal{H}_0 = \operatorname{span}(-1)$
 - Define $\langle \cdot, \cdot
 angle_{\mathcal{H}_0}$ from $\langle k($
 - Take \mathcal{H} to be completion
 - Get that the reproducing

$$egin{aligned} k&:\ \{k(x,\cdot):x\in\mathcal{X}\})\ (x,\cdot),k(y,\cdot)
angle_{\mathcal{H}_0}&=k(x,y)\ & ext{n of }\mathcal{H}_0 ext{ in the metric from }\langle\cdot,\cdot
angle_{\mathcal{H}_0}\ & ext{g property holds for }k(x,\cdot) ext{ in }\mathcal{H} \end{aligned}$$

- Building \mathcal{H} for a given psd \mathcal{H} • Start with $\mathcal{H}_0 = \operatorname{span}(\{$
 - Define $\langle \cdot, \cdot
 angle_{\mathcal{H}_0}$ from $\langle k(\cdot) \rangle_{\mathcal{H}_0}$
 - Take \mathcal{H} to be completion
 - Get that the reproducing
 - Can also show uniqueness

$$egin{aligned} k&:\ \{k(x,\cdot):x\in\mathcal{X}\})\ (x,\cdot),k(y,\cdot)
angle_{\mathcal{H}_0}&=k(x,y)\ & ext{n of }\mathcal{H}_0 ext{ in the metric from }\langle\cdot,\cdot
angle_{\mathcal{H}_0}\ & ext{g property holds for }k(x,\cdot) ext{ in }\mathcal{H} \end{aligned}$$

- Building \mathcal{H} for a given psd • Start with $\mathcal{H}_0 = \operatorname{span}(-1)$
 - Define $\langle \cdot, \cdot
 angle_{\mathcal{H}_0}$ from $\langle k($
 - Take \mathcal{H} to be completion
 - Get that the reproducing
 - Can also show uniqueness
- Theorem: k is psd iff it's the reproducing kernel of an RKHS $\mathbf{\Sigma}$ $K: \mathcal{X} \times \mathcal{X} \rightarrow i\mathcal{R}$ with K(x,y) = K(y,x)

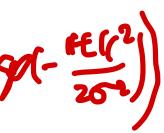
$$egin{aligned} k&:\ \{k(x,\cdot):x\in\mathcal{X}\})\ (x,\cdot),k(y,\cdot)
angle_{\mathcal{H}_0}&=k(x,y)\ & ext{n of }\mathcal{H}_0 ext{ in the metric from }\langle\cdot,\cdot
angle_{\mathcal{H}_0}\ & ext{g property holds for }k(x,\cdot) ext{ in }\mathcal{H} \end{aligned}$$

• If
$$f(y) = \sum_{i=1}^n a_i k(x_i, g)$$

- Closure doesn't add anything here, since \mathbb{R}^d is closed • So, linear kernel gives you RKHS of linear functions

•
$$\|f\|_{\mathcal{H}} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j)} = \|\sum_{i=1}^{n} a_i x_i\|$$

= $\sqrt{\langle \xi, \xi \rangle} = \sqrt{\langle \xi, a_i \rangle}$



 $\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$

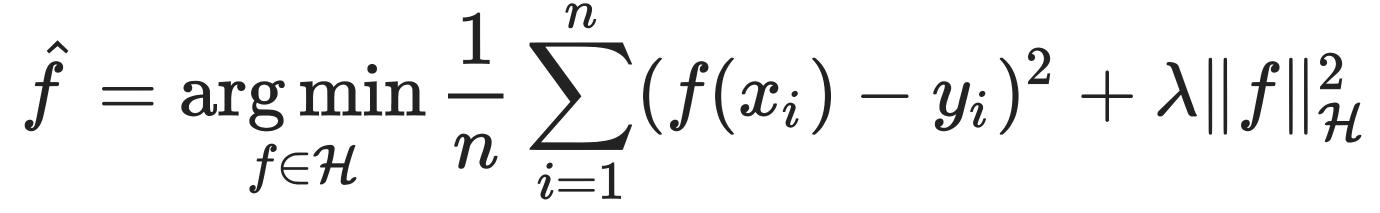
 $L_{c}(f)$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

Linear kernel gives normal ridge regression:

$$\hat{f}\left(x
ight) = \hat{w}^{\mathsf{T}}x; \hspace{1em} \hat{w} = rgmin_{w\in \mathbb{R}^d} \sum_{i=1}^n (w^{\mathsf{T}}x_i - y_i)^2 + \lambda \|w\|^2$$

Nonlinear kernels will give nonlinear regression!



How to find f?

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} rac{1}{\sum_{i=1}^n}$$

 $\sum_{i=1}^{\infty} (f(x_i)-y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2$$

How to find \hat{f} ? Representer Theorem

• Let $\mathcal{H}_X = \operatorname{span}\{k(x_i, \cdot)\}_{i=1}^n$ \mathcal{H}_{\perp} its orthogonal complement in \mathcal{H}

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2$$

- Let $\mathcal{H}_X = \operatorname{span}\{k(x_i, \cdot)\}_{i=1}^n$ \mathcal{H}_{\perp} its orthogonal complement in \mathcal{H}
- Decompose $f=f_X+f_\perp$ with $f_\mathcal{X}\in\mathcal{H}_X$, $f_\perp\in\mathcal{H}_\perp$

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

- Let $\mathcal{H}_X = \operatorname{span}\{k(x_i, \cdot)\}_{i=1}^n$ \mathcal{H}_{\perp} its orthogonal complement in \mathcal{H}
- Decompose $f = f_X + f_\perp$
- $\bullet \ f(x_i) = \langle f_X + f_{\perp}, k(x_i, \cdot) \rangle_{\mathcal{H}} = \langle f_X, k(x_i, \cdot) \rangle_{\mathcal{H}}$

with
$$f_{\mathcal{X}} \in \mathcal{H}_X$$
, $f_{\perp} \in \mathcal{H}_{\perp}$

$$\langle f_{\perp}, k(x_{i}) \rangle_{q_{f}} = 0$$

 $\epsilon q_{f_{\chi}}$

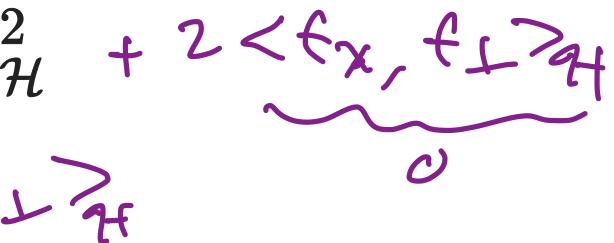
$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

- Let $\mathcal{H}_X = \operatorname{span}\{k(x_i, \cdot)\}$ \mathcal{H}_{\perp} its orthogonal complement in \mathcal{H}
- Decompose $f = f_X + f_\perp$
- $f(x_i) = \langle f_X + f_\perp, k(x_i,$
- $\|f\|_{\mathcal{H}}^2 = \|f_X\|_{\mathcal{H}}^2 + \|f_{\perp}\|_{\mathcal{H}}^2 + 2 < f_X, f_Y$
 - $= \langle f_x + f_y + f_x + f_y \rangle_{H}$

$${\stackrel{n}{\stackrel{}_{i=1}}}$$
ment in ${\cal H}$

with
$$f_{\mathcal{X}} \in \mathcal{H}_X$$
 , $f_\perp \in \mathcal{H}_\perp$

$$|\cdot\rangle_{\mathcal{H}} = \langle f_X, k(x_i, \cdot)
angle_{\mathcal{H}}$$



$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

- Let $\mathcal{H}_X = \operatorname{span}\{k(x_i,\cdot)\}$ \mathcal{H}_{\perp} its orthogonal complet
- Decompose $f = f_X + f_\perp$
- $f(x_i) = \langle f_X + f_\perp, k(x_i,$
- $ullet \|\|_{\mathcal{H}}^2 = \|f_X\|_{\mathcal{H}}^2 + \|f_{ot}\|_{\mathcal{H}}^2$
- Minimizer needs $f_{\perp}=0$, a

$$) \}_{i=1}^{n}$$
ement in ${\cal H}$

with
$$f_{\mathcal{X}} \in \mathcal{H}_X$$
, $f_{\perp} \in \mathcal{H}_{\perp}$
 $\langle \cdot \rangle \rangle_{\mathcal{H}} = \langle f_X, k(x_i, \cdot) \rangle_{\mathcal{H}}$
 $\hat{\mathcal{H}}$
 $\hat{\mathcal{H}}$
 $\hat{\mathcal{H}}$
 $\hat{\mathcal{H}}$
 $\hat{f}(\tilde{x}) = \hat{z}_{i=1}^{n} \alpha_i k(x_i, \cdot)$
 $\hat{f}(x_i, \cdot)$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2$$

' Theorem:
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2$$

$$\sum_{i=1}^n \left(\sum_{j=1}^n lpha_j k(x_i,x_j)-y_i
ight)^2 = \sum_{i=1}^n \left([Klpha]_i-y_i
ight)^2$$

' Theorem:
$$\widehat{f} = \sum_{i=1}^n \widehat{lpha}_i k(x_i, \cdot)$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2$$

$$\sum_{i=1}^n \left(\sum_{j=1}^n lpha_j k(x_i,x_j) - y_i
ight)^2 = \sum_{i=1}^n \left([Klpha]_i - y_i
ight)^2 = \|Klpha - y\|^2$$

' Theorem:
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

$$\hat{f} = rgmin_{f \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$egin{aligned} &\sum_{i=1}^n lpha_j k(x_i,x_j) - y_i \end{pmatrix}^2 &= \sum_{i=1}^n \left([Klpha]_i - y_i
ight)^2 = \|Klpha - y\|^2 \ &= lpha^\mathsf{T} K^2 lpha - 2y^\mathsf{T} K lpha + y^\mathsf{T} y \end{aligned}$$

' Theorem:
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$egin{aligned} &\sum_{i=1}^n \left(\sum_{j=1}^n lpha_j k(x_i,x_j)-y_i
ight)^2 &=\sum_{i=1}^n \left([Klpha]_i-y_i
ight)^2 = \|Klpha-y\|^2 \ &=lpha^\mathsf{T} K^2 lpha-2y^\mathsf{T} K lpha+y^\mathsf{T} y \ && \left\|\sum_{i=1}^n lpha_i k(x_i,\cdot)
ight\|_\mathcal{H}^2 &=\sum_{i=1}^n \sum_{j=1}^n lpha_i k(x_i,x_j) lpha_j \end{aligned}$$

' Theorem:
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$egin{aligned} &\sum_{i=1}^n \left(\sum_{j=1}^n lpha_j k(x_i,x_j)-y_i
ight)^2 &=\sum_{i=1}^n \left([Klpha]_i-y_i
ight)^2 = \|Klpha-y\|^2 \ &=lpha^{ op}K^2lpha-2y^{ op}Klpha+y^{ op}y \ && \left\|\sum_{i=1}^n lpha_i k(x_i,\cdot)
ight\|_{\mathcal{H}}^2 &=\sum_{i=1}^n \sum_{j=1}^n lpha_i k(x_i,x_j)lpha_j = lpha^{ op}Klpha \end{aligned}$$

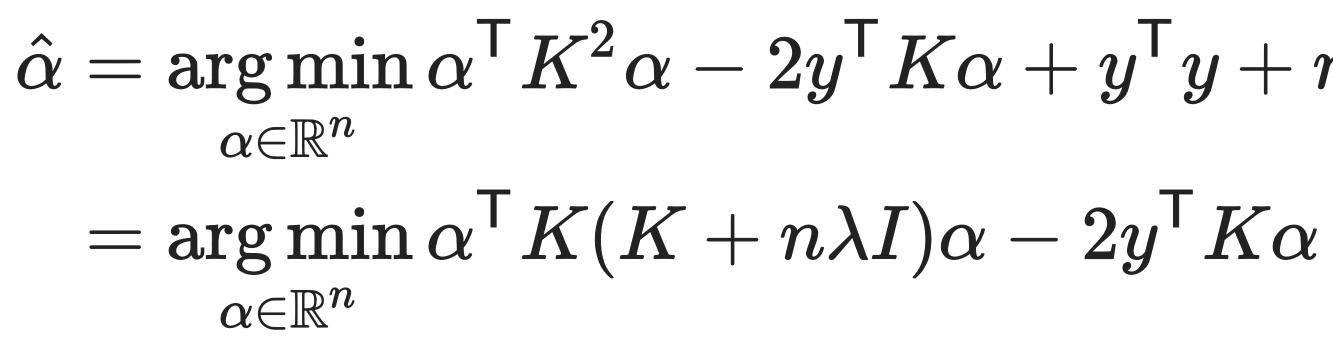
' Theorem:
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_\mathcal{H}^2$$

 $lpha \in \mathbb{R}^n$

- How to find \hat{f} ? Representer Theorem: $\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k(x_i, \cdot)$
 - $\hat{\alpha} = rgmin \alpha^{\mathsf{T}} K^2 \alpha 2y^{\mathsf{T}} K \alpha + y^{\mathsf{T}} y + n \lambda \alpha^{\mathsf{T}} K \alpha$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$



' Theorem:
$$\widehat{f} = \sum_{i=1}^n \widehat{lpha}_i k(x_i, \cdot)$$

$$2y^{\mathsf{T}}K\alpha + y^{\mathsf{T}}y + n\lambda\alpha^{\mathsf{T}}K\alpha$$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

How to find \hat{f} ? Representer

$$egin{aligned} \hat{lpha} &= rg\min lpha^{\mathsf{T}} K^2 lpha - 2 y^{\mathsf{T}} K lpha + y^{\mathsf{T}} y + n \lambda lpha^{\mathsf{T}} K lpha \ &= rg\min lpha^{\mathsf{T}} K (K + n \lambda I) lpha - 2 y^{\mathsf{T}} K lpha \ &lpha \in \mathbb{R}^n \end{aligned}$$

Setting derivative to zero satisfied by $\hat{\alpha}$

' Theorem:
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

gives
$$K(K+n\lambda I)\hat{lpha}=Ky,$$
 $=(K+n\lambda I)^{-1}y$

$$\hat{f} = rgmin_{f\in\mathcal{H}} rac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

$$egin{aligned} \hat{lpha} &= rg\min_{lpha\in\mathbb{R}^n} lpha^\mathsf{T} K^2 lpha - 2y^\mathsf{T} K lpha + y^\mathsf{T} y + n\lambda lpha^\mathsf{T} K lpha \ &= rg\min_{lpha\in\mathbb{R}^n} lpha^\mathsf{T} K (K + n\lambda I) lpha - 2y^\mathsf{T} K lpha \end{aligned}$$

Setting derivative to zero gives
$$K(K + n\lambda I)\hat{\alpha} = Ky$$
,
satisfied by $\hat{\alpha} = (K + n\lambda I)^{-1}y$
 $\hat{f}(x) = \sum_{i=1}^{n} \hat{\alpha}_{i}k(x_{i}, x) = \hat{\alpha}^{\top}k_{S}(x) = y^{\top}(K + n\lambda I)^{-1}k_{S}(x)$
 $k_{S}(x) = \begin{bmatrix} k(x_{1}, x) \\ \vdots \\ k(x_{n}, x) \end{bmatrix}$

' Theorem:
$$\hat{f} = \sum_{i=1}^n \hat{lpha}_i k(x_i, \cdot)$$

Other kernel algorithms

• Representer theorem applies if R strictly increasing:

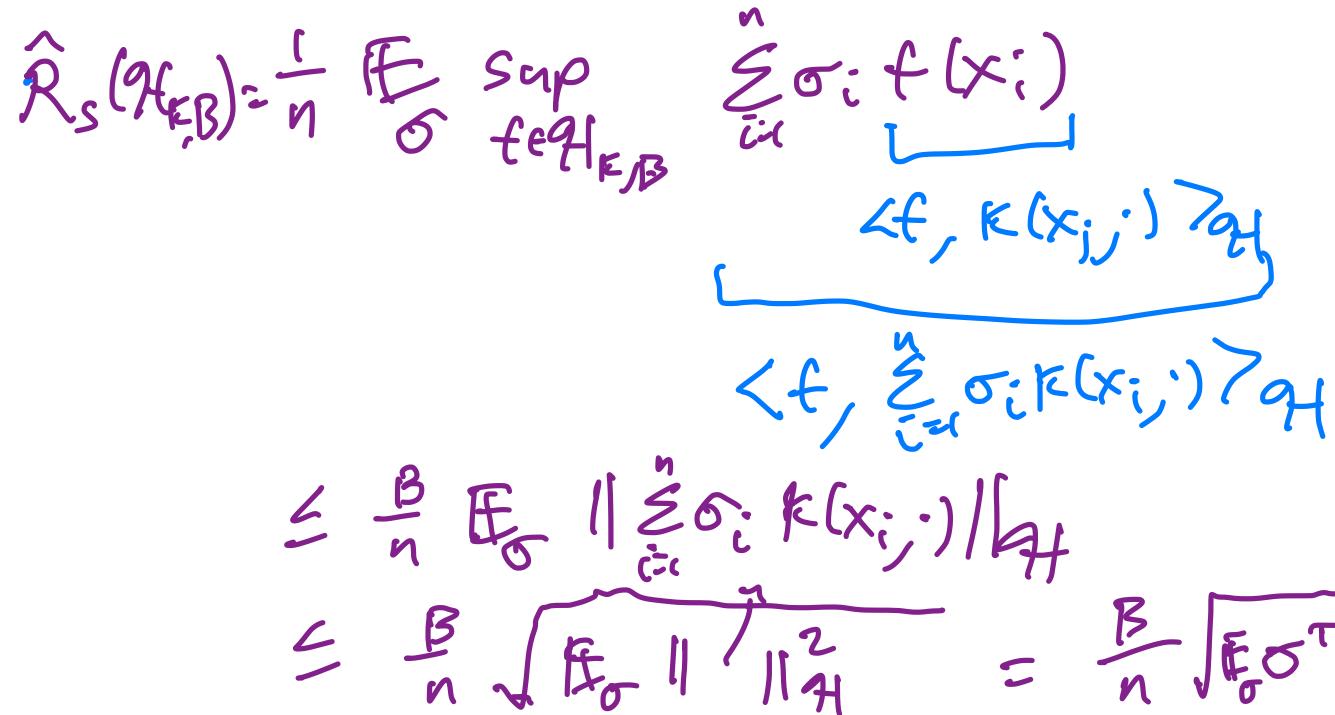
$$\min_{f\in\mathcal{H}}L(f(x_1),\cdot$$

- Classification algorithms:
- Support vector machines: L is hinge loss Kernel logistic regression: L is logistic loss • Principal component analysis, canonical correlation analysis
- Many, many more...

 $(\cdot, f(x_n)) + R(\|f\|_{\mathcal{H}})$

Rademacher complexity

- Let $\mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \le B\}$
- Let $S = (x_1, \dots, x_n)$ have kernel matrix $K \in \mathbb{R}^{n \times n}$: $K_{ii} = k(x_i, x_i)$



 $= \sum k(x_i, x_i) = Tr(k)$ $\leq B \sqrt{F_0 || / I_A} = B \sqrt{F_0 T K O} = B \sqrt{T_0 (K)} \leq BR \sqrt{T_0}$ if $k(x, x) \leq R^2$

Estimation error bounds: SVMs

• Same ramp loss analysis as before: if $\mathbb{E}k(x, x) \leq R^2$,

 $\mathscr{L}_{\mathscr{D}}^{0-1}(\hat{f}) \leq \mathscr{L}_{\mathscr{D}}^{\mathrm{ramp}}(\hat{f}) + \frac{2RB}{\sqrt{n}} + \sqrt{\frac{1}{2n}\log\frac{1}{\delta}} \text{ for } \mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \leq B\}$

Estimation error bounds: SVMs

Same ramp loss analysis as before: if
$$\mathbb{E}k(x,x) \leq R^2$$
,
 $\mathscr{L}_{\mathscr{D}}^{0-1}(\hat{f}) \leq \mathscr{L}_{\mathscr{D}}^{\mathrm{ramp}}(\hat{f}) + \frac{2RB}{\sqrt{n}} + \sqrt{\frac{1}{2n}\log\frac{1}{\delta}} \text{ for } \mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : ||f||_{\mathscr{H}_k} \leq C^{0-1}(\hat{f}) \leq C^$

• (or the version with $B = 2 \max\{\|\hat{f}\|$

$$|_{\mathcal{H}_k}, 1$$
 and a $\sqrt{\frac{1}{n} \log \log_2 \|\hat{f}\|_{\mathcal{H}_k}}$ penalty)

Estimation error bounds: SVMs

Same ramp loss analysis as before: if
$$\mathbb{E}k(x,x) \leq R^2$$
,
 $\mathscr{L}_{\mathscr{D}}^{0-1}(\hat{f}) \leq \mathscr{L}_{\mathscr{D}}^{\mathrm{ramp}}(\hat{f}) + \frac{2RB}{\sqrt{n}} + \sqrt{\frac{1}{2n}\log\frac{1}{\delta}} \text{ for } \mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : ||f||_{\mathscr{H}_k} \leq C^{0-1}(\hat{f}) \leq C^$

- (or the version with $B = 2 \max\{\|\hat{f}\|$
- Stability analysis also still works: if $Pr(k(x, x) \le R^2) = 1$,

$$|_{\mathcal{H}_k}, 1$$
 and a $\sqrt{\frac{1}{n} \log \log_2 ||\hat{f}||_{\mathcal{H}_k}}$ penalty)

Estimation error bounds: SVMs

Same ramp loss analysis as before: if
$$\mathbb{E}k(x,x) \leq R^2$$
,
 $\mathscr{L}_{\mathscr{D}}^{0-1}(\hat{f}) \leq \mathscr{L}_{\mathscr{D}}^{\mathrm{ramp}}(\hat{f}) + \frac{2RB}{\sqrt{n}} + \sqrt{\frac{1}{2n}\log\frac{1}{\delta}} \text{ for } \mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : ||f||_{\mathscr{H}_k} \leq C^{0-1}(\hat{f}) \leq C^$

- (or the version with $B = 2 \max\{\|\hat{f}\|$
- Stability analysis also still works: if Pr($\mathbb{E}_{S}[L_{\mathscr{D}}^{0-1}(\hat{f})] \leq \inf_{\|f\|_{\mathscr{H}_{k}} \leq B} L_{\mathscr{D}}^{\text{hinge}}(f) + \|f\|_{\mathscr{H}_{k}} \leq B$

$$|_{\mathcal{H}_k}, 1$$
 and a $\sqrt{\frac{1}{n} \log \log_2 \|\hat{f}\|_{\mathcal{H}_k}}$ penalty)

$$(k(x, x) \le R^2) = 1,$$

 $2RB\sqrt{\frac{2}{n}}$ for Soft-SVM with $\lambda = \frac{R}{B}\sqrt{\frac{2}{n}}$

• Assume $Pr(k(x, x) \le R^2) = 1$

- Assume $Pr(k(x, x) \le R^2) = 1$

• If targets y are bounded, say $|y| \leq BR$ for simplicity: analyzed way back in lecture 8

- Assume $Pr(k(x, x) \le R^2) = 1$
- - For $\mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \le B\}$, have $|f(x)| \le B\sqrt{k(x,x)} \le BR$

• If targets y are bounded, say $|y| \leq BR$ for simplicity: analyzed way back in lecture 8

- Assume $Pr(k(x, x) \le R^2) = 1$
- If targets y are bounded, say $|y| \leq BR$ for simplicity: analyzed way back in lecture 8 • For $\mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \le B\}$, have $|f(x)| \le B\sqrt{k(x,x)} \le BR$

 - Makes square loss effectively (4BR)-Lipschitz and bounded in $[0, 4B^2R^2]$:

- Assume $Pr(k(x, x) \le R^2) = 1$
- If targets y are bounded, say $|y| \leq BR$ for simplicity: analyzed way back in lecture 8 • For $\mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \le B\}$, have $|f(x)| \le B\sqrt{k(x,x)} \le BR$

 - Makes square loss effectively (4BR)-Lipschitz and bounded in $[0, 4B^2R^2]$: • Get that $\sup_{f \in \mathcal{H}_{k,B}} L_{\mathscr{D}}^{\mathrm{sq}}(f) - L_{S}^{\mathrm{sq}}(f) \le \frac{4B^2R^2}{\sqrt{n}} \left(1 + \sqrt{\frac{1}{2}\log\frac{1}{\delta}}\right)$

- Assume $Pr(k(x, x) \le R^2) = 1$
- If targets y are bounded, say $|y| \leq BR$ for simplicity: analyzed way back in lecture 8 • For $\mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \le B\}$, have $|f(x)| \le B\sqrt{k(x,x)} \le BR$

 - Makes square loss effectively (4BR)-Lipschitz and bounded in $[0, 4B^2R^2]$: • Get that $\sup_{f \in \mathcal{H}_{k,B}} L^{\mathrm{sq}}_{\mathcal{D}}(f) - L^{\mathrm{sq}}_{S}(f) \le \frac{4B^2R^2}{\sqrt{n}} \left(1 + \sqrt{\frac{1}{2}\log\frac{1}{\delta}}\right)$

• Stability analysis also works: if $Pr(k(x, x) \le R^2) = 1$,

- Assume $Pr(k(x, x) \le R^2) = 1$
- If targets y are bounded, say $|y| \leq BR$ for simplicity: analyzed way back in lecture 8 • For $\mathscr{H}_{k,B} = \{f \in \mathscr{H}_k : \|f\|_{\mathscr{H}_k} \le B\}$, have $|f(x)| \le B\sqrt{k(x,x)} \le BR$

 - Makes square loss effectively (4BR)-Lipschitz and bounded in $[0, 4B^2R^2]$: • Get that $\sup_{f \in \mathcal{H}_{kB}} L^{\mathrm{sq}}_{\mathscr{D}}(f) - L^{\mathrm{sq}}_{S}(f) \le \frac{4B^2R^2}{\sqrt{n}} \left(1 + \sqrt{\frac{1}{2}\log\frac{1}{\delta}}\right)$

• Stability analysis also works: if $Pr(k(x, x) \le R^2) = 1$, • $\mathbb{E}_{S}[L_{\mathscr{D}}^{\mathrm{sq}}(\hat{f})] \leq \inf_{\|f\|_{\mathscr{H}_{k}} \leq B} L_{\mathscr{D}}^{\mathrm{sq}}(f) + RB\sqrt{\frac{150}{n}} \quad \text{for KRR with } \lambda = \frac{R}{B}\sqrt{\frac{50}{3n}}$

• What about that $L_S(f)$ or $\inf_{\|f\|_{\mathscr{H}_k}} L_{\mathscr{D}}(f)$ term?

We stopped here in class. will do (most of) the rest on Monday

• What about that $L_S(f)$ or $\inf_{\|f\|_{\mathscr{H}_k}} L_{\mathscr{D}}(f)$ term?

• A continuous kernel on a compact metric space \mathscr{X} is universal if \mathscr{H}_k is dense in $C(\mathscr{X})$: for every continuous $g: \mathcal{X} \to \mathbb{R}$, every $\varepsilon > 0$, there is an $f \in \mathcal{H}_k$ with $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$ $x \in \mathcal{X}$

• What about that $L_S(f)$ or $\inf_{\|f\|_{\mathscr{H}_k}} L_{\mathscr{D}}(f)$ term?

- A continuous kernel on a compact metric space \mathscr{X} is universal if \mathscr{H}_k is dense in $C(\mathscr{X})$: for every continuous $g: \mathcal{X} \to \mathbb{R}$, every $\varepsilon > 0$, there is an $f \in \mathcal{H}_k$ with $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$ $x \in \mathcal{X}$
 - If \mathscr{X} is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13) lacksquare

• What about that $L_S(f)$ or $\inf_{\|f\|_{\mathscr{H}_k}} L_{\mathscr{D}}(f)$ term?

- A continuous kernel on a compact metric space \mathscr{X} is universal if \mathscr{H}_k is dense in $C(\mathscr{X})$: for every continuous $g: \mathcal{X} \to \mathbb{R}$, every $\varepsilon > 0$, there is an $f \in \mathcal{H}_k$ with $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$ $x \in \mathcal{X}$
 - If \mathscr{X} is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13) \bullet
 - Separates compact sets: if $X_1 \cap X_2 = \emptyset$ are compact subsets of \mathcal{X} , is an $f \in \mathcal{H}_k$ with f(x) > 0 for $x \in X_1$, f(x) < 0 for $x \in X_2$ (so VCdim = ∞)

• What about that $L_S(f)$ or $\inf_{\|f\|_{\mathscr{H}_{L}}} L_{\mathscr{D}}(f)$ term?

- A continuous kernel on a compact metric space \mathscr{X} is universal if \mathscr{H}_k is dense in $C(\mathscr{X})$: for every continuous $g: \mathcal{X} \to \mathbb{R}$, every $\varepsilon > 0$, there is an $f \in \mathcal{H}_k$ with $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$ $x \in \mathcal{X}$
 - If \mathscr{X} is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)
 - Separates compact sets: if $X_1 \cap X_2 = \emptyset$ are compact subsets of \mathcal{X} , is an $f \in \mathcal{H}_k$ with f(x) > 0 for $x \in X_1$, f(x) < 0 for $x \in X_2$ (so VCdim = ∞) • Implies that as $B \to \infty$, get $\inf_{\mathscr{K}_{k,B}} L_{S}(f) \to 0$, $\inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \to \text{Bayes error}$ if \mathscr{D} has compact support

• What about that $L_S(f)$ or $\inf_{\|f\|_{\mathscr{H}_{L}}} L_{\mathscr{D}}(f)$ term?

- A continuous kernel on a compact metric space \mathscr{X} is universal if \mathscr{H}_k is dense in $C(\mathscr{X})$: for every continuous $g: \mathcal{X} \to \mathbb{R}$, every $\varepsilon > 0$, there is an $f \in \mathcal{H}_k$ with $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$ $x \in \mathcal{X}$
 - If \mathscr{X} is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)
 - Separates compact sets: if $X_1 \cap X_2 = \emptyset$ are compact subsets of \mathcal{X} , is an $f \in \mathcal{H}_k$ with f(x) > 0 for $x \in X_1$, f(x) < 0 for $x \in X_2$ (so VCdim = ∞) • Implies that as $B \to \infty$, get $\inf_{\mathscr{K}_{k,B}} L_{S}(f) \to 0$, $\inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \to \text{Bayes error}$ if \mathscr{D} has compact support
 - Can show universality via Stone-Weierstrass, or Fourier properties

• What about that $L_S(f)$ or $\inf_{\|f\|_{\mathscr{H}_{L}}} L_{\mathscr{D}}(f)$ term?

- A continuous kernel on a compact metric space \mathscr{X} is universal if \mathscr{H}_k is dense in $C(\mathscr{X})$: for every continuous $g: \mathcal{X} \to \mathbb{R}$, every $\varepsilon > 0$, there is an $f \in \mathcal{H}_k$ with $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$ $x \in \mathcal{X}$
 - If \mathscr{X} is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)
 - Separates compact sets: if $X_1 \cap X_2 = \emptyset$ are compact subsets of \mathcal{X} , is an $f \in \mathcal{H}_k$ with f(x) > 0 for $x \in X_1$, f(x) < 0 for $x \in X_2$ (so VCdim = ∞) • Implies that as $B \to \infty$, get $\inf_{\mathscr{H}_{k,B}} L_{S}(f) \to 0$, $\inf_{\mathscr{H}_{k,B}} L_{\mathscr{D}}(f) \to \text{Bayes error}$ if \mathscr{D} has compact support
 - Can show universality via Stone-Weierstrass, or Fourier properties

•
$$\exp(x^{\mathsf{T}}y)$$
, $\exp(-\frac{1}{2\sigma^2}||x-y||^2)$, $\exp(-\frac{1}{\sigma^2}||x-y||^2)$

 $\|x - y\|$) are universal on compact subsets of \mathbb{R}^d

• What about that $L_S(f)$ or $\inf_{\|f\|_{\mathscr{H}_{L}}} L_{\mathscr{D}}(f)$ term?

- A continuous kernel on a compact metric space \mathscr{X} is universal if \mathscr{H}_k is dense in $C(\mathscr{X})$: for every continuous $g: \mathcal{X} \to \mathbb{R}$, every $\varepsilon > 0$, there is an $f \in \mathcal{H}_k$ with $||f - g||_{\infty} = \sup |f(x) - g(x)| \le \varepsilon$ $x \in \mathcal{X}$
 - If \mathscr{X} is a topological space *not* generated by a metric, there is no universal kernel (Steinwart/Christmann exercise 4.13)
 - Separates compact sets: if $X_1 \cap X_2 = \emptyset$ are compact subsets of \mathcal{X} , is an $f \in \mathcal{H}_k$ with f(x) > 0 for $x \in X_1$, f(x) < 0 for $x \in X_2$ (so VCdim = ∞) • Implies that as $B \to \infty$, get $\inf_{\mathscr{H}_{k,B}} L_{S}(f) \to 0$, $\inf_{\mathscr{H}_{k,B}} L_{\mathscr{D}}(f) \to \text{Bayes error}$ if \mathscr{D} has compact support
 - Can show universality via Stone-Weierstrass, or Fourier properties

•
$$\exp(x^{\mathsf{T}}y)$$
, $\exp(-\frac{1}{2\sigma^2}||x-y||^2)$, $\exp(-\frac{1}{\sigma^2}||x-y||^2)$

Never true for finite-dimensional kernels

 $-\|x-y\|$) are universal on compact subsets of \mathbb{R}^d

- Know that as $B \to \infty$, get $\inf_{\mathscr{K}_{k,B}} L_S(f) \to 0$, $\inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \to Bayes$ error
 - for compactly supported \mathcal{D} (can use broader notion of universality in general)

- Know that as $B \to \infty$, get $\inf_{\mathscr{K}_{k,B}} L_S(f) \to 0$, $\inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \to Bayes$ error

 - But the rate at which this happens depends on \mathscr{D}

for compactly supported \mathcal{D} (can use broader notion of universality in general)

- Know that as $B \to \infty$, get $\inf L_S(f)$ $\mathcal{H}_{k,B}$
 - for compactly supported \mathcal{D} (can use broader notion of universality in general)
 - But the rate at which this happens depends on ${\mathscr D}$
- Usually compare to the regression function $f_{\mathcal{D}}(x) = \mathbb{E}[y \mid x]$

$$\rightarrow 0, \inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \rightarrow \text{Bayes error}$$

• Know that as $B \to \infty$, get $\inf L_S(f)$ – $\mathcal{H}_{k,B}$

for compactly supported \mathcal{D} (can use broader notion of universality in general) - But the rate at which this happens depends on ${\mathscr D}$

- Usually compare to the regression function $f_{\mathcal{O}}(x) = \mathbb{E}[y \mid x]$
 - If $f_{\mathcal{D}} \in \mathcal{H}_k$, called well-specified:

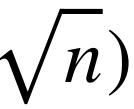
$$\rightarrow 0, \inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \rightarrow \text{Bayes error}$$

• Know that as $B \to \infty$, get $\inf L_S(f)$ – \mathcal{H}_{kB}

for compactly supported \mathcal{D} (can use broader notion of universality in general) • But the rate at which this happens depends on \mathscr{D}

- Usually compare to the regression function $f_{\mathcal{P}}(x) = \mathbb{E}[y \mid x]$
 - If $f_{\mathcal{D}} \in \mathcal{H}_k$, called well-specified: • Stability for $B = \|f_{\mathcal{D}}\|_{\mathcal{H}_k}$: $\inf_{\|f\|_{\mathcal{H}_k} \leq B} L_{\mathcal{D}}(f)$ = Bayes error, excess error $\leq \mathcal{O}(1/\sqrt{n})$

$$\rightarrow 0, \inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \rightarrow \text{Bayes error}$$



- . Know that as $B \to \infty$, get $\inf_{\mathscr{K}_{k,B}} L_S(f) = \mathscr{K}_{k,B}$

 - But the rate at which this happens depends on \mathscr{D}
- Usually compare to the regression function $f_{\mathcal{D}}(x) = \mathbb{E}[y \mid x]$
 - If $f_{\mathcal{D}} \in \mathcal{H}_k$, called well-specified: • Stability for $B = \|f_{\mathcal{D}}\|_{\mathcal{H}_k}$: $\inf_{\|f\|_{\mathcal{H}_k} \leq B} L_{\mathcal{D}}(f)$ = Bayes error, excess error $\leq \mathcal{O}(1/\sqrt{n})$

$$\rightarrow 0, \inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \rightarrow \text{Bayes error}$$

for compactly supported \mathcal{D} (can use broader notion of universality in general)

• Better rates (minimax-optimal) with "range-space condition" if $f_{\mathcal{D}}$ is "nice" in \mathscr{H}_k

- Know that as $B \to \infty$, get $\inf_{\mathscr{K}_{k,B}} L_S(f) = \mathscr{K}_{k,B}$

 - But the rate at which this happens depends on \mathscr{D}
- Usually compare to the regression function $f_{\mathcal{D}}(x) = \mathbb{E}[y \mid x]$
 - If $f_{\mathcal{D}} \in \mathcal{H}_k$, called well-specified: • Stability for $B = \|f_{\mathcal{D}}\|_{\mathscr{H}_k}$: $\inf_{\|f\|_{\mathscr{H}_k} \leq B} L_{\mathcal{D}}(f) = \text{Bayes error, excess error} \leq \mathcal{O}(1/\sqrt{n})$
 - - Pretty different style of analysis, based on $\|\hat{f} f_{\mathcal{D}}\|_{\mathcal{H}_k}$

$$\rightarrow 0, \inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \rightarrow \text{Bayes error}$$

for compactly supported \mathscr{D} (can use broader notion of universality in general)

- Better rates (minimax-optimal) with "range-space condition" if $f_{\mathcal{D}}$ is "nice" in \mathscr{H}_k

- Know that as $B \to \infty$, get $\inf_{\mathscr{K}_{k,B}} L_S(f) \mathscr{K}_{k,B}$

 - But the rate at which this happens depends on \mathscr{D}
- Usually compare to the regression function $f_{\mathcal{D}}(x) = \mathbb{E}[y \mid x]$
 - If $f_{\mathcal{D}} \in \mathcal{H}_k$, called well-specified: • Stability for $B = \|f_{\mathcal{D}}\|_{\mathscr{H}_k}$: $\inf_{\|f\|_{\mathscr{H}_k} \leq B} L_{\mathcal{D}}(f) = \text{Bayes error, excess error} \leq \mathcal{O}(1/\sqrt{n})$
 - - Pretty different style of analysis, based on $\|\hat{f} f_{\mathcal{D}}\|_{\mathcal{H}_{k}}$

$$\rightarrow 0, \inf_{\mathscr{K}_{k,B}} L_{\mathscr{D}}(f) \rightarrow \text{Bayes error}$$

for compactly supported \mathscr{D} (can use broader notion of universality in general)

- Better rates (minimax-optimal) with "range-space condition" if $f_{\mathcal{D}}$ is "nice" in \mathscr{H}_k

Misspecified case: more complicated analyses based on "approximation spaces"

• $f \sim \operatorname{GP}(m, k)$ is a random function $f : \mathscr{X} \to \mathbb{R}$ s.t., for any x_1, \dots, x_n , $\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathscr{N}\left(\begin{bmatrix} m(x_1) \\ \vdots \\ m(x_n) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix} \right)$

• $f \sim \operatorname{GP}(m, k)$ is a random function $f \colon \mathscr{X} \to \mathbb{R}$ s.t., for any x_1, \dots, x_n , $\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathscr{N} \left(\begin{bmatrix} m(x_1) \\ \vdots \\ m(x_n) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix} \right)$

- Mean function $m: \mathcal{X} \to \mathbb{R}$ can be any function; usually use 0

• $f \sim \operatorname{GP}(m, k)$ is a random function $f : \mathscr{X} \to \mathbb{R}$ s.t., for any x_1, \dots, x_n , $\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathscr{N}\left(\begin{bmatrix} m(x_1) \\ \vdots \\ m(x_n) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix} \right)$

- Mean function $m: \mathcal{X} \to \mathbb{R}$ can be any function; usually use 0 • will see that we can just shift everything by m so that this is WLOG

• $f \sim GP(m, k)$ is a **random function** $f : \mathcal{X} \to \mathbb{R}$ s.t., for any x_1, \ldots, x_n , $\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(x_1) \\ \vdots \\ m(x_n) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix} \right)$

- Mean function $m: \mathcal{X} \to \mathbb{R}$ can be any function; usually use 0 will see that we can just shift everything by m so that this is WLOG
- Covariance function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ can be any psd function, i.e. any kernel

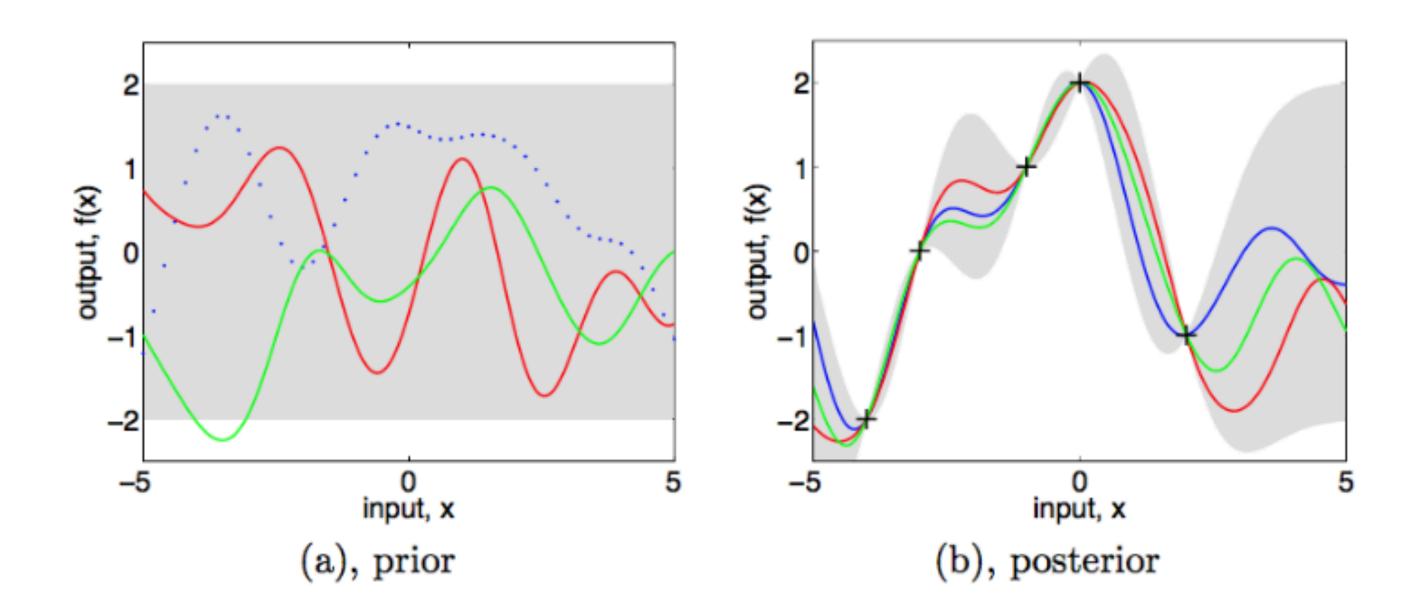
• Assume a **prior** $f \sim GP(m, k)$

- Assume a **prior** $f \sim GP(m, k)$
- Assume likelihood of observations by $y_i \sim \mathcal{N}(f(x_i), \sigma^2)$

- Assume a prior $f \sim GP(m, k)$
- Assume likelihood of observations by $y_i \sim \mathcal{N}(f(x_i), \sigma^2)$
 - $\mathbb{E}[y_i] = \mathbb{E}[f(x_i)], \quad \operatorname{Cov}(y_i, y_i) = \operatorname{Cov}(f(x_i), f(x_i)) + \sigma^2 \delta_{ii}$

- Assume a prior $f \sim GP(m, k)$
- $\mathbb{E}[y_i] = \mathbb{E}[f(x_i)], \quad \operatorname{Cov}(y_i, y_i) = \operatorname{Cov}(f(x_i), f(x_i)) + \sigma^2 \delta_{ii}$ $f \mid S \sim GP\left(\left[x \mapsto y^{\top}(K_{S} + \sigma^{2}I)^{-1}k_{S}(x)\right], \left[(x, x') \mapsto k(x, x') - k_{S}(x)^{\top}(K_{S} + \sigma^{2}I)^{-1}k_{S}(x')\right]\right)$
- Assume likelihood of observations by $y_i \sim \mathcal{N}(f(x_i), \sigma^2)$ • The **posterior** works out to be (via Kolmogorov Extension Theorem)

- Assume a prior $f \sim GP(m, k)$
- Assume likelihood of observations
 - $\mathbb{E}[y_i] = \mathbb{E}[f(x_i)], \quad \operatorname{Cov}(y_i, y_j) =$
- The **posterior** works out to be (via k $f \mid S \sim \text{GP}\left(\left[x \mapsto y^{\top}(K_S + \sigma^2 I)^{-1}k_S(x)\right]\right)$



by
$$y_i \sim \mathcal{N}(f(x_i), \sigma^2)$$

 $\operatorname{Cov}(f(x_i), f(x_j)) + \sigma^2 \delta_{ij}$
Kolmogorov Extension Theorem)
 $0], [(x, x') \mapsto k(x, x') - k_S(x)^{\top} (K_S + \sigma^2 I)^{-1} k_S(x))]$

More Gaussian Processes

- GP regression: can get posterior contraction rates
- Understanding posterior variance can be very useful!
 - e.g. Bayesian optimization / active learning / bandits / …

Look like KRR analysis for the mean, plus posterior variance decreasing

GP classifiers: usual choice corresponds to kernel logistic regression

More resources

- Foundations: Berlinet and Thomas-Agnan, <u>RKHSes in Probability and Stats</u> (2004) Including more hardcore details: Steinwart and Christmann, <u>SVMs</u> (2008)
- Ridge regression analyses:
 - <u>Smale and Zhou (2007)</u> fairly readable

 - Caponnetto and de Vito (2007) minimax rate for "mostly"-well-specified, harder • <u>Steinwart et al. (2009)</u> – minimax in Sobolev spaces
- Rasmussen and Williams, <u>Gaussian Processes for Machine Learning</u> (2006)
- Connections between kernels and GPs: Kanagawa et al. (2018) • Mean embeddings (slides after this, if we get there): Muandet et al. (2016)

This is "bonns material" we probably won't Cover

• Represent point $x \in \mathcal{X}$ as $\phi(x)$, $f(x) = \langle f, k(x, \cdot)
angle_{\mathcal{H}}$

- Represent distribution $\mathbb P$ as $\mu_\mathbb P$, $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_\mathbb P
 angle_{\mathcal H}$

- Represent point $x \in \mathcal{X}$ as $\phi(x)$, $f(x) = \langle f, k(x, \cdot)
angle_{\mathcal{H}}$

- Represent point $x \in \mathcal{X}$ as
- Represent distribution $\mathbb P$ as $\mu_\mathbb P$, $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_\mathbb P
 angle_{\mathcal H}$
 - $\mathbb{E}_{X\sim\mathbb{P}} f(X) = \mathbb{E}_{X\sim\mathbb{P}} \langle f, k(X,\cdot)
 angle_{\mathcal{H}} = \langle f, \mathbb{E}_{X\sim\mathbb{P}} \ k(X,\cdot)
 angle_{\mathcal{H}}$

$$\phi(x)$$
, $f(x) = \langle f, k(x, \cdot)
angle_{\mathcal{H}}$

- Represent point $x \in \mathcal{X}$ as
- Represent distribution $\mathbb P$ as $\mu_{\mathbb P}$, $\mathbb E_{X\sim \mathbb P} f(X) = \langle f, \mu_{\mathbb P}
 angle_{\mathcal H}$
 - $\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot) \rangle_{\mathcal{H}} = \langle f, \mathbb{E}_{X \sim \mathbb{P}} | k(X, \cdot) \rangle_{\mathcal{H}}$

$$\phi(x)$$
, $f(x) = \langle f, k(x, \cdot)
angle_{\mathcal{H}}$

- Represent point $x \in \mathcal{X}$ as
- Represent distribution $\mathbb P$ as $\mu_\mathbb P$, $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_\mathbb P
 angle_{\mathcal H}$
 - $\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot) \rangle_{\mathcal{H}} = \langle f, \mathbb{E}_{X \sim \mathbb{P}} | k(X, \cdot) \rangle_{\mathcal{H}}$
 - Last step assumed e.g

$$\phi(x)$$
, $f(x) = \langle f, k(x, \cdot)
angle_{\mathcal{H}}$

g.
$$\mathbb{E}\sqrt{k(X,X)} < \infty$$

- Represent point $x \in \mathcal{X}$ as
- Represent distribution $\mathbb P$ as $\mu_{\mathbb P}$, $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_{\mathbb P}
 angle_{\mathcal H}$

Last step assumed e.

• Okay. Why?

$$\phi(x)$$
, $f(x) = \langle f, k(x, \cdot)
angle_{\mathcal{H}}$

 $\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot) \rangle_{\mathcal{H}} = \langle f, \mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot) \rangle_{\mathcal{H}}$

g.
$$\mathbb{E}\sqrt{k(X,X)} < \infty$$

- Represent point $x \in \mathcal{X}$ as
- Represent distribution $\mathbb P$ as $\mu_{\mathbb P}$, $\mathbb E_{X\sim\mathbb P} f(X) = \langle f,\mu_{\mathbb P}
 angle_{\mathcal H}$

Last step assumed e.g

• Okay. Why?

$$\phi(x)$$
, $f(x) = \langle f, k(x, \cdot)
angle_{\mathcal{H}}$

 $\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot) \rangle_{\mathcal{H}} = \langle f, \mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot) \rangle_{\mathcal{H}}$

g.
$$\mathbb{E}\sqrt{k(X,X)} < \infty$$

One reason: ML on distributions [Szabó+ JMLR-16]

- Represent point $x \in \mathcal{X}$ as
- Represent distribution $\mathbb P$ as $\mu_{\mathbb P}$, $\mathbb E_{X\sim\mathbb P} f(X) = \langle f, \mu_{\mathbb P} \rangle_{\mathcal H}$

- Last step assumed e.g
- Okay. Why? One reason: ML on distributions [Szabó+ JMLR-16]
 - More common reason: comparing distributions

$$\phi(x)$$
, $f(x) = \langle f, k(x, \cdot)
angle_{\mathcal{H}}$

 $\mathbb{E}_{X \sim \mathbb{P}} f(X) = \mathbb{E}_{X \sim \mathbb{P}} \langle f, k(X, \cdot) \rangle_{\mathcal{H}} = \langle f, \mathbb{E}_{X \sim \mathbb{P}} k(X, \cdot) \rangle_{\mathcal{H}}$

g.
$$\mathbb{E}\sqrt{k(X,X)} < \infty$$

- $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} \mu_{\mathbb{Q}}\|_{\mathcal{H}}$ $\|f\|_{\mathcal{H}} \leq 1$
 - $\|f\|_{\mathcal{H}} \leq 1$

 $= \sup \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_{\mathcal{H}}$ $= \sup \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$

- $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} \mu_{\mathbb{Q}}\|_{\mathcal{H}}$ $\|f\|_{\mathcal{H}} \leq 1$
 - $\|f\|_{\mathcal{H}} \leq 1$
- Last line is Integral Probability Metric (IPM) form

 $= \sup \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_{\mathcal{H}}$

 $= \sup \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{O}} f(Y)$

- $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} \mu_{\mathbb{Q}}\|_{\mathcal{H}}$ $\|f\|_{\mathcal{H}} \leq 1$
 - $\|f\|_{\mathcal{H}} \leq 1$
- Last line is Integral Probability Metric (IPM) form

 $= \sup \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}} \rangle_{\mathcal{H}}$

 $= \sup \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{O}} f(Y)$

• f is called "witness function" or "critic": high on \mathbb{P} , low on \mathbb{Q}

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}}\|$ = sup $\|f\|_{\mathcal{H}}{\leq}1$

> = sup $\|f\|_{\mathcal{H}} \leq 1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on \mathbb{P} , low on \mathbb{Q}

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{O}}, k(t) \rangle$

$$- \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}}$$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

$$\langle ,\cdot
angle
angle _{\mathcal{H}}=\mathbb{E}_{\mathbb{P}}\ k(t,X)-\mathbb{E}_{\mathbb{Q}}\ k(t,Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} -$ = sup $\|f\|_{\mathcal{H}}{\leq}1$

> = sup $\|f\|_{\mathcal{H}} \leq 1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on \mathbb{P} , low on \mathbb{Q}

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{O}}, k(t_{\mathbb{P}}) \rangle$

$$- \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}}$$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

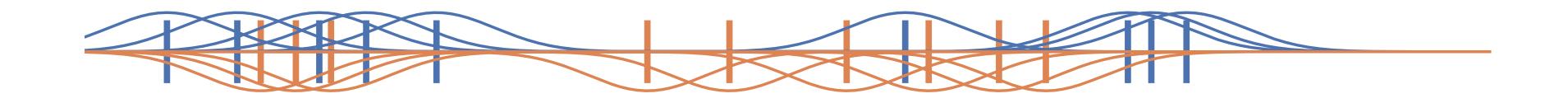
$$\langle \cdot
angle
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} \, k(t,X) - \mathbb{E}_{\mathbb{Q}} \, k(t,Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}}\|$ = sup $\|f\|_{\mathcal{H}} \leq 1$

> = sup $\|f\|_{\mathcal{H}} \leq 1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on \mathbb{P} , low on \mathbb{Q}

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{O}}, k(t) \rangle$



$$- \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}}$$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

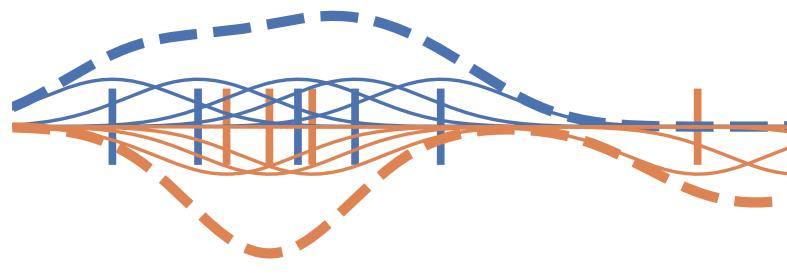
$$\langle \cdot
angle
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} \, k(t,X) - \mathbb{E}_{\mathbb{Q}} \, k(t,Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} -$ = sup $\|f\|_{\mathcal{H}} \leq 1$

> = sup $\|f\|_{\mathcal{H}} \leq 1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on \mathbb{P} , low on \mathbb{Q}

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{O}}, k(t) \rangle$



$$- \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}}$$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

$$\langle \cdot, \cdot
angle
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} k(t, X) - \mathbb{E}_{\mathbb{Q}} k(t, Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} -$ = sup $\|f\|_{\mathcal{H}}{\leq}1$

> = sup $\|f\|_{\mathcal{H}}{\leq}1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on \mathbb{P} , low on \mathbb{Q}

$$f^{*}(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, k(t, \cdot) \rangle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} k(t, X) - \mathbb{E}_{\mathbb{Q}} k(t, Y)$$

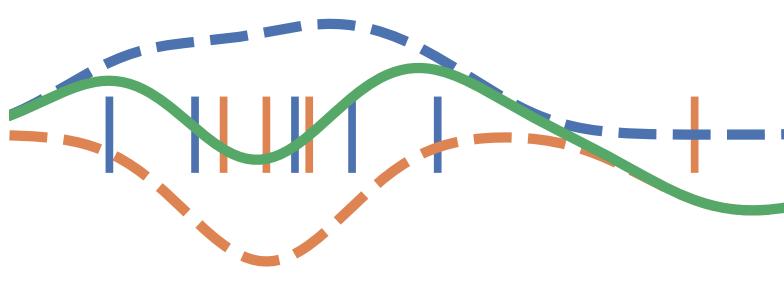
$$- \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}}$$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}$

 $= \sup \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{O}} f(Y)$ $\|f\|_{\mathcal{H}} \leq 1$

- Last line is Integral Probability Metric (IPM) form



 $= \sup \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}}$ $\|f\|_{\mathcal{H}} \leq 1$

• f is called "witness function" or "critic": high on \mathbb{P} , low on \mathbb{Q}

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{O}}, k(t, \cdot)
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} \, k(t, X) - \mathbb{E}_{\mathbb{O}} \, k(t, Y)$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}$

= sup $\|f\|_{\mathcal{H}} \leq 1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on \mathbb{P} , low on \mathbb{Q}

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{O}}, k(t) \rangle$

 $= \sup \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}}$ $\|f\|_{\mathcal{H}} \leq 1$

$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

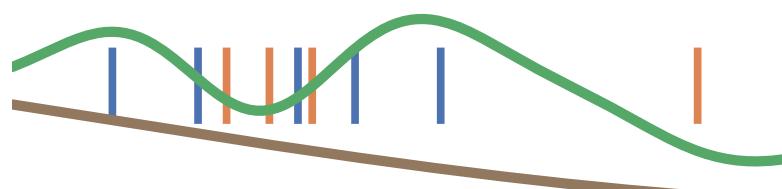
$$\langle \cdot, \cdot
angle
angle_{\mathcal{H}} = \mathbb{E}_{\mathbb{P}} \, k(t,X) - \mathbb{E}_{\mathbb{Q}} \, k(t,Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} -$ = sup $\|f\|_{\mathcal{H}}{\leq}1$

> = sup $\|f\|_{\mathcal{H}}{\leq}1$

- Last line is Integral Probability Metric (IPM) form • f is called "witness function" or "critic": high on \mathbb{P} , low on \mathbb{Q}

 $f^*(t) \propto \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, k(t)
angle$



$$- \mu_{\mathbb{Q}} \|_{\mathcal{H}} \ \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}}$$

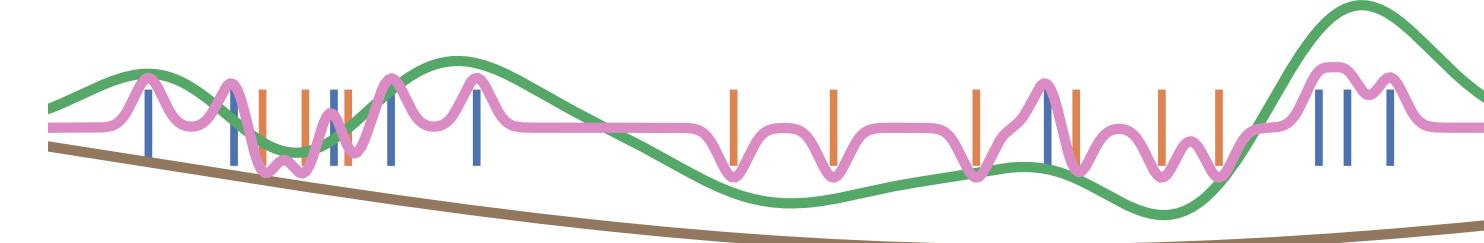
$$\mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$

$$\langle \cdot,\cdot
angle
angle_{\mathcal{H}}=\mathbb{E}_{\mathbb{P}}\,k(t,X)-\mathbb{E}_{\mathbb{Q}}\,k(t,Y)$$

 $\mathrm{MMD}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}$

 $= \sup \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{O}} f(Y)$ $\|f\|_{\mathcal{H}} \leq 1$

- Last line is Integral Probability Metric (IPM) form



 $= \sup \langle f, \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}
angle_{\mathcal{H}}$ $\|f\|_{\mathcal{H}} \leq 1$

• f is called "witness function" or "critic": high on \mathbb{P} , low on \mathbb{Q}

 $f^*(t) \propto \langle \mu_\mathbb{P} - \mu_\mathbb{O}, k(t,\cdot)
angle_\mathcal{H} = \mathbb{E}_\mathbb{P} \: k(t,X) - \mathbb{E}_\mathbb{O} \: k(t,Y)$