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Karush—Kuhn—Tucker conditions

From Wikipedia, the free encyclopedia

In mathematical optimization, the Karush—-Kuhn-Tucker (KKT) conditions, also known as the Kuhn—-Tucker conditions, are first derivative tests
(sometimes called first-order necessary conditions) for a solution in nonlinear programming to be optimal, provided that some regularity conditions
are satisfied.

 Summarize the process of going through Lagrange duality for you
* Like Lagrange multipliers, but allow inequality constraints
 Make things a lot faster once you’re familiar with them
* Related conditions for when strong duality holds
* Especially important: “Slater’s condition”
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¢ will live in a reproducing kernel Hilbert space
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Hilbert spaces
e A complete (real erecomptex) inner product space.

e |nner product space: a vector space with an inner product:
" <a1f1 + a2.f27g>7-t — 1 <f1ag>’H + Qo <f2ag>’H

. <fag>'H — <gaf>'H
= (f, f)u > 0for f#0,(0,0)3 =0

Induces a norm: || |l = +/(f, f)u

e Complete: “well-behaved” (Cauchy sequences have limits in H)

X, / XL/- X‘}/)(q/
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Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

e k: X XX — Risakernel on X if there exists a Hilbert
space ‘H and a feature map ¢ : X — H so that

k(z,y) = (¢(z), d(y))

e Roughly, k is a notion of “similarity” between inputs

o Linear kernel on R%: k(z,y) = (, y)pa
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Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(z, y) is a kernel
" by (2,9) = 7(0(2), (y))n = (V79(2), vTP(Y))n

= {
o Sum: ky(x,y) = k1(z,y) + ko (z, y) is a kernel
1\Y

.k+(w,y):<[z§ ;] [ Ey;]>’ﬂ1®%2

R ZCHACHY: ar, + SGO) Gy 2
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Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(z, y) is a kernel
» ky(z,y) = v(o(2), (y) 1 = (VTP(T), VYY) 7

o Sum: k. (113,3/) = k1 (az,y) + ko (a:,y) is a kernel
 k (2.9) = <[¢1(-’B)] [¢1(y)]>
, ¢2(T) | $2(y) H,DHo
o Isky(x,y) — ko(z,y) necessarily a kernel?
= Take k1 (z,y) =0, k2 (z,y) = 2y, « # 0.
= Then ki (z,z) — ko (z,z) = —2% < 0
= Butk(z,z) = [|¢(z)[7 = 0.
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e Equivalently: kernel matrix K is PSD

k(xi,21) k(xi,z2) ... k(z1,x,)
k(ze,x1) k(xe,z2) ... k(z2,x,)

k(xn, 1) k(z,,z2) ... k(z,,x,)
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Positive definiteness

e Asymmetric functionk : X x X — R is positive semi-definite
(psd) if forallm > 1,a4,...,a, € R", z1,...,2, € A",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

e psd functions are Hilbert space kernels
= Moore-Aronszajn Theorem; we'll come back to this
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Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd

o Products: kx (x,y) = k1(x,y)ka(z, y) is psd
= letV ~N(0,K;), W ~ N(0, K2) be independent
= Cov(V;W;,V;W;) = Cov(V;,V;) Cov(W;, W;) = kx (i, x;)
= Covariance matrices are psd, so ky is too

Schwr ‘s Theosem
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£ X 5 R ky(e,9) = F()k(e,u) f(5) ispe
= Use the feature map z — f(z)¢(x)
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Products: kx (z,y) = k1 (x,y)ka(z,y) is psd
Powers: k, (z,y) = k(zx,y)" is pd for any integer n > 0
Exponents: kexp (z,y) = exp(k(z,y)) is pd
ff: X =R kg(z,y) = f(2)k(z,y)f(y) is pd
1 5
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Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
o Products: kx (x,y) = k1(x,y)ka(z, y) is psd
o Powers: k, (z,y) = k(z,y)" is pd for any integern > 0
e Exponents: kexp (2, y) = exp(k(x,y)) is pd

CIff: X o R ky(2,y) = f(@)k(z,y)f() is pd

€X £ €X —Z €X
p(~ oz llel?) exp (—52"y) exp ( — o vl

1
= exp (— 25 [lo]2 — 22Ty + [y)*] )



Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
o Products: kx (x,y) = k1(x,y)ka(z, y) is psd
o Powers: k, (x,y) = k(z,y)" is pd for any integern. > 0
o Exponents: kexp (2, y) = exp(k(x,y)) is pd

C 1 X o R ky(2,y) = f(@)k(z,y)f() is pd

€X £ €X —Z €X
p(~ oz llel?) exp (—52"y) exp ( — o vl
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Reproducing property

e Recall original motivating example with
X=R ¢)=>1,z,2°) R’
* Kernelis k(z,y) = (¢(2), ¢(y))n = 1 + zy + z°y’

e Classifier based on linear f(a?) — (w, ¢($)>H

e f(-) is the function f itself, represented by a vector in R®
f(x) € Ris the function evaluated at a point

e Elements of H correspond to functions, f : X — R
 Reproducing prop.: f(z) = (f(-), ¢(x))y for f € H
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Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space,
its RKHS ‘H, and amap ¢ : X — H where

. k(z,y) = (6(x), o(y))n

» Elements f € H are functions on &, with

e Combining the two, we sometimes write k(z, -) = ¢(x)

e k(x,-) is the evaluation functional
An RKHS is defined by it being continuous, or

f(z)] < M| fll#
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Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

= Define (-, )y, from (k(x, ), k(y,))n, = k(z,y)
= Take H to be completion of Hy in the metric from (-, *) 4,

= Get that the reproducing property holds for k(a:, ) in H

= Can also show uniqueness

e Theorem: k is psd iff it's the reproducing kernel of an RKHS



A quick check: linear kernels
k(z,y) =z yon X = R?

If f(y Zaz T;,Y), thenf() [Ez 1aZ$Z]Ty

Closure doesn't add anything here, since R? is closed

So, linear kernel gives you RKHS of linear functions

[ flln = /301 Xy aiash(zi 2p) = |23 aizi
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More complicated: Gaussian kernels
k(z,y) = exp(5 Iz — yl%)

e ‘H is infinite-dimensional

e Functionsin H are bounded

f(x) = (£, k(z, ))n < k2, 2) || flle = || £l
HKCKJ-) by = <l 405 2y = beGox)

M%é
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More complicated: Gaussian kernels
k(z,y) = exp(5 Iz — yl%)

e H is infinite-dimensional
e Functions in ‘H are bounded:

f(x) = {f k(z, ))n < /k(z, z) || Flla = || £l

e Choice of o controls how fast functions can vary:
GIUR DR SURD PR Y
fl@+1¢) — f(z) < ||k(z +t,-) — k(@', ) |la]| £l
¢l

k(z +,7) — K, )} =2 — 2k(z,z+1t) = 2 - zexp(__)
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More complicated: Gaussian kernels
k(z,y) = exp(5 Iz — yl%)

e H is infinite-dimensional
e Functions in ’H are bounded'

f(x) = (£, k(z, ))n < v/ k@, )| flla = [ flln

e Choice of o controls how fast functions can vary:
fl@+1¢) — f(z) < ||k(z +¢t,) — k(@', ) |la]| £l
lk(z +t,-) — k(z,)|2, = 2 — 2k(z,z +1) = 2 — 2exp( 4 )

0'

e Can say lots more with Fourier properties



