Kernels

CPSC 532S: Modern Statistical Learning Theory 7 March 2022 cs.ubc.ca/~dsuth/532S/22/

Andre at o Andre at o Hard SVM Duality

$$\min_{w} \frac{1}{2} ||w||^2 \text{ s.t. } \forall i, \ y_i w^{\mathsf{T}} x_i \ge 1$$

$$\min_{w} \frac{1}{2} ||w||^2 \text{ s.t. } \forall i, \ y_i w^{\mathsf{T}} x_i \ge 1 \quad = \min_{w} \max_{\alpha_i \ge 0} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

$$\min_{w} \frac{1}{2} ||w||^2 \text{ s.t. } \forall i, \ y_i w^{\mathsf{T}} x_i \ge 1$$

$$\min_{w} \frac{1}{2} \|w\|^2 \text{ s.t. } \forall i, \ y_i w^\top x_i \ge 1 \quad = \min_{w} \max_{\alpha_i \ge 0} \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i w^\top x_i)$$

called weak (Lagrange) duality;

$$\geq \max_{\alpha_i \geq 0} \min_{w} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

$$\min_{w} \frac{1}{2} ||w||^2 \text{ s.t. } \forall i, \ y_i w^{\mathsf{T}} x_i \ge 1$$

$$\min_{w} \frac{1}{2} \|w\|^2 \text{ s.t. } \forall i, \ y_i w^{\top} x_i \ge 1 \quad = \min_{w} \max_{\alpha_i \ge 0} \frac{1}{2} \|w\|^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\top} x_i)$$

called weak (Lagrange) duality;

$$= \max_{\alpha_i \ge 0} \min_{w} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

but here we have

strong duality:

it's equal

$$\min_{w} \frac{1}{2} \|w\|^2 \text{ s.t. } \forall i, \ y_i w^{\mathsf{T}} x_i \ge 1 \quad = \min_{w} \max_{\alpha_i \ge 0} \frac{1}{2} \|w\|^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

called weak (Lagrange) duality;

≥ for any problem

but here we have

strong duality:

it's equal

$$= \max_{\alpha_i \ge 0} \min_{w} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

w optimization problem is differentiable + unconstrained

$$\min_{w} \frac{1}{2} \|w\|^2 \text{ s.t. } \forall i, \ y_i w^{\mathsf{T}} x_i \ge 1 \quad = \min_{w} \max_{\alpha_i \ge 0} \frac{1}{2} \|w\|^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

called weak (Lagrange) duality;

≥ for any problem

but here we have strong duality:

it's equal

$$= \max_{\alpha_i \ge 0} \min_{w} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

$$\min_{w} \frac{1}{2} \|w\|^2 \text{ s.t. } \forall i, \ y_i w^\top x_i \ge 1 \quad = \min_{w} \max_{\alpha_i \ge 0} \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i w^\top x_i)$$

called weak (Lagrange) duality;

≥ for any problem

but here we have

strong duality:

it's equal

$$= \max_{\alpha_i \ge 0} \min_{w} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

$$w + \sum_{i=1}^{n} (-\alpha_i y_i x_i) = 0$$

$$\min_{w} \frac{1}{2} \|w\|^2 \text{ s.t. } \forall i, \ y_i w^\top x_i \ge 1 \quad = \min_{w} \max_{\alpha_i \ge 0} \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i (1 - y_i w^\top x_i)$$

called weak (Lagrange) duality;

≥ for any problem

but here we have

strong duality:

it's equal

$$= \max_{\alpha_i \ge 0} \min_{w} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

setting gradient to zero:
$$w + \sum_{i=1}^{n} (-\alpha_i y_i x_i) = 0 \qquad w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

$$\min_{w} \frac{1}{2} ||w||^2 \text{ s.t. } \forall i, \ y_i w^{\mathsf{T}} x_i \ge 1 = \min_{w} \max_{\alpha_i \ge 0} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

called weak (Lagrange) duality;

≥ for any problem

but here we have

strong duality:

it's equal

$$= \max_{\alpha_i \ge 0} \min_{w} \frac{1}{2} ||w||^2 + \sum_{i=1}^{\infty} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$
w optimization problem is differentiable + uncons

w optimization problem is differentiable + unconstrained

setting gradient to zero:
$$w + \sum_{i=1}^{n} (-\alpha_i y_i x_i) = 0 \quad (w \in \sum_{i=1}^{n} \alpha_i y_i x_i)^{\frac{1}{2}}$$

$$= \sum_{i=1}^{n} \alpha_i y_i x_i$$

$$= \max_{\alpha_{i} \ge 0} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} y_{i} x_{i}^{\mathsf{T}} x_{j} y_{j} \alpha_{j}$$

$$\min_{w} \frac{1}{2} ||w||^2 \text{ s.t. } \forall i, \ y_i w^{\mathsf{T}} x_i \ge 1 = \min_{w} \max_{\alpha_i \ge 0} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

called weak (Lagrange) duality;

≥ for any problem

but here we have

strong duality:

it's equal

$$= \max_{\alpha_i \ge 0} \min_{w} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

setting gradient to zero:
$$w + \sum_{i=1}^{n} (-\alpha_i y_i x_i) = 0 \qquad w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

$$= \max_{\alpha_i \geq 0} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i y_i x_i^\top x_j y_j \alpha_j = \max_{\alpha_i \geq 0} \mathbf{1}^\top \alpha - \frac{1}{2} \alpha^\top \operatorname{diag}(y) X X^\top \operatorname{diag}(y) \alpha$$

$$\min_{w} \frac{1}{2} ||w||^2 \text{ s.t. } \forall i, \ y_i w^{\mathsf{T}} x_i \ge 1 = \min_{w} \max_{\alpha_i \ge 0} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

called weak (Lagrange) duality;

≥ for any problem

but here we have

strong duality:

it's equal

$$= \max_{\alpha_i \ge 0} \min_{w} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

setting gradient to zero:
$$w + \sum_{i=1}^{n} (-\alpha_i y_i x_i) = 0 \qquad w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

$$= \max_{\alpha_i \ge 0} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i y_i x_i^\top x_j y_j \alpha_j = \max_{\alpha_i \ge 0} \mathbf{1}^\top \alpha - \frac{1}{2} \alpha^\top \operatorname{diag}(y) X X^\top \operatorname{diag}(y) \alpha$$

$$w = X^{\mathsf{T}} \operatorname{diag}(y) \alpha$$

$$\min_{w} \frac{1}{2} ||w||^2 \text{ s.t. } \forall i, \ y_i w^{\mathsf{T}} x_i \ge 1 = \min_{w} \max_{\alpha_i \ge 0} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

called weak (Lagrange) duality;

≥ for any problem

but here we have

strong duality:

it's equal

$$= \max_{\alpha_i \ge 0} \min_{w} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

setting gradient to zero:
$$w + \sum_{i=1}^{n} (-\alpha_i y_i x_i) = 0 \qquad w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

$$= \max_{\alpha_i \ge 0} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i y_i x_i^\top x_j y_j \alpha_j = \max_{\alpha_i \ge 0} \mathbf{1}^\top \alpha - \frac{1}{2} \alpha^\top \operatorname{diag}(y) X X^\top \operatorname{diag}(y) \alpha$$

$$w = X^\top \operatorname{diag}(y) \alpha \qquad w^\top x = \alpha^\top \operatorname{diag}(y) X X$$

$$\min_{w} \frac{1}{2} ||w||^{2} \text{ s.t. } \forall i, \ y_{i} w^{T} x_{i} \geq 1 = \min_{w} \max_{\alpha_{i} \geq 0} \frac{1}{2} ||w||^{2} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} w^{T} x_{i})$$

called weak (Lagrange) duality;

≥ for any problem

but here we have

strong duality:

it's equal

$$= \max_{\alpha_i \ge 0} \min_{w} \frac{1}{2} ||w||^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i w^{\mathsf{T}} x_i)$$

w optimization problem is differentiable + unconstrained

setting gradient to zero:
$$w + \sum_{i=1}^{n} (-\alpha_i y_i x_i) = 0 \qquad w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

$$= \max_{\alpha_i \ge 0} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i y_i x_i^\top x_j y_j \alpha_j = \max_{\alpha_i \ge 0} \mathbf{1}^\top \alpha - \frac{1}{2} \alpha^\top \operatorname{diag}(y) XX^\top \operatorname{diag}(y) \alpha$$

$$\alpha_i$$
 is zero if $y_i w^\mathsf{T} x_i > 1$

$$w = X^{\mathsf{T}} \operatorname{diag}(y) \alpha$$
 $w^{\mathsf{T}} x = \alpha^{\mathsf{T}} \operatorname{diag}(y) X x$

$$\min_{w,\xi} \lambda ||w||^2 + \frac{1}{n} \sum_{i} \xi_i \quad \text{s.t. } \forall i, \ y_i w^\top x_i \ge 1 - \xi_i, \ \xi_i \ge 0$$

$$\min_{w,\xi} \lambda ||w||^2 + \frac{1}{n} \sum_{i} \xi_i \quad \text{s.t. } \forall i, \ y_i w^\top x_i \ge 1 - \xi_i, \ \xi_i \ge 0$$

$$= \min_{w,\xi} \max_{\alpha_i,\beta_i \ge 0} \lambda ||w||^2 + \frac{1}{n} \sum_{i} \xi_i + \sum_{i=1}^n \alpha_i (1 - y_i w^\top x_i - \xi_i) - \sum_{i=1}^n \beta_i \xi_i$$

$$\min_{w,\xi} \lambda \|w\|^{2} + \frac{1}{n} \sum_{i} \xi_{i} \text{ s.t. } \forall i, \ y_{i} w^{\top} x_{i} \geq 1 - \xi_{i}, \ \xi_{i} \geq 0$$

$$= \min_{w,\xi} \max_{\alpha_{i},\beta_{i} \geq 0} \lambda \|w\|^{2} + \frac{1}{n} \sum_{i} \xi_{i} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} w^{\top} x_{i} - \xi_{i}) - \sum_{i=1}^{n} \beta_{i} \xi_{i}$$

$$= \max_{\alpha_{i},\beta_{i} \geq 0} \min_{w,\xi} \lambda \|w\|^{2} + \frac{1}{n} \mathbf{1}^{\top} \xi + \mathbf{1}^{\top} \alpha - \alpha^{\top} \operatorname{diag}(y) Xw - \alpha^{\top} \xi - \beta^{\top} \xi$$

$$\min_{w,\xi} \lambda ||w||^2 + \frac{1}{n} \sum_{i} \xi_i \quad \text{s.t. } \forall i, \ y_i w^\top x_i \ge 1 - \xi_i, \ \xi_i \ge 0$$

$$= \min_{w,\xi} \max_{\alpha_i,\beta_i \ge 0} \lambda ||w||^2 + \frac{1}{n} \sum_{i} \xi_i + \sum_{i=1}^n \alpha_i (1 - y_i w^\top x_i - \xi_i) - \sum_{i=1}^n \beta_i \xi_i$$

$$= \min_{w,\xi} \max_{\alpha_i,\beta_i \ge 0} \lambda ||w||^2 + \frac{1}{n} \sum_{i} \xi_i + \sum_{i=1}^n \alpha_i (1 - y_i w^\top x_i - \xi_i) - \sum_{i=1}^n \beta_i \xi_i$$

$$= \max_{\alpha_i, \beta_i \geq 0} \min_{w, \xi} \lambda ||w||^2 + \frac{1}{n} \mathbf{1}^\mathsf{T} \xi + \mathbf{1}^\mathsf{T} \alpha - \alpha^\mathsf{T} \operatorname{diag}(y) X w - \alpha^\mathsf{T} \xi - \beta^\mathsf{T} \xi$$

$$2\lambda w - X^{\mathsf{T}} \operatorname{diag}(y)\alpha = 0$$

$$\min_{w,\xi} \lambda \|w\|^{2} + \frac{1}{n} \sum_{i} \xi_{i} \quad \text{s.t. } \forall i, \ y_{i} w^{\top} x_{i} \geq 1 - \xi_{i}, \ \xi_{i} \geq 0$$

$$= \min_{w,\xi} \max_{\alpha_{i},\beta_{i} \geq 0} \lambda \|w\|^{2} + \frac{1}{n} \sum_{i} \xi_{i} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} w^{\top} x_{i} - \xi_{i}) - \sum_{i=1}^{n} \beta_{i} \xi_{i}$$

$$= \max_{\alpha_{i},\beta_{i} \geq 0} \min_{w,\xi} \lambda \|w\|^{2} + \frac{1}{n} \mathbf{1}^{\top} \xi + \mathbf{1}^{\top} \alpha - \alpha^{\top} \operatorname{diag}(y) X w - \alpha^{\top} \xi - \beta^{\top} \xi$$

$$2\lambda w - X^{\mathsf{T}} \operatorname{diag}(y)\alpha = 0 \quad w = \frac{1}{2\lambda} X^{\mathsf{T}} \operatorname{diag}(y)\alpha$$

$$\min_{w,\xi} \lambda \|w\|^{2} + \frac{1}{n} \sum_{i} \xi_{i} \quad \text{s.t.} \quad \forall i, \ y_{i} w^{\mathsf{T}} x_{i} \geq 1 - \xi_{i}, \ \xi_{i} \geq 0$$

$$= \min_{w,\xi} \max_{\alpha_{i},\beta_{i} \geq 0} \lambda \|w\|^{2} + \frac{1}{n} \sum_{i} \xi_{i} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} w^{\mathsf{T}} x_{i} - \xi_{i}) - \sum_{i=1}^{n} \beta_{i} \xi_{i}$$

$$= \max_{\alpha_{i},\beta_{i} \geq 0} \min_{w,\xi} \lambda \|w\|^{2} + \frac{1}{n} \mathbf{1}^{\mathsf{T}} \xi + \mathbf{1}^{\mathsf{T}} \alpha - \alpha^{\mathsf{T}} \operatorname{diag}(y) X w - \alpha^{\mathsf{T}} \xi - \beta^{\mathsf{T}} \xi$$

$$2\lambda w - X^{\mathsf{T}} \operatorname{diag}(y) \alpha = 0 \quad w = \frac{1}{24} X^{\mathsf{T}} \operatorname{diag}(y) \alpha \qquad \frac{1}{n} \mathbf{1} - \alpha - \beta = 0$$

$$\min_{w,\xi} \lambda ||w||^2 + \frac{1}{n} \sum_{i} \xi_i \quad \text{s.t. } \forall i, \ y_i w^\top x_i \ge 1 - \xi_i, \ \xi_i \ge 0$$

$$= \min_{w,\xi} \max_{\alpha_i,\beta_i \ge 0} \lambda ||w||^2 + \frac{1}{n} \sum_{i} \xi_i + \sum_{i=1}^n \alpha_i (1 - y_i w^\top x_i - \xi_i) - \sum_{i=1}^n \beta_i \xi_i$$

$$= \max_{\alpha_i, \beta_i \ge 0} \min_{w, \xi} \lambda ||w||^2 + \frac{1}{n} \mathbf{1}^\mathsf{T} \xi + \mathbf{1}^\mathsf{T} \alpha - \alpha^\mathsf{T} \operatorname{diag}(y) X w - \alpha^\mathsf{T} \xi - \beta^\mathsf{T} \xi$$

$$2\lambda w - X^{\mathsf{T}} \operatorname{diag}(y)\alpha = 0$$
 $w = \frac{1}{2\lambda}X^{\mathsf{T}} \operatorname{diag}(y)\alpha$ $\frac{1}{n}\mathbf{1} - \alpha - \beta = 0$ $\beta = \frac{1}{n}\mathbf{1} - \alpha$

$$\begin{aligned} & \underset{w,\xi}{\min} \ \lambda \|w\|^2 + \frac{1}{n} \sum_{i} \xi_i \quad \text{s.t.} \ \forall i, \ y_i w^\top x_i \geq 1 - \xi_i, \ \xi_i \geq 0 \\ & = \underset{w,\xi}{\min} \ \underset{\alpha_i,\beta_i \geq 0}{\max} \ \lambda \|w\|^2 + \frac{1}{n} \sum_{i} \xi_i + \sum_{i=1}^{n} \alpha_i (1 - y_i w^\top x_i - \xi_i) - \sum_{i=1}^{n} \beta_i \xi_i \\ & = \underset{\alpha_i,\beta_i \geq 0}{\max} \ \underset{w,\xi}{\min} \ \lambda \|w\|^2 + \frac{1}{n} \mathbf{1}^\top \xi + \mathbf{1}^\top \alpha - \alpha^\top \operatorname{diag}(y) X w - \alpha^\top \xi - \beta^\top \xi \\ & 2\lambda w - X^\top \operatorname{diag}(y) \alpha = 0 \quad w = \frac{1}{2\lambda} X^\top \operatorname{diag}(y) \alpha \qquad \frac{1}{n} \mathbf{1} - \alpha - \beta = 0 \quad \beta = \frac{1}{n} \mathbf{1} - \alpha \\ & = \underset{\alpha_i \geq 0}{\max} \mathbf{1}^\top \alpha - \frac{1}{4\lambda} \alpha^\top \operatorname{diag}(y) X X^\top \operatorname{diag}(y) \alpha \end{aligned}$$

$$\begin{aligned} & \min_{w,\xi} \lambda \|w\|^2 + \frac{1}{n} \sum_{i} \xi_i \quad \text{s.t. } \forall i, \ y_i w^\top x_i \geq 1 - \xi_i, \ \xi_i \geq 0 \\ & = \min_{w,\xi} \max_{\alpha_i,\beta_i \geq 0} \lambda \|w\|^2 + \frac{1}{n} \sum_{i} \xi_i + \sum_{i=1}^n \alpha_i (1 - y_i w^\top x_i - \xi_i) - \sum_{i=1}^n \beta_i \xi_i \\ & = \max_{\alpha_i,\beta_i \geq 0} \min_{w,\xi} \lambda \|w\|^2 + \frac{1}{n} \mathbf{1}^\top \xi + \mathbf{1}^\top \alpha - \alpha^\top \operatorname{diag}(y) X w - \alpha^\top \xi - \beta^\top \xi \\ & = \max_{\alpha_i,\beta_i \geq 0} \min_{w,\xi} \lambda \|w\|^2 + \frac{1}{n} \mathbf{1}^\top \xi + \mathbf{1}^\top \alpha - \alpha^\top \operatorname{diag}(y) X w - \alpha^\top \xi - \beta^\top \xi \\ & = \max_{\alpha_i \geq 0} \lambda \|w\|^2 + \frac{1}{n} \mathbf{1}^\top \xi + \mathbf{1}^\top \alpha - \alpha^\top \operatorname{diag}(y) \chi w - \alpha^\top \xi - \beta^\top \xi \\ & = \max_{\alpha_i \geq 0} \lambda \|w\|^2 + \frac{1}{n} \mathbf{1}^\top \xi + \mathbf{1}^\top \alpha - \alpha^\top \operatorname{diag}(y) \chi w - \alpha^\top \xi - \beta^\top \xi \\ & = \max_{\alpha_i \geq 0} \lambda \|w\|^2 + \frac{1}{n} \mathbf{1}^\top \xi + \mathbf{1}^\top \alpha - \alpha^\top \operatorname{diag}(y) \chi w - \alpha^\top \xi - \beta^\top \xi \\ & = \max_{\alpha_i \geq 0} \lambda \|w\|^2 + \frac{1}{n} \lambda \|w\|^2 + \frac{1}$$

$$\min_{w,\xi} \lambda \|w\|^2 + \frac{1}{n} \sum_{i} \xi_i \quad \text{s.t. } \forall i, \ y_i w^\top x_i \ge 1 - \xi_i, \ \xi_i \ge 0$$

$$= \min_{w,\xi} \max_{\alpha_i,\beta_i \ge 0} \lambda \|w\|^2 + \frac{1}{n} \sum_{i} \xi_i + \sum_{i=1}^{n} \alpha_i (1 - y_i w^\top x_i - \xi_i) - \sum_{i=1}^{n} \beta_i \xi_i$$

$$= \max_{\alpha_i, \beta_i \ge 0} \min_{w, \xi} \lambda ||w||^2 + \frac{1}{n} \mathbf{1}^\mathsf{T} \xi + \mathbf{1}^\mathsf{T} \alpha - \alpha^\mathsf{T} \operatorname{diag}(y) X w - \alpha^\mathsf{T} \xi - \beta^\mathsf{T} \xi$$

$$2\lambda w - X^{\mathsf{T}} \operatorname{diag}(y)\alpha = 0 \quad w = \frac{1}{2\lambda} X^{\mathsf{T}} \operatorname{diag}(y)\alpha \qquad \frac{1}{n} \mathbf{1} - \alpha - \beta = 0 \qquad \beta = \frac{1}{n} \mathbf{1} - \alpha$$

$$= \max_{\alpha_i \ge 0} \mathbf{1}^{\top} \alpha - \frac{1}{4\lambda} \alpha^{\top} \operatorname{diag}(y) X X^{\top} \operatorname{diag}(y) \alpha \quad \text{ s.t. } \frac{1}{n} \ge \alpha_i$$

change variables: $2\lambda \tilde{\alpha} = \alpha$

$$= (2\lambda) \max_{0 \le \tilde{\alpha}_i \le \frac{1}{2\lambda n}} \mathbf{1}^{\mathsf{T}} \tilde{\alpha} - \frac{1}{2} \tilde{\alpha}^{\mathsf{T}} \operatorname{diag}(y) X X^{\mathsf{T}} \operatorname{diag}(y) \tilde{\alpha}$$

$$\begin{aligned} & \min_{w,\xi} \lambda \|w\|^2 + \frac{1}{n} \sum_{i} \xi_{i} \quad \text{s.t. } \forall i, \ y_{i} w^{\top} x_{i} \geq 1 - \xi_{i}, \ \xi_{i} \geq 0 \\ & = \min_{w,\xi} \max_{\alpha_{i},\beta_{i} \geq 0} \lambda \|w\|^2 + \frac{1}{n} \sum_{i} \xi_{i} + \sum_{i=1}^{n} \alpha_{i} (1 - y_{i} w^{\top} x_{i} - \xi_{i}) - \sum_{i=1}^{n} \beta_{i} \xi_{i} \\ & = \max_{\alpha_{i},\beta_{i} \geq 0} \min_{w,\xi} \lambda \|w\|^2 + \frac{1}{n} \mathbf{1}^{\top} \xi + \mathbf{1}^{\top} \alpha - \alpha^{\top} \operatorname{diag}(y) Xw - \alpha^{\top} \xi - \beta^{\top} \xi \end{aligned}$$

$$2\lambda w - X^{\mathsf{T}} \operatorname{diag}(y)\alpha = 0 \quad w = \frac{1}{2\lambda} X^{\mathsf{T}} \operatorname{diag}(y)\alpha \qquad \frac{1}{n} \mathbf{1} - \alpha - \beta = 0 \qquad \beta = \frac{1}{n} \mathbf{1} - \alpha$$

$$= \max_{\alpha_i \geq 0} \mathbf{1}^{\top} \alpha - \frac{1}{4\lambda} \alpha^{\top} \operatorname{diag}(y) X X^{\top} \operatorname{diag}(y) \alpha \quad \text{s.t.} \frac{1}{n} \geq \alpha_i \quad \begin{array}{l} \text{Only difference from hard} \\ \text{SVM is upper bound on } \tilde{\alpha}_i \end{array}$$

change variables: $2\lambda \tilde{\alpha} = \alpha$

$$= (2\lambda) \max_{0 \le \tilde{\alpha}_i \le \frac{1}{2\lambda n}} \mathbf{1}^{\mathsf{T}} \tilde{\alpha} - \frac{1}{2} \tilde{\alpha}^{\mathsf{T}} \operatorname{diag}(y) X X^{\mathsf{T}} \operatorname{diag}(y) \tilde{\alpha}$$

$$\min_{w,\xi} \lambda \|w\|^2 + \frac{1}{n} \sum_{i} \xi_i \quad \text{s.t. } \forall i, \ y_i w^\top x_i \ge 1 - \xi_i, \ \xi_i \ge 0$$

$$= \min_{w,\xi} \max_{\alpha_i,\beta_i \ge 0} \lambda \|w\|^2 + \frac{1}{n} \sum_{i} \xi_i + \sum_{i=1}^{n} \alpha_i (1 - y_i w^\top x_i - \xi_i) - \sum_{i=1}^{n} \beta_i \xi_i$$

$$= \max_{\alpha_i, \beta_i \ge 0} \min_{w, \xi} \lambda ||w||^2 + \frac{1}{n} \mathbf{1}^\mathsf{T} \xi + \mathbf{1}^\mathsf{T} \alpha - \alpha^\mathsf{T} \operatorname{diag}(y) X w - \alpha^\mathsf{T} \xi - \beta^\mathsf{T} \xi$$

$$2\lambda w - X^{\mathsf{T}} \operatorname{diag}(y)\alpha = 0 \quad w = \frac{1}{2\lambda} X^{\mathsf{T}} \operatorname{diag}(y)\alpha \qquad \frac{1}{n} \mathbf{1} - \alpha - \beta = 0 \qquad \beta = \frac{1}{n} \mathbf{1} - \alpha$$

$$= \max_{\alpha_i \geq 0} \mathbf{1}^{\top} \alpha - \frac{1}{4\lambda} \alpha^{\top} \operatorname{diag}(y) X X^{\top} \operatorname{diag}(y) \alpha \quad \text{s.t.} \quad \frac{1}{n} \geq \alpha_i \quad \text{Only difference from hard} \\ \text{SVM is upper bound on } \tilde{\alpha}_i$$

change variables: $2\lambda \tilde{\alpha} = \alpha$

$$= (2\lambda) \max_{0 \le \tilde{\alpha}_i \le \frac{1}{2\lambda n}} \mathbf{1}^{\mathsf{T}} \tilde{\alpha} - \frac{1}{2} \tilde{\alpha}^{\mathsf{T}} \operatorname{diag}(y) X X^{\mathsf{T}} \operatorname{diag}(y) \tilde{\alpha}$$

Can do with b also:

add
$$\alpha^{\mathsf{T}} y = 0$$
 constraint,
set $b = w^{\mathsf{T}} x_i - y_i$ for any SV

FY

Karush-Kuhn-Tucker conditions

From Wikipedia, the free encyclopedia

In mathematical optimization, the **Karush–Kuhn–Tucker (KKT) conditions**, also known as the **Kuhn–Tucker conditions**, are first derivative tests (sometimes called first-order necessary conditions) for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied.

- Summarize the process of going through Lagrange duality for you
 - Like Lagrange multipliers, but allow inequality constraints
- Make things a lot faster once you're familiar with them
- Related conditions for when strong duality holds
 - Especially important: "Slater's condition"

- Machine learning! ...but how do we actually do it?
- ullet Linear models! $f(x)=w_0+wx$, $\hat{y}(x)= ext{sign}(f(x))$

- Machine learning! ...but how do we actually do it?
- ullet Linear models! $f(x)=w_0+wx$, $\hat{y}(x)= ext{sign}(f(x))$

- Machine learning! ...but how do we actually do it?
- ullet Linear models! $f(x)=w_0+wx$, $\hat{y}(x)= ext{sign}(f(x))$

- Machine learning! ...but how do we actually do it?
- ullet Linear models! $f(x)=w_0+wx$, $\hat{y}(x)= ext{sign}(f(x))$
- Extend x...

$$f(x) = w^\mathsf{T}(1,x,x^2) = w^\mathsf{T}\phi(x)$$

- Machine learning! ...but how do we actually do it?
- ullet Linear models! $f(x)=w_0+wx$, $\hat{y}(x)= ext{sign}(f(x))$
- Extend x...

$$f(x) = w^\mathsf{T}(1,x,x^2) = w^\mathsf{T}\phi(x)$$

- Machine learning! ...but how do we actually do it?
- ullet Linear models! $f(x)=w_0+wx$, $\hat{y}(x)= ext{sign}(f(x))$
- Extend x...

$$f(x) = w^\mathsf{T}(1,x,x^2) = w^\mathsf{T}\phi(x)$$

- Machine learning! ...but how do we actually do it?
- ullet Linear models! $f(x)=w_0+wx$, $\hat{y}(x)= ext{sign}(f(x))$
- Extend x...

$$f(x) = w^\mathsf{T}(1,x,x^2) = w^\mathsf{T}\phi(x)$$

• Kernels are basically a way to study doing this with any, potentially very complicated, ϕ

- Machine learning! ...but how do we actually do it?
- ullet Linear models! $f(x)=w_0+wx$, $\hat{y}(x)= ext{sign}(f(x))$
- Extend x...

$$f(x) = w^\mathsf{T}(1,x,x^2) = w^\mathsf{T}\phi(x)$$

- Kernels are basically a way to study doing this with any, potentially very complicated, ϕ
- Convenient way to make models on documents, graphs, videos, datasets, ...

- Machine learning! ...but how do we actually do it?
- ullet Linear models! $f(x)=w_0+wx$, $\hat{y}(x)= ext{sign}(f(x))$
- Extend x...

$$f(x) = w^\mathsf{T}(1,x,x^2) = w^\mathsf{T}\phi(x)$$

- Kernels are basically a way to study doing this with any, potentially very complicated, ϕ
- Convenient way to make models on documents, graphs, videos, datasets, ...
- ullet ϕ will live in a reproducing kernel Hilbert space

• A complete (real or complex) inner product space.

• A complete (real or complex) inner product space.

- A complete (real or complex) inner product space.
- Inner product space: a vector space with an **inner product**:

$$ullet$$
 $\langle lpha_1 f_1 + lpha_2 f_2, g
angle_{\mathcal{H}} = lpha_1 \langle f_1, g
angle_{\mathcal{H}} + lpha_2 \langle f_2, g
angle_{\mathcal{H}}$

$$ullet$$
 $\langle f,g
angle_{\mathcal{H}}=\langle g,f
angle_{\mathcal{H}}$

$$ullet$$
 $\langle f,f
angle_{\mathcal{H}}>0$ for $f
eq 0$, $\langle 0,0
angle_{\mathcal{H}}=0$

- A complete (real or complex) inner product space.
- Inner product space: a vector space with an **inner product**:

$$ullet$$
 $\langle lpha_1 f_1 + lpha_2 f_2, g
angle_{\mathcal{H}} = lpha_1 \langle f_1, g
angle_{\mathcal{H}} + lpha_2 \langle f_2, g
angle_{\mathcal{H}}$

$$ullet$$
 $\langle f,g
angle_{\mathcal{H}}=\langle g,f
angle_{\mathcal{H}}$

$$lacksquare \langle f,f
angle_{\mathcal{H}}>0$$
 for $f
eq 0$, $\langle 0,0
angle_{\mathcal{H}}=0$

- A complete (real or complex) inner product space.
- Inner product space: a vector space with an **inner product**:

$$ullet$$
 $\langle lpha_1 f_1 + lpha_2 f_2, g
angle_{\mathcal{H}} = lpha_1 \langle f_1, g
angle_{\mathcal{H}} + lpha_2 \langle f_2, g
angle_{\mathcal{H}}$

$$lack \langle f,g
angle_{\mathcal H}=\langle g,f
angle_{\mathcal H}$$

$$ullet$$
 $\langle f,f
angle_{\mathcal{H}}>0$ for $f
eq 0$, $\langle 0,0
angle_{\mathcal{H}}=0$

Induces a $\operatorname{ extbf{norm}}: \|f\|_{\mathcal{H}} = \sqrt{\langle f,f
angle_{\mathcal{H}}}$

• Complete: "well-behaved" (Cauchy sequences have limits in \mathcal{H})

- Call our domain \mathcal{X} , some set
 - lacksquare \mathbb{R}^d , functions, distributions of graphs of images, ...

- Call our domain \mathcal{X} , some set
 - lacksquare \mathbb{R}^d , functions, distributions of graphs of images, ...
- $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$ is a kernel on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a *feature map* $\phi:\mathcal{X} o\mathcal{H}$ so that

$$k(x,y) = \langle \phi(x), \phi(y)
angle_{\mathcal{H}}$$

- Call our domain \mathcal{X} , some set
 - lacksquare \mathbb{R}^d , functions, distributions of graphs of images, ...
- $k: \mathcal{X} imes \mathcal{X} o \mathbb{R}$ is a kernel on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a *feature map* $\phi: \mathcal{X} o \mathcal{H}$ so that

$$k(x,y) = \langle \phi(x), \phi(y)
angle_{\mathcal{H}}$$

ullet Roughly, $oldsymbol{k}$ is a notion of "similarity" between inputs

- Call our domain \mathcal{X} , some set
 - lacksquare \mathbb{R}^d , functions, distributions of graphs of images, ...
- $k: \mathcal{X} imes \mathcal{X} o \mathbb{R}$ is a kernel on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a *feature map* $\phi: \mathcal{X} o \mathcal{H}$ so that

$$k(x,y) = \langle \phi(x), \phi(y)
angle_{\mathcal{H}}$$

- ullet Roughly, $oldsymbol{k}$ is a notion of "similarity" between inputs
- ullet Linear kernel on \mathbb{R}^d : $k(x,y) = \langle x,y
 angle_{\mathbb{R}^d}$

ullet Scaling: if $\gamma \geq 0$, $k_{\gamma}(x,y) = \gamma k(x,y)$ is a kernel

ullet Scaling: if $\gamma \geq 0$, $k_{\gamma}(x,y) = \gamma k(x,y)$ is a kernel

•
$$k_{\gamma}(x,y)=\gamma\langle\phi(x),\phi(y)
angle_{\mathcal{H}}=\langle\sqrt{\gamma}\phi(x),\sqrt{\gamma}\phi(y)
angle_{\mathcal{H}}$$

- ullet Scaling: if $\gamma \geq 0$, $k_{\gamma}(x,y) = \gamma k(x,y)$ is a kernel
 - $k_{\gamma}(x,y)=\gamma\langle\phi(x),\phi(y)
 angle_{\mathcal{H}}=\langle\sqrt{\gamma}\phi(x),\sqrt{\gamma}\phi(y)
 angle_{\mathcal{H}}$
- ullet Sum: $k_+(x,y)=k_1(x,y)+k_2(x,y)$ is a kernel

- ullet Scaling: if $\gamma \geq 0$, $k_{\gamma}(x,y) = \gamma k(x,y)$ is a kernel
 - $k_{\gamma}(x,y)=\gamma\langle\phi(x),\phi(y)
 angle_{\mathcal{H}}=\langle\sqrt{\gamma}\phi(x),\sqrt{\gamma}\phi(y)
 angle_{\mathcal{H}}$
- ullet Sum: $k_+(x,y)=k_1(x,y)+k_2(x,y)$ is a kernel

$$lacksquare k_+(x,y) = \left\langle egin{bmatrix} \phi_1(x) \ \phi_2(x) \end{bmatrix}, egin{bmatrix} \phi_1(y) \ \phi_2(y) \end{bmatrix}
ight
angle_{\mathcal{H}_1 \oplus \mathcal{H}_2}$$

- ullet Scaling: if $\gamma \geq 0$, $k_{\gamma}(x,y) = \gamma k(x,y)$ is a kernel
 - $lacksquare k_{\gamma}(x,y) = \gamma \langle \phi(x), \phi(y)
 angle_{\mathcal{H}} = \langle \sqrt{\gamma} \phi(x), \sqrt{\gamma} \phi(y)
 angle_{\mathcal{H}}$
- ullet Sum: $k_+(x,y)=k_1(x,y)+k_2(x,y)$ is a kernel

$$ullet k_+(x,y) = \left\langle egin{bmatrix} \phi_1(x) \ \phi_2(x) \end{bmatrix}, egin{bmatrix} \phi_1(y) \ \phi_2(y) \end{bmatrix}
ight
angle_{\mathcal{H}_1 \oplus \mathcal{H}_2}$$

• Is $k_1(x,y)-k_2(x,y)$ necessarily a kernel?

- ullet Scaling: if $\gamma \geq 0$, $k_{\gamma}(x,y) = \gamma k(x,y)$ is a kernel
 - $k_{\gamma}(x,y)=\gamma\langle\phi(x),\phi(y)
 angle_{\mathcal{H}}=\langle\sqrt{\gamma}\phi(x),\sqrt{\gamma}\phi(y)
 angle_{\mathcal{H}}$
- ullet Sum: $k_+(x,y)=k_1(x,y)+k_2(x,y)$ is a kernel

$$ullet k_+(x,y) = \left\langle egin{bmatrix} \phi_1(x) \ \phi_2(x) \end{bmatrix}, egin{bmatrix} \phi_1(y) \ \phi_2(y) \end{bmatrix}
ight
angle_{\mathcal{H}_1 \oplus \mathcal{H}_2}$$

- Is $k_1(x,y)-k_2(x,y)$ necessarily a kernel?
 - lacksquare Take $k_1(x,y)=0$, $k_2(x,y)=xy$, x
 eq 0.
 - lacksquare Then $k_1(x,x)-k_2(x,x)=-x^2<0$
 - lacksquare But $k(x,x)=\|\phi(x)\|_{\mathcal{H}}^2\geq 0.$

• A symmetric function $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$ is *positive semi-definite* (psd) if for all $n\geq 1, a_1,\ldots,a_n\in\mathbb{R}^n$, $x_1,\ldots,x_n\in\mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i,x_j) \geq 0$$

Positive definiteness

• A symmetric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive semi-definite (psd) if for all $n \geq 1$, $a_1, \ldots, a_n \in \mathbb{R}^n$, $x_1, \ldots, x_n \in \mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i,x_j) \geq 0$$

ullet Equivalently: $kernel\ matrix\ oldsymbol{K}$ is PSD

$$K := egin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & \dots & k(x_1, x_n) \ k(x_2, x_1) & k(x_2, x_2) & \dots & k(x_2, x_n) \ dots & dots & \ddots & dots \ k(x_n, x_1) & k(x_n, x_2) & \dots & k(x_n, x_n) \end{bmatrix}$$

• A symmetric function $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$ is *positive semi-definite* (psd) if for all $n\geq 1, a_1,\ldots,a_n\in\mathbb{R}^n$, $x_1,\ldots,x_n\in\mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i,x_j) \geq 0$$

• A symmetric function $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$ is *positive semi-definite* (psd) if for all $n\geq 1, a_1,\ldots,a_n\in\mathbb{R}^n$, $x_1,\ldots,x_n\in\mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i,x_j) \geq 0$$

$$\sum_{i=1}^n \sum_{j=1}^n \langle a_i \phi(x_i), a_j \phi(x_j)
angle_{\mathcal{H}}$$

• A symmetric function $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$ is *positive semi-definite* (psd) if for all $n\geq 1, a_1,\ldots,a_n\in\mathbb{R}^n$, $x_1,\ldots,x_n\in\mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i,x_j) \geq 0$$

$$\sum_{i=1}^n \sum_{j=1}^n \langle a_i \phi(x_i), a_j \phi(x_j)
angle_{\mathcal{H}} = \left\langle \sum_{i=1}^n a_i \phi(x_i), \sum_{j=1}^n a_j \phi(x_j)
ight
angle_{\mathcal{H}}$$

• A symmetric function $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$ is *positive semi-definite* (psd) if for all $n\geq 1, a_1,\ldots,a_n\in\mathbb{R}^n$, $x_1,\ldots,x_n\in\mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i,x_j) \geq 0$$

$$egin{aligned} \sum_{i=1}^n \sum_{j=1}^n \langle a_i \phi(x_i), a_j \phi(x_j)
angle_{\mathcal{H}} &= \left\langle \sum_{i=1}^n a_i \phi(x_i), \sum_{j=1}^n a_j \phi(x_j)
ight
angle_{\mathcal{H}} \ &= \left\| \sum_{i=1}^n a_i \phi(x_i)
ight\|_{\mathcal{H}}^2 \end{aligned}$$

• A symmetric function $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$ is *positive semi-definite* (psd) if for all $n\geq 1, a_1,\ldots,a_n\in\mathbb{R}^n$, $x_1,\ldots,x_n\in\mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i,x_j) \geq 0$$

$$egin{aligned} \sum_{i=1}^n \sum_{j=1}^n \langle a_i \phi(x_i), a_j \phi(x_j)
angle_{\mathcal{H}} &= \left\langle \sum_{i=1}^n a_i \phi(x_i), \sum_{j=1}^n a_j \phi(x_j)
ight
angle_{\mathcal{H}} \ &= \left\| \sum_{i=1}^n a_i \phi(x_i)
ight\|_{\mathcal{H}}^2 \geq 0 \end{aligned}$$

• A symmetric function $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$ is *positive semi-definite* (psd) if for all $n\geq 1, a_1,\ldots,a_n\in\mathbb{R}^n$, $x_1,\ldots,x_n\in\mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i,x_j) \geq 0$$

• A symmetric function $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$ is *positive semi-definite* (psd) if for all $n\geq 1, a_1,\ldots,a_n\in\mathbb{R}^n$, $x_1,\ldots,x_n\in\mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i,x_j) \geq 0$$

- Hilbert space kernels are psd
- psd functions are Hilbert space kernels
 - Moore-Aronszajn Theorem; we'll come back to this

ullet Limits: if $k_\infty(x,y)=\lim_{n o\infty}k_n(x,y)$ exists, k_∞ is psd

ullet Limits: if $k_{\infty}(x,y)=\lim_{n
ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd

$$=\lim_{n o\infty}\sum_{i=1}^m\sum_{j=1}^m a_ia_jk_n(x_i,x_j)\geq 0$$

ullet Limits: if $k_\infty(x,y)=\lim_{n o\infty}k_n(x,y)$ exists, k_∞ is psd

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
 - lacksquare Let $V \sim \mathcal{N}(0,K_1)$, $W \sim \mathcal{N}(0,K_2)$ be independent
 - $lacksquare \operatorname{Cov}(V_iW_i,V_jW_j) = \operatorname{Cov}(V_i,V_j)\operatorname{Cov}(W_i,W_j) = k_ imes(x_i,x_j)$
 - lacktriangle Covariance matrices are psd, so $k_{ imes}$ is too

Schur's Theorem

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n o\infty}k_n(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$ $x^{\mathsf{T}}y$

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$ $x^{\mathsf{T}}y+c$

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$ $(x^{\mathsf{T}}y+c)^n$

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$ $(x^{\mathsf{T}}y+c)^n$, the polynomial kernel

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- ullet Exponents: $k_{
 m exp}(x,y)=\exp(k(x,y))$ is pd

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- ullet Exponents: $k_{
 m exp}(x,y)=\exp(k(x,y))$ is pd
 - $k_{ ext{exp}}(x,y) = \lim_{N o \infty} \sum_{n=0}^N rac{1}{n!} k(x,y)^n$

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- ullet Exponents: $k_{
 m exp}(x,y)=\exp(k(x,y))$ is pd

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- ullet Exponents: $k_{
 m exp}(x,y)=\exp(k(x,y))$ is pd
- ullet If $f:\mathcal{X} o\mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- ullet Exponents: $k_{
 m exp}(x,y)=\exp(k(x,y))$ is pd
- ullet If $f:\mathcal{X} o\mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd
 - lacksquare Use the feature map $x\mapsto f(x)\phi(x)$

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n o\infty}k_n(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- ullet Exponents: $k_{
 m exp}(x,y)=\exp(k(x,y))$ is pd
- ullet If $f: \mathcal{X}
 ightarrow \mathbb{R}$, $k_f(x,y) = f(x)k(x,y)f(y)$ is pd

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n o\infty}k_n(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- ullet Exponents: $k_{
 m exp}(x,y)=\exp(k(x,y))$ is pd
- ullet If $f:\mathcal{X} o\mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd

$$x^{\mathsf{T}}y$$

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- ullet Exponents: $k_{
 m exp}(x,y)=\exp(k(x,y))$ is pd
- ullet If $f: \mathcal{X}
 ightarrow \mathbb{R}$, $k_f(x,y) = f(x)k(x,y)f(y)$ is pd

$$\frac{1}{\sigma^2}x^\mathsf{T}y$$

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- ullet Exponents: $k_{
 m exp}(x,y)=\exp(k(x,y))$ is pd
- ullet If $f: \mathcal{X}
 ightarrow \mathbb{R}$, $k_f(x,y) = f(x)k(x,y)f(y)$ is pd

$$\exp\left(\frac{1}{\sigma^2}x^\mathsf{T}y\right)$$

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- ullet Exponents: $k_{
 m exp}(x,y)=\exp(k(x,y))$ is pd
- ullet If $f: \mathcal{X}
 ightarrow \mathbb{R}$, $k_f(x,y) = f(x)k(x,y)f(y)$ is pd

$$\exp\Big(-\frac{1}{2\sigma^2}\|x\|^2\Big)\exp\Big(\frac{1}{\sigma^2}x^\mathsf{T}y\Big)\exp\Big(-\frac{1}{2\sigma^2}\|y\|^2\Big)$$

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- ullet Exponents: $k_{
 m exp}(x,y)=\exp(k(x,y))$ is pd
- ullet If $f:\mathcal{X} o\mathbb{R}$, $k_f(x,y)=f(x)k(x,y)f(y)$ is pd

$$\exp\Big(-rac{1}{2\sigma^2}\|x\|^2\Big)\exp\Big(rac{1}{\sigma^2}x^\mathsf{T}y\Big)\exp\Big(-rac{1}{2\sigma^2}\|y\|^2\Big)$$

$$=\exp\Big(-rac{1}{2\sigma^2}ig[\|x\|^2-2x^\mathsf{T}y+\|y\|^2ig]\Big)$$

- ullet Limits: if $k_{\infty}(x,y)=\lim_{n
 ightarrow\infty}k_{n}(x,y)$ exists, k_{∞} is psd
- ullet Products: $k_ imes(x,y)=k_1(x,y)k_2(x,y)$ is psd
- ullet Powers: $k_n(x,y)=k(x,y)^n$ is pd for any integer $n\geq 0$
- ullet Exponents: $k_{
 m exp}(x,y)=\exp(k(x,y))$ is pd
- ullet If $f: \mathcal{X}
 ightarrow \mathbb{R}$, $k_f(x,y) = f(x)k(x,y)f(y)$ is pd

$$\exp\Big(-\frac{1}{2\sigma^2}\|x\|^2\Big)\exp\Big(\frac{1}{\sigma^2}x^\mathsf{T}y\Big)\exp\Big(-\frac{1}{2\sigma^2}\|y\|^2\Big)$$

$$=\exp\Big(-rac{\|x-y\|^2}{2\sigma^2}\Big)$$
, the Gaussian kernel

$$\mathcal{X} = \mathbb{R} \qquad \phi(x) = (1, x, x^2) \in \mathbb{R}^3$$

$$\mathcal{X} = \mathbb{R} \qquad \phi(x) = (1, x, x^2) \in \mathbb{R}^3$$

Recall original motivating example with

$$\mathcal{X} = \mathbb{R} \qquad \phi(x) = (1, x, x^2) \in \mathbb{R}^3$$

ullet Kernel is $k(x,y)=\langle \phi(x),\phi(y)
angle_{\mathcal{H}}=1+xy+x^2y^2$

$$\mathcal{X} = \mathbb{R} \qquad \phi(x) = (1,x,x^2) \in \mathbb{R}^3$$

- ullet Kernel is $k(x,y)=\langle \phi(x),\phi(y)
 angle_{\mathcal{H}}=1+xy+x^2y^2$
- ullet Classifier based on linear $f(x) = \langle w, \phi(x)
 angle_{\mathcal{H}}$

$$\mathcal{X} = \mathbb{R} \qquad \phi(x) = (1, x, x^2) \in \mathbb{R}^3$$

- ullet Kernel is $k(x,y)=\langle \phi(x),\phi(y)
 angle_{\mathcal{H}}=1+xy+x^2y^2$
- ullet Classifier based on linear $f(x) = \langle w, \phi(x)
 angle_{\mathcal{H}}$
- $f(\cdot)$ is the function f itself, represented by a vector in \mathbb{R}^3 $f(x) \in \mathbb{R}$ is the function evaluated at a point x

$$\mathcal{X} = \mathbb{R} \qquad \phi(x) = (1,x,x^2) \in \mathbb{R}^3$$

- ullet Kernel is $k(x,y)=\langle \phi(x),\phi(y)
 angle_{\mathcal{H}}=1+xy+x^2y^2$
- ullet Classifier based on linear $f(x) = \langle w, \phi(x)
 angle_{\mathcal{H}}$
- $f(\cdot)$ is the function f itself, represented by a vector in \mathbb{R}^3 $f(x) \in \mathbb{R}$ is the function evaluated at a point x
- ullet Elements of ${\mathcal H}$ correspond to ${ t functions}, f:{\mathcal X} o{\mathbb R}$

$$\mathcal{X} = \mathbb{R} \qquad \phi(x) = (1,x,x^2) \in \mathbb{R}^3$$

- ullet Kernel is $k(x,y)=\langle \phi(x),\phi(y)
 angle_{\mathcal{H}}=1+xy+x^2y^2$
- ullet Classifier based on linear $f(x) = \langle w, \phi(x)
 angle_{\mathcal{H}}$
- $f(\cdot)$ is the function f itself, represented by a vector in \mathbb{R}^3 $f(x) \in \mathbb{R}$ is the function evaluated at a point x
- ullet Elements of ${\mathcal H}$ correspond to ${ t functions}, f:{\mathcal X} o{\mathbb R}$
- ullet Reproducing prop.: $f(x) = \langle f(\cdot), \phi(x)
 angle_{\mathcal{H}}$ for $f \in \mathcal{H}$

Reproducing kernel Hilbert space (RKHS)

• Every psd kernel k on $\mathcal X$ defines a (unique) Hilbert space, its RKHS $\mathcal H$, and a map $\phi:\mathcal X\to\mathcal H$ where

$$ullet$$
 $k(x,y) = \langle \phi(x), \phi(y)
angle_{\mathcal{H}}$

lacksquare Elements $f\in\mathcal{H}$ are functions on \mathcal{X} , with

$$f(x) = \langle f, \phi(x)
angle_{\mathcal{H}}$$

ullet Combining the two, we sometimes write $k(x,\cdot)=\phi(x)$

Reproducing kernel Hilbert space (RKHS)

• Every psd kernel k on $\mathcal X$ defines a (unique) Hilbert space, its RKHS $\mathcal H$, and a map $\phi:\mathcal X\to\mathcal H$ where

$$ullet k(x,y) = \langle \phi(x), \phi(y)
angle_{\mathcal{H}}$$

lacksquare Elements $f\in\mathcal{H}$ are functions on \mathcal{X} , with

$$f(x) = \langle f, \phi(x)
angle_{\mathcal{H}}$$

- ullet Combining the two, we sometimes write $k(x,\cdot)=\phi(x)$
- $k(x,\cdot)$ is the evaluation functional An RKHS is defined by it being *continuous*, or

$$|f(x)| \leq M_x \|f\|_{\mathcal{H}}$$

- Building ${\cal H}$ for a given psd k:
 - ullet Start with $\mathcal{H}_0 = \operatorname{span}(\{k(x,\cdot): x \in \mathcal{X}\})$

- Building ${\cal H}$ for a given psd k:
 - lacksquare Start with $\mathcal{H}_0 = \mathrm{span}(\{k(x,\cdot): x \in \mathcal{X}\})$
 - lacksquare Define $\langle\cdot,\cdot
 angle_{\mathcal{H}_0}$ from $\langle k(x,\cdot),k(y,\cdot)
 angle_{\mathcal{H}_0}=k(x,y)$

- Building ${\cal H}$ for a given psd k:
 - lacksquare Start with $\mathcal{H}_0 = \operatorname{span}(\{k(x,\cdot): x \in \mathcal{X}\})$
 - lacksquare Define $\langle\cdot,\cdot
 angle_{\mathcal{H}_0}$ from $\langle k(x,\cdot),k(y,\cdot)
 angle_{\mathcal{H}_0}=k(x,y)$
 - lacksquare Take ${\cal H}$ to be completion of ${\cal H}_0$ in the metric from $\langle\cdot,\cdot
 angle_{{\cal H}_0}$

- Building ${\cal H}$ for a given psd k:
 - lacksquare Start with $\mathcal{H}_0 = \mathrm{span}(\{k(x,\cdot): x \in \mathcal{X}\})$
 - lacksquare Define $\langle\cdot,\cdot
 angle_{\mathcal{H}_0}$ from $\langle k(x,\cdot),k(y,\cdot)
 angle_{\mathcal{H}_0}=k(x,y)$
 - lacksquare Take ${\cal H}$ to be completion of ${\cal H}_0$ in the metric from $\langle\cdot,\cdot
 angle_{{\cal H}_0}$
 - lacksquare Get that the reproducing property holds for $k(x,\cdot)$ in ${\mathcal H}$

- Building ${\cal H}$ for a given psd k:
 - lacksquare Start with $\mathcal{H}_0 = \mathrm{span}(\{k(x,\cdot): x \in \mathcal{X}\})$
 - lacksquare Define $\langle\cdot,\cdot
 angle_{\mathcal{H}_0}$ from $\langle k(x,\cdot),k(y,\cdot)
 angle_{\mathcal{H}_0}=k(x,y)$
 - lacksquare Take ${\cal H}$ to be completion of ${\cal H}_0$ in the metric from $\langle\cdot,\cdot
 angle_{{\cal H}_0}$
 - lacksquare Get that the reproducing property holds for $k(x,\cdot)$ in ${\mathcal H}$
 - Can also show uniqueness

- Building ${\cal H}$ for a given psd k:
 - lacksquare Start with $\mathcal{H}_0 = \mathrm{span}(\{k(x,\cdot): x \in \mathcal{X}\})$
 - lacksquare Define $\langle\cdot,\cdot
 angle_{\mathcal{H}_0}$ from $\langle k(x,\cdot),k(y,\cdot)
 angle_{\mathcal{H}_0}=k(x,y)$
 - lacksquare Take ${\cal H}$ to be completion of ${\cal H}_0$ in the metric from $\langle\cdot,\cdot
 angle_{{\cal H}_0}$
 - lacksquare Get that the reproducing property holds for $k(x,\cdot)$ in ${\mathcal H}$
 - Can also show uniqueness
- ullet Theorem: $oldsymbol{k}$ is psd iff it's the reproducing kernel of an RKHS

A quick check: linear kernels

$$ullet k(x,y) = x^\mathsf{T} y$$
 on $\mathcal{X} = \mathbb{R}^d$

• If
$$f(y) = \sum_{i=1}^n a_i k(x_i,y)$$
, then $f(y) = \left[\sum_{i=1}^n a_i x_i
ight]^\mathsf{T} y$

- ullet Closure doesn't add anything here, since \mathbb{R}^d is closed
- So, linear kernel gives you RKHS of linear functions

$$ullet \|f\|_{\mathcal{H}} = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i, x_j)} = \|\sum_{i=1}^n a_i x_i\|_{\mathcal{H}}$$

$$k(x,y) = \exp(rac{1}{2\sigma^2} \|x - y\|^2)$$

$$k(x,y) = \exp(\frac{1}{2\sigma^2} ||x - y||^2)$$

$$k(x,y) = \exp(rac{1}{2\sigma^2}\|x-y\|^2)$$

$$k(x,y) = \exp(rac{1}{2\sigma^2} \|x - y\|^2)$$

$$k(x,y) = \exp(rac{1}{2\sigma^2} \|x - y\|^2)$$

$$k(x,y)=\exp(rac{1}{2\sigma^2}\|x-y\|^2)$$

- ullet ${\cal H}$ is infinite-dimensional
- Functions in \mathcal{H} are bounded:

$$f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}} \leq \sqrt{k(x, x)} \|f\|_{\mathcal{H}} = \|f\|_{\mathcal{H}}$$

$$\|\kappa(x, \cdot)\|_{\mathcal{H}}^{2} = \langle \kappa(x, \cdot), \kappa(x, \cdot) \rangle_{\mathcal{H}} = \kappa(x, x)$$

$$k(x,y)=\exp(rac{1}{2\sigma^2}\|x-y\|^2)$$

- ullet ${oldsymbol{\mathcal{H}}}$ is infinite-dimensional
- Functions in \mathcal{H} are bounded:

$$f(x) = \langle f, k(x, \cdot)
angle_{\mathcal{H}} \leq \sqrt{k(x, x)} \|f\|_{\mathcal{H}} = \|f\|_{\mathcal{H}}$$

$$f(x+t)-f(x) \leq \|k(x+t,\cdot)-k(x',\cdot)\|_{\mathcal{H}}\|f\|_{\mathcal{H}}$$

$$\|k(x+t,\cdot)-k(x,\cdot)\|_{\mathcal{H}}^2 = 2-2k(x,x+t) = 2-2\exp\Bigl(-rac{\|t\|^2}{2\sigma^2}\Bigr)$$

$$k(x,y) = \exp(rac{1}{2\sigma^2}\|x-y\|^2)$$

- ullet ${\cal H}$ is infinite-dimensional
- Functions in ${\cal H}$ are bounded:

$$f(x) = \langle f, k(x, \cdot)
angle_{\mathcal{H}} \leq \sqrt{k(x, x)} \|f\|_{\mathcal{H}} = \|f\|_{\mathcal{H}}$$

• Choice of σ controls how fast functions can vary:

$$f(x+t) - f(x) \leq \|k(x+t,\cdot) - k(x',\cdot)\|_{\mathcal{H}} \|f\|_{\mathcal{H}} \ \|k(x+t,\cdot) - k(x,\cdot)\|_{\mathcal{H}}^2 = 2 - 2k(x,x+t) = 2 - 2\exp\left(-rac{\|t\|^2}{2\sigma^2}
ight)$$

Can say lots more with Fourier properties