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Admin

• Send in A1 regrade requests soon if I messed up

• Either via Gradescope, or on Piazza  

• A2 solutions are posted 

• Later this week:

• A3 (due in ~2 weeks after posting it)

• Project info (with a short proposal also due in a few weeks)

• If you don’t have a group and want one, post on Piazza asap
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Linear classifiers
• Reminder: linear classifiers are
• General case:  for h(x) = !(w⊤x + b ≥ 0) x ∈ ℝd

• Homogenous: h(x) = !(w⊤x ≥ 0)
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Linear classifiers
• Reminder: linear classifiers are
• General case:  for h(x) = !(w⊤x + b ≥ 0) x ∈ ℝd

• Homogenous: h(x) = !(w⊤x ≥ 0)
• Can turn general case into homogenous by using x̃ = [1 x] ∈ ℝd+1

• Also called halfspace, defined by a hyperplane w⊤x + b = 0
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Linear classifiers
• Reminder: linear classifiers are
• General case:  for h(x) = !(w⊤x + b ≥ 0) x ∈ ℝd

• Homogenous: h(x) = !(w⊤x ≥ 0)
• Can turn general case into homogenous by using x̃ = [1 x] ∈ ℝd+1

• Also called halfspace, defined by a hyperplane w⊤x + b = 0
• Separable case: which ERM to pick?
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Margin
• Distance from  to hyperplane  is the geometric margin 

 

              

x {x : w⊤x + b = 0}

ρh(x) = |w⊤x + b|
∥w∥2
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Margin
• Distance from  to hyperplane  is the geometric margin 

 

              

x {x : w⊤x + b = 0}

ρh(x) = |w⊤x + b|
∥w∥2

• Rescaling  and  doesn’t change  
the classifier, or the margin

w b
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Max-margin classifier

• Margin for a training set is  1
∥w∥ min

i∈[n]
|w⊤xi + b|
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Max-margin classifier

• Margin for a training set is  1
∥w∥ min

i∈[n]
|w⊤xi + b|

• Max-margin classifier (the “hard” Support Vector Machine) is 
             s.t.  ,  arg max

w,b
1

∥w∥ min
i∈[n]

|w⊤xi + b| ∀i yi(w⊤xi + b) > 0
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Max-margin classifier

• Margin for a training set is  1
∥w∥ min

i∈[n]
|w⊤xi + b|

• Max-margin classifier (the “hard” Support Vector Machine) is 
             s.t.  ,  arg max

w,b
1

∥w∥ min
i∈[n]

|w⊤xi + b| ∀i yi(w⊤xi + b) > 0

• Equivalently, as a quadratic program: 
                         s.t.  ,  arg min

w,b
∥w∥2 ∀i yi(w⊤xi + b) ≥ 1
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Margin-based bounds
• Would like to analyze 0-1 loss, but it’s not Lipschitz, so we can’t
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Margin-based bounds
• Would like to analyze 0-1 loss, but it’s not Lipschitz, so we can’t
• Not just a technicality!
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Margin-based bounds
• Would like to analyze 0-1 loss, but it’s not Lipschitz, so we can’t
• Not just a technicality!

• We’ll analyze with ramp loss:  
                 

                

ℓramp(h, (x, y)) = ψ ramp(y h(x))

ψ ramp(z) = min (1, max (0,1 − z)) =
1 if z < 0
1 − z if 0 ≤ z ≤ 1
0 if z > 1
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Margin-based bounds
• Would like to analyze 0-1 loss, but it’s not Lipschitz, so we can’t
• Not just a technicality!

• We’ll analyze with ramp loss:  
                 

                

ℓramp(h, (x, y)) = ψ ramp(y h(x))

ψ ramp(z) = min (1, max (0,1 − z)) =
1 if z < 0
1 − z if 0 ≤ z ≤ 1
0 if z > 1

•  is 1-Lipschitz, bounded in , and ; but it’s not convexψ ramp [0,1] ℓ0−1 ≤ ℓramp
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Margin-based bounds
• Would like to analyze 0-1 loss, but it’s not Lipschitz, so we can’t
• Not just a technicality!

• We’ll analyze with ramp loss:  
                 

                

ℓramp(h, (x, y)) = ψ ramp(y h(x))

ψ ramp(z) = min (1, max (0,1 − z)) =
1 if z < 0
1 − z if 0 ≤ z ≤ 1
0 if z > 1

•  is 1-Lipschitz, bounded in , and ; but it’s not convexψ ramp [0,1] ℓ0−1 ≤ ℓramp

• With probability at least , it holds for all  that 
                                 

1 − δ h ∈ ℋ
Lramp

+ (h) ≤ Lramp
S (h)+ 2

ρ ℜn (ℋ) + 1
2n log 1

δ

6
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• Would like to analyze 0-1 loss, but it’s not Lipschitz, so we can’t
• Not just a technicality!
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ψ ramp(z) = min (1, max (0,1 − z)) =
1 if z < 0
1 − z if 0 ≤ z ≤ 1
0 if z > 1

•  is 1-Lipschitz, bounded in , and ; but it’s not convexψ ramp [0,1] ℓ0−1 ≤ ℓramp

• With probability at least , it holds for all  that 
                                 

1 − δ h ∈ ℋ
Lramp

+ (h) ≤ Lramp
S (h)+ 2

ρ ℜn (ℋ) + 1
2n log 1

δ

6

L0−1
+ (h) ≤

Mobile User



Sample complexity of Hard SVMs
                         L0−1

+ (h) ≤ Lramp
S (h)+ 2

ρ ℜn (ℋ) + 1
2n log 1

δ
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• Assume (homogenously) realizable with margin 1: Pr
(x,y)∼+

(y⟨w*, x⟩ ≥ 1) = 1
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• Assume (homogenously) realizable with margin 1: Pr
(x,y)∼+
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• Let ; assume ℋ = {x ↦ w⊤x : ∥w∥ ≤ ∥w*∥} 1∥x∥2 ≤ R2
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Sample complexity of Hard SVMs
                         L0−1

+ (h) ≤ Lramp
S (h)+ 2

ρ ℜn (ℋ) + 1
2n log 1

δ

• Assume (homogenously) realizable with margin 1: Pr
(x,y)∼+

(y⟨w*, x⟩ ≥ 1) = 1

• Let ; assume ℋ = {x ↦ w⊤x : ∥w∥ ≤ ∥w*∥} 1∥x∥2 ≤ R2

• ℜn(ℋ) ≤ R∥w*∥/ n
• By assumption,  for hard SVMsŵS ∈ ℋ
• Also Lramp

S (ŵS) = 0

                               L0−1
+ (ŵS) ≤ 2R∥w*∥

n
+ 1

2n
log 1

δ

• Got a “slow”  rate1/ n
• Can get “fast”  rate with “local Rademacher complexity”1/n 7
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•  – but we don’t know !L0−1
+ (ŵS) ≤ (2R∥w*∥ + 1

2 log 1
δ )/ n ∥w*∥

8



•  – but we don’t know !L0−1
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• Let , ,   so that Bi = r2i ℋi = {w : ∥w∥ ≤ Bi} δi = 6δ
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∞
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i=1

δi = δ
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What if it’s not linearly separable?
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What if it’s not linearly separable?
• Hard SVM is 

                              s.t.  ,  


• Soft SVM adds some slack variables  to allow violating the constraints:  

        s.t.  ,  ,   


• Equivalent to RLM with  
                              

arg min
w,b

∥w∥2 ∀i yi(w⊤xi + b) ≥ 1

ξi

arg min
w,b,ξ

λ∥w∥2 + 1
n

n

∑
i=1

ξi ∀i yi(w⊤xi + b) ≥ 1 − ξi ξi ≥ 0

ℓhinge(h, (x, y)) = max{0,1 − y h(x)}
arg min

w,b
λ∥w∥2 + Lhinge

S ((w, b))

9

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Generalization bound for Soft-SVM
• Take ; then b = 0 ℓhinge(w, (x, y)) = max{0,1 − y w⊤x}
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+ (ŵS)] ≤

     if 1S[L0−1
+ (ŵS)] ≤ inf

∥w∥≤B
Lhinge

+ (w) + 2RB 2
n λ = R

B
2
n

Or ramp loss analysis still works too:


   for  ℒ0−1
+ (ŵS) ≤ ℒramp

+ (ŵS) + 2RB
n

+ 1
2n

log 1
δ

ℋ = {x ↦ w⊤x : ∥w∥ ≤ B}

L0−1
+ (ŵS) ≤ Lramp

+ (ŵS) + 4R max{∥ŵS∥, r}
n

+ 1
n

max {0, log log2
∥ŵS∥

r } + 1
2n

log 14
δ



Dimension-free rates
• Ramp loss analysis: if ,




• Soft SVM stability analysis: if  a.s. and , 

                     


• Neither bound has a  in it! Rate only depends on 


• So we can learn in very high dimensions – even infinite

1∥x∥2 ≤ R2

L0−1
+ (ŵ) ≤ Lramp

+ (ŵ) + 4R max{∥ŵS∥, r}
n

+ 1
n

max {0, log log2
∥ŵS∥

r } + 1
2n

log 14
δ

∥x∥ ≤ R λ = R
B

2
n

1S[L0−1
+ (ŵS)] ≤ inf

∥w∥≤B
Lhinge

+ (w) + 2RB
2
n

d ∥x∥∥w∥ = ∥x∥
margin
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Wait, but what about ?VCdim(ℋ)

• We have  (in the homogeneous case)

• But these analyses claim we can learn  in infinite dimensions

• …because they assumed a margin

• There exist (even realizable) distributions we can’t learn in high- , 

but they must have small margin

VCdim(ℋ) = d
ℋ

d

12



Why’s it called a “support vector machine”?
• At convergence, hinge loss for (hopefully) most training examples will be 0

• The ones where it’s not “support” the separating hyperplane
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Can do with  also: 
add  constraint, 

set  for any SV

b
α⊤y = 0

b = w⊤xi − yi



FYI

• Summarize the process of going through Lagrange duality for you

• Like Lagrange multipliers, but allow inequality constraints


• Make things a lot faster once you’re familiar with them

• Related conditions for when strong duality holds

• Especially important: “Slater’s condition”
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Practical SVM optimization
• Lot of work in the 90s/00s on efficient SVM dual optimizers

• Classic implementation: LIBSVM for the dual (wrapped in scikit-learn)

• Also SVMlight (restrictive license)

• These days: ThunderSVM


• Primal solvers:

• LIBLINEAR (wrapped in scikit-learn)

• SVMperf (restrictive license)

• Pegasos is among the best, and you already know how to do it

• It’s just (optionally, projected) stochastic subgradient descent on hinge loss


• Can still handle kernels this way, just a little less obvious
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Logistic regression and margins
• An extremely common classifier: logistic regression 
•  

• On linearly separable data:

• Limit of low regularization maximizes margin (Rosset, Zhu, Hastie NeurIPS-03)

• Gradient descent on unregularized problem does too (Soudry et al. JMLR 2018)

• (related work with other algorithms, other losses, other models…)  

• On inseparable data:

• Gradient descent is biased towards max-margin (Ji and Telgarsky COLT-19)

ℓlogistic(h, (x, y)) = log(1 + exp(−y h(x)))

18

https://proceedings.neurips.cc/paper/2003/file/0fe473396242072e84af286632d3f0ff-Paper.pdf
https://arxiv.org/pdf/1710.10345.pdf
https://proceedings.mlr.press/v99/ji19a.html


Summary
• Margin maximization: seems like a reasonable idea

• Hard SVM: exactly maximizes the margin when separable

• Soft SVM: maximizes the margin with some slack

• equivalent to hinge loss with L2 regularization  

• Two analyses:

• Either case (actually, any linear model): ramp loss with Rademacher

• Soft SVM: stability analysis


• Rates for both based on the margin, not ambient dimension 

• Dual form:

• Shows optimal  can be written as linear combination of training 

• Can be helpful computationally if 

• Motivates the kernel trick – next time!

w xi
n ≪ d
19


