Kernels

CPSC 532S: Modern Statistical Learning Theory
/ March 2022
cs.ubc.ca/~dsuth/5325/22/

https://www.cs.ubc.ca/~dsuth/532S/22/

6. d&\t ’I.'t 0

%s;/:ffﬂd/e 7 Hard SVM Duallty

min %HWH2 s.t. Vi, yw'x, > 1
w

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Hard SVM Duality

n
min %HWHZ st. Vi, yw'x; > 1 = minmax leHz + Z a(l —yw
=1

Hard SVM Duality

n
min %HWHz s.t. Vi, yyw'x; > 1 = minmax ~|lwll? + Z o (1 —yw
=1

l

= B} n
called weak (Lagrange) duality; S max min %kuz 4+ 2 a(l —yw

> for any problem 020w i=1

Hard SVM Duality

min leHz s.t. Vi, yw'x, > 1 = minmax leHZ
W 2 w aiZO 2

called weak (Lagrange) duality; . 1 9
— max min W

> for any problem >0 w
but here we have
strong duality:
it’s equal

T i a(l —yw
i=1

n
T z a(l —yw
i=1

Hard SVM Duality

n
min %HWH2 st. Vi, yw'x; > 1 = minmax leHz + Z a(l —yw x)
=1

l

called weak (Lagrange) duality;

n
— max min %HWHZ + Z a(l —yw'x)
> for any problem >0 w 1

but here we have w optimization problem is differentiable + unconstrained

strong duality:
it’s equal

Hard SVM Duality

n
min %HWH2 st. Vi, yw'x; > 1 = minmax leHz + Z a(l —yw x)
=1

l

called weak (Lagrange) duality;

n
— max min %HWHZ + Z a(l —yw'x)
> for any problem a>0 w —

but here we have w optimization problem is differentiable + unconstrained

strong duality: setting gradient to zero:

it’s equal

Hard SVM Duality

n
min %HWH2 st. Vi, yw'x; > 1 = minmax leHz + Z a(l —yw x)
=1

l

called weak (Lagrange) duality;

n
— max min %HWHZ + Z a(l —yw'x)
> for any problem a>0 w —

but here we have w optimization problem is differentiable + unconstrained

strong duality: setting gradient to zero:

n
it’s equal W =+ 2 (_alylxl) — ()
=1

Hard SVM Duality

n
min %HWH2 st. Vi, yw'x; > 1 = minmax leHz + Z a(l —yw x)
=1

l

called weak (Lagrange) duality;

n
— max min %HWHZ + Z a(l —yw'x)
> for any problem a>0 w —

but here we have w optimization problem is differentiable + unconstrained

strong duality: setting gradient to zero:

n n
it's equal W+ 2 (—ayx;) =0 W = Z AV

Hard SVM Duality

min leHz st. Vi, yw'x; > 1 = minmax —HWH2 + Z a(l —yw'x)
w 2 w o a0 2 ,

called weak (Lagrange) duality;

n
— max min —HWH2 + Z a(l —yw'x)

> for any problem >0 w -
but here we have w optimization problem is differentiable + unconstrained
o setting gradlent to zero:
strong duality: n -
it’s equal W T Z (—ayx) = ((W[ai)}ixa
i=1
=max Yot 3 X ey e
a>0 i 1]) 2 a ﬁ) U 7(. ><.\lc
X V:XKr (A\

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Hard SVM Duality

min leHz st. Vi, yw'x; > 1 = minmax —HWH2 + Z a(l —yw'x)
w 2 w o a0 2 ,

called weak (Lagrange) duality;

n
— max min —HWH2 + Z a(l —yw'x)
> for any problem a>0 w -
but here we have w optimization problem is differentiable + unconstrained

strong duality: setting gradlent to zero:

it’s equal W+ 2 (— alyle) — W = 2 d;YiA
= max a— a. = max 1Ta—1a7 dia XX ' dia o
na Z 2 Z VX O 5 g(y) X g(y)

= 1] 1 mco(OQKV\

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Hard SVM Duality

min leHz st. Vi, yw'x; > 1 = minmax —HWH2 + Z a(l —yw'x)
w 2 w o a0 2 ,

called weak (Lagrange) duality;

n
— max min —HWH2 + Z a(l —yw'x)
> for any problem a>0 w -
but here we have w optimization problem is differentiable + unconstrained

strong duality: setting gradlent to zero:

it’s equal W+ 2 (— alyle) — W = 2 d;YiA
= max a— a. — max 1'a— —aT dia XX' dia o
na Z 2 Z VX n 5 g(y) g(y)

=1 j=1
w=X"diag(y)a

Hard SVM Duality

min leHz st. Vi, yw'x; > 1 = minmax —HWH2 + Z a(l —yw'x)
w 2 w o a0 2 ,

called weak (Lagrange) duality;

n
— max min —HWH2 + Z a(l —yw'x)
> for any problem a>0 w -
but here we have w optimization problem is differentiable + unconstrained

strong duality: setting gradlent to zero:

it’s equal W+ 2 (— alyle) — W = 2 d;YiA

— 123())(Z a— 2 Z ;X x]y] = IOI:S(})(1'a— EaT diag(y)XXT dlag(y)zzd ,
=1 j=1 T ‘

w=X"diaglW)a w'x=a' dlag(y)Xx

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

X Y

S G Hard SVM Duality

min leHz st. Vi, yw'x; > 1 = minmax —HWH2 + Z a(l —yw'x)
w 2 w o a0 2 ,

called weak (Lagrange) duality;

n
— max min —HWH2 + Z a(l —yw'x)
> for any problem a>0 w -
but here we have w optimization problem is differentiable + unconstrained

strong duality: setting gradlent to zero:

it’s equal W+ 2 (— alyle) — W = 2 d;YiA

= max Z o— 2 Z ;X x]y] = max 1'a— EaT diag(y)XXT diag(y)a

> .>O
T

a; is zero if yw ' x; > 1 w=X diagl)a w'x=a diag(y)Xx

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

ft SVM Duality
So

m ()
, & 2>
T >] — 51’
VW X; >
242) £ st Vi y,
+— z l
in Aljw||” +— i
w,E

Soft SVM Duality

min A||w||? +lz Eost. Vi, yw'x,>1—-&, £>0
w,E N

= min max Allwl|>++) &+ Y a1 —ywTx, — &) = Y B&
l =1 =1

w,e a.,p.>0

Soft SVM Duality

min A||w||? +lz Eost. Vi, yw'x,>1—-&, £>0
w,E N

= min max Allwl|>++) &+ Y a1 —ywTx, — &) = Y B&
l =1 =1

Wag aiaﬂizo

= max min A||w||? +11T5 +1'a—a'diagh)Xw —a'é—-p'E
;20 w.e "

Soft SVM Duality

min A||w||? +12 Eost. Vi, yw'x,>1—-&, £>0
w,E N

= min max Allwl|>++) &+ Y a1 —ywTx, — &) = Y B&
l =1 =1

Wag aiaﬂizo

= max min A||w||? +11T5 +1'a—a'diagh)Xw —a'é—-p'E
;20 w.e "

2w — X diag(y)a = 0

Soft SVM Duality

min A||w||? +lz Eost. Vi, yw'x,>1—-&, £>0
w,E N

= min max Allwl|>++) &+ Y a1 —ywTx, — &) = Y B&
l =1 =1

Wag ai’ﬂizo

= max min A||w||? +11T§ +1'a—a'diagh)Xw —a'é—-p'E
a;piz0 w,¢ "

T 1- - - L T 1
2Aiw — X " diag(y)a =0 w = 2,1X diag(y)a

Soft SVM Duality

min A||w||? +lz Eost. Vi, yw'x,>1—-&, £>0
w,E N

= min max Allwl|>++) &+ Y a1 —ywTx, — &) = Y B&
l =1 =1

w,e a.,p.>0

= max min A||w||? +11ch +1'a—a'diagh)Xw —a'é—-p'E
a;piz0 w,¢ "

2w — XTdiag()a=0 w=--X"diagy)a -l—a-pf=0

Soft SVM Duality

min A||w||? +lz Eost. Vi, yw'x,>1—-&, £>0
w,E N

= min max Allwl|>++) &+ Y a1 —ywTx, — &) = Y B&
l =1 =1

w,e a.,p.>0

= max min A||w||? +11ch +1'a—a'diagh)Xw —a'é—-p'E
a;piz0 w,¢ "

2iw — X" diag)a =0 w=—X'diagy)a ~1-a-p=0 p=-1-a

Soft SVM Duality

min A||w]|? += 25 st. Vi, ywix, >1—=&, &3>0
WG

= min max /IHWH2 125 +206(1—YZW X; —5)—2,55

w,e a.,p.>0

= max min A||w|2+=1"¢+1Ta—a’ diag(V)Xw —a'é—B'éE
a;pi20 w,g "

2iw — X" diag)a =0 w=—X'diagy)a ~1-a-p=0 p=-1-a

— max 1Ta——a” diag(y)XX ! diag(y)a
a.>() A

Soft SVM Duality

m1nﬂHwH2+ 25 st. Vi, yw'x,>1—-¢&, £>0
WG

= min max /IHWH2 125 +206(1—YZW X; —5)—2,55

w,¢ a.,f.>0

= max min A||w|2+=1"¢+1Ta—a’ diag(V)Xw —a'é—B'éE
a;pi20 w,g "

2iw — X" diag)a =0 w=—X'diagy)a ~1-a-p=0 p=-1-a

= max 1'a— HaT diag(y)XX " diag(y)a s.t. L >
a.>() t

Soft SVM Duality

m1nﬂHwH2+ 25 st. Vi, yw'x,>1—-¢&, £>0
WG

= min max /IHWH2 125 +206(1—YZW X; —5)—2,55

w,¢ a.,f.>0

= max min A||w|2+=1"¢+1Ta—a’ diag(V)Xw —a'é—B'éE
a;pi20 w,g "

2iw — X" diag)a =0 w=—X'diagy)a ~1-a-p=0 p=-1-a

= max 1'a— HaT diag(y)XX " diag(y)a s.t. L >
a.>() t

= (21) max 1'a-— —aT diag()XX " diag(y)a

0<a; <+ ;

Soft SVM Duality

mln/IHWHZ+ 25 st. Vi, yw'x,>1—-¢&, £>0
WG

= min max /leHz 125 +206(1—YZW X; —5)—2,55

w,¢ a.,f.>0

= max min A||w||* +— lTé +1'a —a' diagy)Xw —a'é - B'E
a, >0 w,é

2iw — X" diag)a =0 w=—X'diagy)a ~1-a-p=0 p=-1-a

Only difference from hard
= 1'a——a' diag(y)XX' dia tL>a -
I?S(})(@ 4/10[g(y) gy)a s = i SVM is upper bound on a;

= (21) max 1'a-— —aT diag()XX " diag(y)a

0<a; <+ ;

Soft SVM Duality

mln/IHWHZ+ 25 st. Vi, yw'x,>1—-¢&, £>0
WG

= min max /leHz 125 +206(1—YZW X; —5)—2,55

w,¢ a.,f.>0

= max min A||w||* +— lTé +1'a —a' diagy)Xw —a'é - B'E
a, >0 w,é

2iw — X" diag)a =0 w=—X'diagy)a ~1-a-p=0 p=-1-a

Only difference from hard
= 1'a——a' diag(y)XX' dia tL>a -
I?S(})(@ 4/10[g(y) gy)a s = i SVM is upper bound on a;

= (21) max 1'a-— —aT diag()XX " diag(y)a

0<a; <+ ;

FYI

Karush—Kuhn—Tucker conditions

From Wikipedia, the free encyclopedia

In mathematical optimization, the Karush—-Kuhn-Tucker (KKT) conditions, also known as the Kuhn—-Tucker conditions, are first derivative tests
(sometimes called first-order necessary conditions) for a solution in nonlinear programming to be optimal, provided that some regularity conditions
are satisfied.

 Summarize the process of going through Lagrange duality for you
* Like Lagrange multipliers, but allow inequality constraints
 Make things a lot faster once you’re familiar with them
* Related conditions for when strong duality holds
* Especially important: “Slater’s condition”

Motivation
e Machine learning! ...but how do we actually do it?

e Linear models! f(x) = wy + wz, y(x) = sign(f(x))

Motivation
e Machine learning! ...but how do we actually do it?

e Linear models! f(x) = wy + wz, y(x) = sign(f(x))

Motivation
e Machine learning! ...but how do we actually do it?

e Linear models! f(x) = wy + wz, y(x) = sign(f(x))

ome o0 -q-... GO GNP © GO oGEDeee o @0 @GNe e

Motivation
e Machine learning! ...but how do we actually do it?
e Linear models! f(x) = wy + wz, y(x) = sign(f(x))

e Extend ...

f(z) = w' (1, 2,2°) = w' ¢(2)

Motivation
e Machine learning! ...but how do we actually do it?

e Linear models! f(z) = wy + wz, y(x) = sign(f(x))

e Extend z...
flz)=w'(1,z,2°) = w' ¢(z)
® .
“ o
% r
® (J
® @
"\. .
“~ o*’

Motivation
e Machine learning! ...but how do we actually do it?

e Linear models! f(z) = wy + wz, y(x) = sign(f(x))

e Extend ...
fz)=w'(1,z,4°) = w' ¢(z)
LY P
N o
% r
e o
® [4
. .
N o

Motivation
Machine learning! ...but how do we actually do it?
Linear models! f(x) = wy + wz, y(x) = sign(f(x))

Extend ...

f(z) = w' (1, 2,2°) = w' ¢(2)

Kernels are basically a way to study doing this with any,
potentially very complicated, ¢

Motivation
Machine learning! ...but how do we actually do it?
Linear models! f(x) = wy + wz, y(x) = sign(f(x))

Extend ...

flz) =w'(1,z,2%) = w' §(z)
Kernels are basically a way to study doing this with any,

potentially very complicated, ¢

Convenient way to make models on documents, graphs,
videos, datasets, ...

Motivation
Machine learning! ...but how do we actually do it?
Linear models! f(x) = wy + wz, y(x) = sign(f(x))

Extend ...

flz) =w'(1,z,2%) = w' §(z)
Kernels are basically a way to study doing this with any,

potentially very complicated, ¢

Convenient way to make models on documents, graphs,
videos, datasets, ...

¢ will live in a reproducing kernel Hilbert space

Hilbert spaces

e A complete (real or complex) inner product space.

Hilbert spaces
e A complete (real erecomptex) inner product space.

Hilbert spaces

e A complete (real erecomptex) inner product space.

e |nner product space: a vector space with an inner product:
" <a1f1 + a2f27g>7-t — 1 <f1ag>’H + Qo <f2ag>’H

- <f,f>H >0f0rf750, (0,0)% =0

]ﬂd <0l) b7‘R‘ & th

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Hilbert spaces

e A complete (real erecomptex) inner product space.

e |nner product space: a vector space with an inner product:
" <a1f1 + a2f27g>7-t — 1 <f1ag>’H + Qo <f2ag>’H

- <f,f>H >0f0rf750, (0,0)4 =0

Induces a norm: || |l = +/(f, f)u
Il x”qad = \,XTF

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Hilbert spaces
e A complete (real erecomptex) inner product space.

e |nner product space: a vector space with an inner product:
" <a1f1 + a2.f27g>7-t — 1 <f1ag>’H + Qo <f2ag>’H

. <fag>'H — <gaf>'H
= (f, f)u > 0for f#0,(0,0)3 =0

Induces a norm: || |l = +/(f, f)u

e Complete: “well-behaved” (Cauchy sequences have limits in H)

X, / XL/- X‘}/)(q/

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

e k: X XX — Risakernel on X if there exists a Hilbert
space ‘H and a feature map ¢ : X — H so that

k(z,y) = (¢(z), d(y))

Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

e k: X x X — Risakernel on X if there exists a Hilbert
space ‘H and a feature map ¢ : X — H so that

k(z,y) = (¢(z), d(y))

e Roughly, k is a notion of “similarity” between inputs

Kernel: an inner product between feature maps

e Call our domain X, some set
» RY, functions, distributions of graphs of images, ...

e k: X XX — Risakernel on X if there exists a Hilbert
space ‘H and a feature map ¢ : X — H so that

k(z,y) = (¢(z), d(y))

e Roughly, k is a notion of “similarity” between inputs

o Linear kernel on R%: k(z,y) = (, y)pa

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(z, y) is a kernel

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(z, y) is a kernel

» ky(z,y) = v(o(2), (y) 1 = (VTP(T), VYY) 7

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(z, y) is a kernel
» ky(z,y) = v(o(2), (y) 1 = (VTP(T), VYY) 7

o Sum:ky (113,3/) = k1 (az,y) + ko (a:,y) is a kernel

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(z, y) is a kernel
" by (2,9) = 7(0(2), (y))n = (V79(2), vTP(Y))n

= {
o Sum: ky(x,y) = k1(z,y) + ko (z, y) is a kernel
1\Y

.k+(w,y):<[z§ ;] [Ey;]>’ﬂ1®%2

R ZCHACHY: ar, + SGO) Gy 2

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(z, y) is a kernel
» ky(z,y) = v(o(2), (y) 1 = (VTP(T), VYY) 7

e Sum: ki (z,y) = ky (z, :l(j;)—F ko (;Z, E;))is a kernel
" Releny) = <[¢:($)] | Lb:(z)] >H1@H2

o Isky(xz,y) — ko (x,y) necessarily a kernel?

Building kernels from other kernels

e Scaling:ify > 0, k,(x,y) = vk(z, y) is a kernel
» ky(z,y) = v(o(2), (y) 1 = (VTP(T), VYY) 7

o Sum: k. (113,3/) = k1 (az,y) + ko (a:,y) is a kernel
 k (2.9) = <[¢1(-’B)] [¢1(y)]>
, ¢2(T) | $2(y) H,DHo
o Isky(x,y) — ko(z,y) necessarily a kernel?
= Take k1 (z,y) =0, k2 (z,y) = 2y, « # 0.
= Then ki (z,z) — ko (z,z) = —2% < 0
= Butk(z,z) = [|¢(z)[7 = 0.

Positive definiteness

e Asymmetric functionk : X x X — R is positive semi-definite
(psd) if forallm > 1,a4,...,a, € R", z1,...,2, € A",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

P %(I?osmve definiteness

e Asymmetric functionk : X x X — R is positive semi-definite
(psd) if forallm > 1,a4,...,a, € R", z1,...,2, € A",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Equivalently: kernel matrix K is PSD

k(xi,21) k(xi,z2) ... k(z1,x,)
k(ze,x1) k(xe,z2) ... k(z2,x,)

k(xn, 1) k(z,,z2) ... k(z,,x,)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Positive definiteness

e Asymmetric functionk : X x X — R is positive semi-definite
(psd) if forallm > 1,a4,...,a, € R", z1,...,2, € A",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

Positive definiteness

e Asymmetric functionk : X x X — R is positive semi-definite
(psd) if forallm > 1,a4,...,a, € R", z1,...,2, € A",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

ZZ a; p(z:), a;P(z;))u

=1 j=

Positive definiteness

e Asymmetric functionk : X x X — R is positive semi-definite

(psd) if forallm > 1,a4,...,a, € R", z1,...,2, € A",
n n
33 ek a) 2 0
i=1 j=1

e Hilbert space kernels are psd

ZZ a;d(z;),a;0(x;)) <Z a; d(x;) Zajqb T >

Z].j %

Positive definiteness

e Asymmetric functionk : X x X — R is positive semi-definite

(psd) if forallm > 1,a4,...,a, € R", z1,...,2, € A",
n n
33 asak(aa) 2 0
i=1 j=1

e Hilbert space kernels are psd

ZZ a; p(z:), a;P(z;))n

=1 j=

||
—
(]
8
©-

3
M-
8
©-

Q&R
~——

Positive definiteness

e Asymmetric functionk : X x X — R is positive semi-definite

(psd) if forallm > 1,a4,...,a, € R", z1,...,2, € A",
n n
33 asak(aa) 2 0
i=1 j=1

e Hilbert space kernels are psd

ZZ a; p(z:), a;P(z;))n

=1 j=

||
—
(]
8
©-

3
M-
8
©-

Q&R
~——

Positive definiteness

e Asymmetric functionk : X x X — R is positive semi-definite
(psd) if forallm > 1,a4,...,a, € R", z1,...,2, € A",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

Positive definiteness

e Asymmetric functionk : X x X — R is positive semi-definite
(psd) if forallm > 1,a4,...,a, € R", z1,...,2, € A",

n n

Z Z a;a;k(z;,z;) >0

i=1 j=1

e Hilbert space kernels are psd

e psd functions are Hilbert space kernels
= Moore-Aronszajn Theorem; we'll come back to this

Some more ways to build kernels

o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd

Some more ways to build kernels

o Limits: if koo (m y) = lim,, ;oo kn (x,y) exists, ks is psd

o 7}@% xz,wj) >0

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Some more ways to build kernels

o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd

Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd

o Products: kx (z,y) = k1 (x, y)ka(z,y) is psd

Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd

o Products: kx (x,y) = k1(x,y)ka(z, y) is psd
= letV ~N(0,K;), W ~ N(0, K2) be independent
= Cov(V;W;,V;W;) = Cov(V;,V;) Cov(W;, W;) = kx (i, x;)
= Covariance matrices are psd, so ky is too

Schwr ‘s Theosem

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd

o Products: kx (z,y) = k1 (z, y)ka(z,y) is psd

Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
o Products: kx (x,y) = k1(x,y)ka(z, y) is psd
o Powers: k, (z,y) = k(z,y)" is pd for any integern > 0

Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
o Products: kx (x,y) = k1(x,y)ka(z, y) is psd
o Powers: k, (x,y) = k(z,y)" is pd for any integern. > 0

.’BTy

Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
o Products: kx (x,y) = k1(x,y)ka(z, y) is psd
o Powers: k, (z,y) = k(z,y)" is pd for any integern > 0

wTy—I—c

Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
o Products: kx (x,y) = k1(x,y)ka(z, y) is psd
o Powers: k, (z,y) = k(z,y)" is pd for any integern > 0

(xTy 1+ C)n

Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
o Products: kx (x,y) = k1(x,y)ka(z, y) is psd
o Powers: k, (z,y) = k(z,y)" is pd for any integern > 0

(a:Ty + c)"’, the polynomial kernel

Some more ways to build kernels
Limits: if koo (2, y) = lim,, o0 kn (2, y) exists, ks is psd
Products: kx (z,y) = k1 (x,y)ka(z,y) is psd
Powers: k, (z,y) = k(zx,y)" is pd for any integer n > 0
Exponents: kexp (z,y) = exp(k(z,y)) is pd

Some more ways to build kernels
Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
Products: kx (z,y) = k1 (x,y)ka(z,y) is psd
Powers: k, (z,y) = k(zx,y)" is pd for any integer n > 0

Exponents: kexp (z,y) = exp(k(z,y)) is pd
¢ ey (2,9) = im0 SV o L (2,)"

Some more ways to build kernels
Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
Products: kx (z,y) = k1 (x,y)ka(z,y) is psd
Powers: k, (z,y) = k(zx,y)" is pd for any integer n > 0
Exponents: kexp (z,y) = exp(k(z,y)) is pd

Some more ways to build kernels
Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
Products: kx (z,y) = k1 (x,y)ka(z,y) is psd
Powers: k, (z,y) = k(zx,y)" is pd for any integer n > 0
Exponents: kexp (z,y) = exp(k(z,y)) is pd
ff: X =R ke(z,y) = f(z)k(z,y) f(y) is pd

Some more ways to build kernels
Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
Products: kx (z,y) = k1 (x,y)ka(z,y) is psd
Powers: k, (z,y) = k(zx,y)" is pd for any integer n > 0
Exponents: kexp (z,y) = exp(k(z,y)) is pd

£ X 5 R ky(e,9) = F()k(e,u) f(5) ispe
= Use the feature map z — f(z)¢(x)

Some more ways to build kernels
Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
Products: kx (z,y) = k1 (x,y)ka(z,y) is psd
Powers: k, (z,y) = k(zx,y)" is pd for any integer n > 0
Exponents: kexp (z,y) = exp(k(z,y)) is pd
ff: X =R ke(z,y) = f(z)k(z,y) f(y) is pd

Some more ways to build kernels
Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
Products: kx (z,y) = k1 (x,y)ka(z,y) is psd
Powers: k, (z,y) = k(zx,y)" is pd for any integer n > 0
Exponents: kexp (z,y) = exp(k(z,y)) is pd
ff: X =R ke(z,y) = f(z)k(z,y) f(y) is pd

CBTy

Some more ways to build kernels
Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
Products: kx (z,y) = k1 (x,y)ka(z,y) is psd
Powers: k, (z,y) = k(zx,y)" is pd for any integer n > 0
Exponents: kexp (z,y) = exp(k(z,y)) is pd
ff: X =R kg(z,y) = f(2)k(z,y)f(y) is pd
1 5

o2

Some more ways to build kernels
Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
Products: kx (z,y) = k1 (x,y)ka(z,y) is psd
Powers: k, (z,y) = k(zx,y)" is pd for any integer n > 0
Exponents: kexp (z,y) = exp(k(z,y)) is pd
ff: X =R ke(z,y) = f(z)k(z,y) f(y) is pd

1
exp (—2wTy)
o

Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kp (2, y) exists, ke is psd
o Products: kx (x,y) = k1 (x,y)ka(z, y) is psd
o Powers: k, (x,y) = k(z,y)" is pd for any integern > 0
o Exponents: kexp (2, y) = exp(k(x,y)) is pd

C I f: X o R ky(2,y) = f(@)k(z,y)f(y) is pd

€X £ €X —Z €X
p(~ oz llel?) exp (—52"y) exp (— o vl

Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
o Products: kx (x,y) = k1(x,y)ka(z, y) is psd
o Powers: k, (z,y) = k(z,y)" is pd for any integern > 0
e Exponents: kexp (2, y) = exp(k(x,y)) is pd

CIff: X o R ky(2,y) = f(@)k(z,y)f() is pd

€X £ €X —Z €X
p(~ oz llel?) exp (—52"y) exp (— o vl

1
= exp (— 25 [lo]2 — 22Ty + [y)*])

Some more ways to build kernels
o Limits: if koo (2, y) = lim,, o kn (2, y) exists, ks is psd
o Products: kx (x,y) = k1(x,y)ka(z, y) is psd
o Powers: k, (x,y) = k(z,y)" is pd for any integern. > 0
o Exponents: kexp (2, y) = exp(k(x,y)) is pd

C 1 X o R ky(2,y) = f(@)k(z,y)f() is pd

€X £ €X —Z €X
p(~ oz llel?) exp (—52"y) exp (— o vl

2
lz—y|

202

— exp () the Gaussian kernel

Reproducing property

e Recall original motivating example with

X=R ¢)=>1,z,2°) R’

Reproducing property

e Recall original motivating example with

X=R ¢)=>1,z,2°) R’

Reproducing property

e Recall original motivating example with
X=R ¢)=>1,z,2°) R’

e Kernelis k(z,y) = (¢(z), d(y))y = 1 + zy + z%y?

Reproducing property

e Recall original motivating example with
X=R ¢)=>1,z,2°) R’

e Kernelis k(z,y) = (¢(z), d(y))y = 1 + zy + z%y?
e Classifier based on linear f(a?) — <w7 ¢($)>H

Reproducing property

e Recall original motivating example with
X=R ¢(z)=(1,z,2z°) e R

e Kernelis k(z,y) = (¢(z), d(v))y = 1 + zy + z%y?
e Classifier based on linear f(a?) — (w, ¢($)>H

e f(-)is the function f itself, represented by a vector in R®
f(x) € Ris the function evaluated at a point

Reproducing property

e Recall original motivating example with
X=R ¢)=>1,z,2°) R’
* Kernelis k(z,y) = (¢(2), ¢(y))n = 1 + zy + z°y’

e Classifier based on linear f(a?) — (w, ¢($)>H

e f(-) is the function f itself, represented by a vector in R®
f(x) € Ris the function evaluated at a point

e Elements of H correspond to functions, f : X — R

Reproducing property

e Recall original motivating example with
X=R ¢)=>1,z,2°) R’
* Kernelis k(z,y) = (¢(2), ¢(y))n = 1 + zy + z°y’

e Classifier based on linear f(a?) — (w, ¢($)>H

e f(-) is the function f itself, represented by a vector in R®
f(x) € Ris the function evaluated at a point

e Elements of H correspond to functions, f : X — R
 Reproducing prop.: f(z) = (f(-), ¢(x))y for f € H

Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space,
its RKHS ‘H, and amap ¢ : X — H where

. k(z,y) = (6(x), o(y))n

» Elements f € H are functions on &, with

e Combining the two, we sometimes write k(z, -) = ¢(x)

Reproducing kernel Hilbert space (RKHS)

e Every psd kernel k on X defines a (unique) Hilbert space,
its RKHS ‘H, and amap ¢ : X — H where

. k(z,y) = (6(x), o(y))n

» Elements f € H are functions on &, with

e Combining the two, we sometimes write k(z, -) = ¢(x)

e k(x,-) is the evaluation functional
An RKHS is defined by it being continuous, or

f(z)] < M| fll#

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

= Define (-,)y, from (k(x,), k(y,))n, = k(z,y)

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

= Define (-,)y, from (k(x,), k(y,))n, = k(z,y)

= Take H to be completion of Hy in the metric from (-, *)#,

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

= Define (-,)y, from (k(x,), k(y,))n, = k(z,y)
= Take H to be completion of Hy in the metric from (-, *) 4,

= Get that the reproducing property holds for k(a:,) in H

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

= Define (-,)y, from (k(x,), k(y,))n, = k(z,y)
= Take H to be completion of Hy in the metric from (-, *) 4,

= Get that the reproducing property holds for k(a:,) in H

= Can also show uniqueness

Moore-Aronszajn Theorem

e Building H for a given psd k:
= Start with Hy = span({k(z,-) : ¢ € X'})

= Define (-,)y, from (k(x,), k(y,))n, = k(z,y)
= Take H to be completion of Hy in the metric from (-, *) 4,

= Get that the reproducing property holds for k(a:,) in H

= Can also show uniqueness

e Theorem: k is psd iff it's the reproducing kernel of an RKHS

A quick check: linear kernels
k(z,y) =z yon X = R?

If f(y Zaz T;,Y), thenf() [Ez 1aZ$Z]Ty

Closure doesn't add anything here, since R? is closed

So, linear kernel gives you RKHS of linear functions

[flln = /301 Xy aiash(zi 2p) = |23 aizi

More complicated: Gaussian kernels
k(z,y) = exp(5 Iz — yl%)

o ‘H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 Iz — yl%)

o ‘H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 Iz — yl%)

o ‘H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 Iz — yl%)

o ‘H is infinite-dimensional

More complicated: Gaussian kernels
k(z,y) = exp(5 Iz — yl%)

e ‘H is infinite-dimensional

@@%ﬁ

More complicated: Gaussian kernels
k(z,y) = exp(5 Iz — yl%)

e ‘H is infinite-dimensional

e Functionsin H are bounded

f(x) = (£, k(z,))n < k2, 2) || flle = || £l
HKCKJ-) by = <l 405 2y = beGox)

M%é

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

More complicated: Gaussian kernels
k(z,y) = exp(5 Iz — yl%)

e H is infinite-dimensional
e Functions in ‘H are bounded:

f(x) = {f k(z,))n < /k(z, z) || Flla = || £l

e Choice of o controls how fast functions can vary:
GIUR DR SURD PR Y
fl@+1¢) — f(z) < ||k(z +t,-) — k(@',) |la]| £l
¢l

k(z +,7) — K,)} =2 — 2k(z,z+1t) = 2 - zexp(__)

202

M%A

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

More complicated: Gaussian kernels
k(z,y) = exp(5 Iz — yl%)

e H is infinite-dimensional
e Functions in ’H are bounded'

f(x) = (£, k(z,))n < v/ k@,)| flla = [flln

e Choice of o controls how fast functions can vary:
fl@+1¢) — f(z) < ||k(z +¢t,) — k(@',) |la]| £l
lk(z +t,-) — k(z,)|2, = 2 — 2k(z,z +1) = 2 — 2exp(4)

0'

e Can say lots more with Fourier properties

