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Admin
• Hope your break was good!  

• Office hour times have moved:

• Monday 12-1pm (and still Thursdays 4-5pm) 
• Both are available both on Zoom or in person (ICICS X563)


• A1 grades are up on Gradescope

• A2 solutions are posted

• A3 will be posted tonight or tomorrow, due in ~2 weeks

• If you don’t have a group and want one, post on Piazza (asap)
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L2 / Tikhonov Regularization
• Some problems just aren’t strongly convex (or  is very small)λ
• If  is convex and  is -strongly convex, then  is also -strongly convexf g λ f + g λ
•  is -strongly convex  g(w) = λ

2 ∥w∥2 λ

• Regularized loss minimization (RLM):  argminw LS(w) + R(w)
• Recall SRM:  argminh LS(h) + εkh

(n, δwkh
)
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Ridge regression
Ridge regression: , , ℋ = {x ↦ w⊤x} ℓ(h, (x, y)) = 1

2 (h(x) − y)2 R(w) = λ
2 ∥w∥2
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Regularized loss minimization with SGD
• L2 regularizer is also called weight decay:
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Regularized loss minimization with SGD
• L2 regularizer is also called weight decay:
• , so use ∇ λ

2 ∥w∥2 = λw wt+1 = wt − η(λwt + ̂gt)
• With -Lipschitz loss, SGD from 0 with  has step norm at most ρ ηt = 1/(λt) 2ρ
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Regularized loss minimization with SGD
• For -Lipschitz, -smooth, convex ,  ,  : 

            b/c        

ρ β f fλ(w) = f(w)+ 1
2 λ∥w∥2 ηt = 1/(λt)

*[ fλ(wT)] − fλ(w*λ ) ≤ 2βρ2

λ2T
* [∥wT − w*λ ∥2] ≤ 4ρ2

λ2T

7

*f(wT) − f(w*) = *f(wT) − f(w*λ ) + f(w*λ ) − f(w*)
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Stability
• So, that attempt didn’t work here (though it can in some specific settings)
• Another approach which will work generically: stability
• “If we don’t change  much, the predictor  doesn’t change much”S A(S)
• Regularizer  stabilizes the algorithm  R(w) = 1

2 ∥w∥2

• One variant is on-average replace-one stability: 
Let , ,   be independent. 
Let .

S = (z1, …, zn) ∼ -n z′ ∼ - i ∼ Uniform([n])
S(i) = (z1, …, zi−1, z′ , zi+1, …, zn)

• Theorem: .*S[L-(A(S)) − LS(A(S))] = *S,z′ ,i[ℓ(A(S(i)), zi) − ℓ(A(S), zi)]
• A is on-average-replace-one-stable with rate  if for all , 

.
ε(n) -

*S,z′ ,i[ℓ(A(S(i)), zi) − ℓ(A(S), zi)] ≤ ε(n)
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λn (ℓ(A(S), zi) + ℓ(A(S(i)), z′ ))

which implies *S[L-(A(S)) − LS(A(S))] ≤ 96β
λn

*S[LS(A(S))]

(and note, e.g., , often bounded by a constant)*S[LS(A(S))] ≤ *S[LS(0)] = L-(0)

if λ ≥ β/n

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Fitting-Stability Tradeoff

*S[L-(A(S))] = *S[LS(A(S))] + *S[L-(A(S)) − LS(A(S))]

12



Fitting-Stability Tradeoff

*S[L-(A(S))] = *S[LS(A(S))] + *S[L-(A(S)) − LS(A(S))]
• Second term is the on-average replace-one stability

12



Fitting-Stability Tradeoff

*S[L-(A(S))] = *S[LS(A(S))] + *S[L-(A(S)) − LS(A(S))]
• Second term is the on-average replace-one stability
• Bigger  means more stableλ

12



Fitting-Stability Tradeoff

*S[L-(A(S))] = *S[LS(A(S))] + *S[L-(A(S)) − LS(A(S))]
• Second term is the on-average replace-one stability
• Bigger  means more stableλ

• First term is how well the algorithm fits the training data

12



Fitting-Stability Tradeoff

*S[L-(A(S))] = *S[LS(A(S))] + *S[L-(A(S)) − LS(A(S))]
• Second term is the on-average replace-one stability
• Bigger  means more stableλ

• First term is how well the algorithm fits the training data
• Bigger  means worse fitλ

12



Training error of RLM

13

LS(A(S)) ≤ LS(A(S))+ λ
2 ∥A(S)∥2



Training error of RLM

13

LS(A(S)) ≤ LS(A(S))+ λ
2 ∥A(S)∥2 ≤ LS(w*)+ λ

2 ∥w*∥2

For any fixed vector w*



Training error of RLM

13

LS(A(S)) ≤ LS(A(S))+ λ
2 ∥A(S)∥2 ≤ LS(w*)+ λ

2 ∥w*∥2

For any fixed vector w*

*SLS(A(S)) ≤ *SLS(w*)+ λ
2 ∥w*∥2



Training error of RLM

13

LS(A(S)) ≤ LS(A(S))+ λ
2 ∥A(S)∥2 ≤ LS(w*)+ λ

2 ∥w*∥2

For any fixed vector w*

*SLS(A(S)) ≤ *SLS(w*)+ λ
2 ∥w*∥2 = L-(w*)+ λ

2 ∥w*∥2



Training error of RLM

13

LS(A(S)) ≤ LS(A(S))+ λ
2 ∥A(S)∥2 ≤ LS(w*)+ λ

2 ∥w*∥2

For any fixed vector w*

*SLS(A(S)) ≤ *SLS(w*)+ λ
2 ∥w*∥2 = L-(w*)+ λ

2 ∥w*∥2

*S[L-(A(S))] ≤ L-(w*)+ λ
2 ∥w*∥2 + *S[L-(A(S)) − LS(A(S))]



Training error of RLM

13

LS(A(S)) ≤ LS(A(S))+ λ
2 ∥A(S)∥2 ≤ LS(w*)+ λ

2 ∥w*∥2

For any fixed vector w*

*SLS(A(S)) ≤ *SLS(w*)+ λ
2 ∥w*∥2 = L-(w*)+ λ

2 ∥w*∥2
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So, for convex -Lipschitz loss, RLM with regularizer  hasρ λ
2 ∥w∥2

*S[L-(A(S))] ≤ L-(w*)+ λ
2 ∥w*∥2 + 4ρ2

λn



RLM learns any convex-Lipschitz-bounded problem

• RLM with regularizer  has  λ
2 ∥w∥2 *S[L-(A(S))] ≤ L-(w*)+ λ

2 ∥w*∥2 + 4ρ2

λn

14



RLM learns any convex-Lipschitz-bounded problem

• RLM with regularizer  has  λ
2 ∥w∥2 *S[L-(A(S))] ≤ L-(w*)+ λ

2 ∥w*∥2 + 4ρ2

λn

• Taking      gives     λ = ρ
B

8
n

*S[L-(A(S))] ≤ L-(w*) + ρB
8
n

14



RLM learns any convex-Lipschitz-bounded problem

• RLM with regularizer  has  λ
2 ∥w∥2 *S[L-(A(S))] ≤ L-(w*)+ λ

2 ∥w*∥2 + 4ρ2

λn

• Taking      gives     λ = ρ
B

8
n

*S[L-(A(S))] ≤ L-(w*) + ρB
8
n

• So, for ,    n ≥ 8ρ2B2/ε2 *S[L-(A(S))] ≤ inf
w∈ℋ

L-(w) + ε

14



RLM learns any convex-Lipschitz-bounded problem

• RLM with regularizer  has  λ
2 ∥w∥2 *S[L-(A(S))] ≤ L-(w*)+ λ

2 ∥w*∥2 + 4ρ2

λn

• Taking      gives     λ = ρ
B

8
n

*S[L-(A(S))] ≤ L-(w*) + ρB
8
n

• So, for ,    n ≥ 8ρ2B2/ε2 *S[L-(A(S))] ≤ inf
w∈ℋ

L-(w) + ε

• Similar result for convex-smooth-bounded (SSBD Corollaries 13.10, 13.11)  

14



RLM learns any convex-Lipschitz-bounded problem

• RLM with regularizer  has  λ
2 ∥w∥2 *S[L-(A(S))] ≤ L-(w*)+ λ

2 ∥w*∥2 + 4ρ2

λn

• Taking      gives     λ = ρ
B

8
n

*S[L-(A(S))] ≤ L-(w*) + ρB
8
n

• So, for ,    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L-(w) + ε

• Similar result for convex-smooth-bounded (SSBD Corollaries 13.10, 13.11)  

• Can convert these expectation bounds into high-probability: SSBD exercise 13.1
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Uniform stability
• Uniform stability instead says  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• Bousquet and Elisseef (2002) (also in MRT chap 14): if , 
           

ℓ ∈ [0,C]
L-(A(S)) − LS(A(S)) ≤ const ( nγ + C/ n) log 1

δ
• Bousquet et al. (2019), building off Feldman and Vondrák (2018, 19), show 

           L-(A(S)) − LS(A(S)) ≤ const (γ log(n) log ( 1
δ ) + C

n
log 1

δ )
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SGD is uniformly stable
• Hardt, Recht, and Singer (ICML-16):
• For convex, -smooth, -Lipschitz losses, -step multi-pass SGD with 

 gives uniform stability of 

β ρ T

ηt ≤ 2
β

2ρ2

n

T

∑
t=1

ηt

16

https://arxiv.org/abs/1509.01240
https://arxiv.org/abs/1804.01619
https://arxiv.org/abs/1902.10710


SGD is uniformly stable
• Hardt, Recht, and Singer (ICML-16):
• For convex, -smooth, -Lipschitz losses, -step multi-pass SGD with 

 gives uniform stability of 

β ρ T

ηt ≤ 2
β

2ρ2

n

T

∑
t=1

ηt

• For -strongly convex, -smooth losses, -step multi-pass projected  

SGD with constant  has uniform stability , independent of 

λ β T

η ≤ 1/β 2L2

λn
T

16

https://arxiv.org/abs/1509.01240
https://arxiv.org/abs/1804.01619
https://arxiv.org/abs/1902.10710


SGD is uniformly stable
• Hardt, Recht, and Singer (ICML-16):
• For convex, -smooth, -Lipschitz losses, -step multi-pass SGD with 

 gives uniform stability of 

β ρ T

ηt ≤ 2
β

2ρ2

n

T

∑
t=1

ηt

• For -strongly convex, -smooth losses, -step multi-pass projected  

SGD with constant  has uniform stability , independent of 

λ β T

η ≤ 1/β 2L2

λn
T

• Some results even for nonconvex case 

16

https://arxiv.org/abs/1509.01240
https://arxiv.org/abs/1804.01619
https://arxiv.org/abs/1902.10710


SGD is uniformly stable
• Hardt, Recht, and Singer (ICML-16):
• For convex, -smooth, -Lipschitz losses, -step multi-pass SGD with 

 gives uniform stability of 

β ρ T

ηt ≤ 2
β

2ρ2

n

T

∑
t=1

ηt

• For -strongly convex, -smooth losses, -step multi-pass projected  

SGD with constant  has uniform stability , independent of 

λ β T

η ≤ 1/β 2L2

λn
T

• Some results even for nonconvex case 

• Chen, Jin, Yu (2018) and Feldman and Vondrák (2019) extend to full-batch 
gradient descent, other variants
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• Regularized loss minimization (RLM), the regularized version of ERM

• Analogous to SRM 

• Can analyze via stability

• On-average replace-one stability characterizes learnability

• Holds for convex-Lipschitz-bounded / convex-smooth-bounded


• Amount of regularization trades off between fitting and stability 

• Uniform stability: stronger notion that can give better bounds

• Multi-pass SGD / GD / … are uniformly stable
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