SVMs + Margin bounds
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Admin

 Send in A1 regrade requests soon if | messed up
 Either via Gradescope, or on Piazza

e A2 solutions are posted

o Later this week:
A3 (due in ~2 weeks after posting it)
* Project info (with a short proposal also due in a few weeks)
* |f you don’t have a group and want one, post on Piazza asap
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Linear classmers

| | - n(x) -
e Reminder: linear classifiers are

. General case: h(x) = l(w'x+ b > 0) for x
. Homogenous: h(x) = [(w'x > 0)

d+1

» Can turn general case into homogenous by usingx =[] x] € |
* Also called halfspace, defined by a hyperplane wix+b=0
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Linear classifiers

 Reminder: linear classifiers are
« General case: h(x) = [(w'x + b > 0) for x € R?
. Homogenous: h(x) = [(w'x > 0)

d+1

» Can turn general case into homogenous by usingx =[] x] € |

* Also called halfspace, defined by a hyperplane wix+b=0
e Separable case: which ERM to pick?

. [
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Margin

. Distance from x to hyperplane {x : w'x + b = 0} is the geometric margin
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. Distance from x to hyperplane {x : w'x + b = 0} is the geometric margin

e Rescaling w and b doesn’t change
the classifier, or the margin




Max-margin classifier

. Margin for a training set is . min|wal- + D]
[w] ien]
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Max-margin classifier

G)@MC.*I‘;D 1
Margin for a training set is — minlexl- + b|
w] ien]

 Max-margin classifier (the “hard” Support Vector Machine) is

arg maXLminlexi +b| st. Vi, y(w'x;+b) >0
wh W iepn)

 Equivalently, as a quadratic program:
arg min ||w||* s.t. Vi, y(w'x;+b) > 1

w.,b
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Margin-based bounds

 Would like to analyze 0-1 loss, but it’s not Lipschitz, so we can’t



Margin-based bounds

 Would like to analyze 0-1 loss, but it’'s not Lipschitz, so we can't
* Not just a technicality!



Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


Margin-based bounds

 Would like to analyze 0-1 loss, but it’s not Lipschitz, so we can’t
* Not just a technicality!
 We’ll analyze with ramp loss:

ramp _ ,, Jamp
c M, () =R AGR))

| ifz <O
y"™™(z) = min (1, max (0,1 —z)) = 41—z f0<z<1
0 ifz > 1
L“/:/CF er
0 Y Wi 4P
oc-Z 70 [2 Kéﬂ/J\
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Margin-based bounds

 Would like to analyze 0-1 loss, but it’s not Lipschitz, so we can’t
* Not just a technicality!
 We’ll analyze with ramp loss:

(R, (x,y)) =y P(y h(x))

| ifz <O
w"™™(z) = min (1,max (0,1 —2)) = 41—z f0<z<1
0 ifz > 1

e ™MP s 1-Lipschitz, bounded in [0,1], and ZY~! < £™™P: byt it’s not convex
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Margin-based bounds

Would like to analyze 0-1 loss, but it’s not Lipschitz, so we can't
* Not just a technicality!
We’ll analyze with ramp loss:

(R, (x,y)) =y P(y h(x))

| ifz <O
w"™™(z) = min (1,max (0,1 —2)) = 41—z f0<z<1
0 ifz > 1

WP is 1-Lipschitz, bounded in [0,1], and =1 < #™™P; put it’s not convex
With probability at least 1 — 0, it holds for all i € # that

ram ram | |
ng—l(h) < L@ P(h) < L, p(h)+§§Rn (%) + 14/ Elogg
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Sample complexity of Hard SVMs
LO Lh) < Lramp(h)+ iR ) \/ 5o log ~

. Assume (homogenously) realizable with margin 1: Pr (y(w*,x) > 1) =1
(xX,y)~2D

o Let Z = {x— wix:|w|| < |lw#|};assume E||x||* < R*
. R (F) < Rlw*|l/\/n
» By assumption, wg € A for hard SVMs
. Also L™ (ibg) = 0

01, 2R||w*]|| |
Lo, (Wg) K ——+ —log—

ﬁ 2n )
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Sample complexity of Hard SVMs
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Sample compIeX|ty of Hard SVMs
LO Lh) < Lramp(h)+ ) \/ 5o log -

. Assume (homogenously) realizable with margin 1: Pr (y(w*,x) > 1) =1
(xX,y)~2D

o Let Z = {x— wix:|w|| < |lw#|};assume E||x||* < R*
. R (F) < Rlw*|l/\/n
» By assumption, wg € A for hard SVMs
. Also L™ (ibg) = 0

01, 2R||w*]|| |
Lo, (Wg) K ——+ —log—

ﬁ 2n )

« Can get “fast” 1/n rate with “local Rademacher complexity”

« Got a “slow” 1/A/n rate
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Lgoz_l(fvs) < (ZRHW*H + 4 /%10g%> /ﬁ — but we don’t know [|w*||!

. 60 =
Let B, = 12", Z;, = {w: ||w|| £ B;}, ; = —— so that Z 0, =20

7212 ,
=1
For each i, with prob at least 1 — §; have uniformly over #; that
2B.R 1 . |
0-1 ramp ] S 2 (This is a corrected version of
LQZ (W) S LS (W) T ” T n lOg O ; Shai+Shai’s Theorem 26.14)

For any w, take i,, = maxt 1, [logz 1 j:givesw € Z;

r

: 2
B. < max{2r ZHWH} ) m° [max { 1,log, ”v:” }} 14 <max { 1,log, ”v:” })

o <
5 35 5




LQOZ_I(VA"S) < (ZRHW*H T4/ 3 —IOg )/ﬁ but we don’t know ||w*||!

. 60
Let B. = 12", Z;, = {w: ||w|| £ B}, 5——sothat25i=5
7212 =

For each i, with prob at least 1 — §; have uniformly over #; that

0—1 ramp ST o (This is a corrected version of
LQZ (W) S LS (W) T ” T n lOg O ; Shai+Shai’s Theorem 26.14)
For any w, take i,, = maxt 1, [logz Il 1 }:gives w € ?/
2 2
> |max 3 1,1o il } 14 <ma 1,10 il )
B, <max{2r2|wll} 2 _°" [ blos ) g {losr
0; 30 B o)

4R max{ ||w , I 1 W 1
So LQ%_l(vAVS) < —\ﬂ sil- 7} + 4 / — max {O log log, sl } +2—log%
" n n
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What if it’s not linearly separable?

e Hard SVM is

arg min ||w||* s.t. Vi, y(w'x,+b) > 1

w.,b

» Soft SVM adds some slack variables &, to allow violating the constraints:

1 n
argmin Awl> +—= ) & st Vi, ywx+b) 218, &20
n

e L4,

. Equivalent to RLM with Z"&%(h, (x,y)) = max{0,1 — y h(x)}
argmin Al|w||* + L™ ((w. b))

w.,b
T
: yeii v
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Generalization bound for Soft-SVM

. Take b = 0; then £ (w, (x, y)) = max{0,1 — yw "x}
 This is ||x||-Lipschitz in w; assume Pr(||x|| < R) =1
* Also convex, and we’re using an L2 regularizer

e S0, stability analysis from last time tells us

_ A 1 A : 2R2
(LS (9] < EGILI"(ig)] < LI (w*) + Allw |1 +2-
_S[Lg%_l(ws)] < inf LM'£(y) + 2RB RN R

10



Generalization bound for Soft-SVM

. Take b = 0; then £ (w, (x, y)) = max{0,1 — yw "x}
 This is ||x||-Lipschitz in w; assume Pr(||x|| < R) =1
* Also convex, and we’re using an L2 regularizer

e S0, stability analysis from last time tells us

=LY ()] < EglLG ™0 00g)] < LY (w) + Allw|1* + -

=L (W)l < inf Lhmge(w) + 2RB\[ if | = _\[

Iwll<B

Or ramp loss analysis still works too:

L) < LML) + - +\/—1 ] —1 for & = {x — |lw|| < B}
W TP(w 0 orH ={x—w'x:|w
2 2 > ﬁ 2n gé

4R max{ [|w , I 1 0% |
Lo~ (W) < L (W) +—{H st 7 + 4/ — max {() loglog, il } +—log%

\/2 . n 2n




Dimension-free rates

. Ramp loss analysis: if E||x||* < R?,

4R max{||wdl|, r 1 W 1
Lo (W) < LE™(W) +—{H st 7 + 4/ — max {O, log log, il } +—log%

\/E n r 2n

. Soft SVM stability analysis: if [|x|| < Ra.s.and A = %\/%,

- 2
‘S[LQ%_I(WS)] < 1Inf Lgnge(w) + 2RB\F
|w||<B n

x|

margin

. Neither bound has a d in it! Rate only depends on ||x||||w]|| =

e SO0 we can learn in very high dimensions — even infinite

11



Wait, but what about VCdim(#4")?

e We have VCdim(#) = d (in the homogeneous case)

» But these analyses claim we can learn # in infinite dimensions
* ...because they assumed a margin

» There exist (even realizable) distributions we can’t learn in high-d,
but they must have small margin

12



Why'’s it called a “support vector machine”?

* At convergence, hinge loss for (hopefully) most training examples will be O
 The ones where it's not “support” the separating hyperplane

/( < e,

O
< S

as 0

0)

13
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Hard SVM Duality

min %kuz st Vl, in Y. > 1 (WC &:Cln((’ 01.(‘.'((»\0\”7' 90 feth;y

l o S
v —f h\‘J or ﬁe— gO'G't' SVV‘. VA on
in elass, wishe do nexf fime.,

14
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> for any problem ;20w
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strong duality:
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FYI

Karush—Kuhn—Tucker conditions

From Wikipedia, the free encyclopedia

In mathematical optimization, the Karush—-Kuhn-Tucker (KKT) conditions, also known as the Kuhn—-Tucker conditions, are first derivative tests
(sometimes called first-order necessary conditions) for a solution in nonlinear programming to be optimal, provided that some regularity conditions
are satisfied.

 Summarize the process of going through Lagrange duality for you
* Like Lagrange multipliers, but allow inequality constraints
 Make things a lot faster once you’re familiar with them
* Related conditions for when strong duality holds
* Especially important: “Slater’s condition”
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Practical SVM optimization

e Lot of work in the 90s/00s on efficient SVM dual optimizers
e Classic implementation: LIBSVM for the dual (wrapped in scikit-learn)
* Also SVMIlight (restrictive license)
 These days: ThunderSVM
 Primal solvers:
 LIBLINEAR (wrapped in scikit-learn)
 SVMperf (restrictive license)
 Pegasos is among the best, and you already know how to do it
* |t’s just (optionally, projected) stochastic subgradient descent on hinge loss
* Can still handle kernels this way, just a little less obvious
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Logistic regression and margins

* An extremely common classifier: logistic regression

. logsic(p (x, y)) = log(1 + exp(—y h(x)))

* On linearly separable data:
* Limit of low regularization maximizes margin (Rosset, Zhu, Hastie NeurlPS-03)
* Gradient descent on unregularized problem does too (Soudry et al. JMLR 2018)
* (related work with other algorithms, other losses, other models...)

 On inseparable data:
 (Gradient descent is biased towards max-margin (Ji and Telgarsky COLT-19)
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https://proceedings.neurips.cc/paper/2003/file/0fe473396242072e84af286632d3f0ff-Paper.pdf
https://arxiv.org/pdf/1710.10345.pdf
https://proceedings.mlr.press/v99/ji19a.html

Summary

Margin maximization: seems like a reasonable idea

Hard SVM: exactly maximizes the margin when separable
Soft SVM: maximizes the margin with some slack

e equivalent to hinge loss with L2 regularization

Two analyses:

* Either case (actually, any linear model): ramp loss with Rademacher
o Soft SVM: stability analysis

Rates for both based on the margin, not ambient dimension

Dual form;
» Shows optimal w can be written as linear combination of training x;

« Can be helpful computationally if n << d

e Motivates the kernel trick — next time!
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