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Admin

* In hybrid mode now:
 Thursday office hours available both in-person (ICICS X563) and on Zoom

* A2 due Friday night
 Groups of up to three, allowed separate per question
e |f you don’t have a group and want one, post on Piazza (asap)

A1 grading: still alllllllimost done — sorry again
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* Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems
. I is a convex set (e.g. convex set of parameters in RY, ||w|| < B

» 7(-,7)is p-Lipschitz or -smooth
» [}-smooth means that VZ( -, z) is f-Lipschitz

Bp

. Showed gradient descent can optimize convex ff-smooth functions in 2— steps
€
B2p2

2
E
 \We can run ERM efficiently...but does it work statistically?

. SSBD 14.1.1 shows

steps for p-Lipschitz functions
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One thing | forgot to say...

o Convexity implies that any local minimum is a global minimum
 \We didn’t use this directly in the proof, but good to know!

o Strict convexity implies there’s only one global minimum
‘ f<0‘x1 + (1 - a)xz) > af(x;) + (1 — a)f(x,) fora € (0,1)

. Hessian > 0 implies strictly convex, but converse not true (e.g. f(x) = x%
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Convex surrogate losses

There’s more to say, but just the basics for now: -

* The 0-1 loss is not convex s,

» Hinge loss is: £(h, (x,y)) = max{0,1 — yh(x)} ‘*‘*1.,
. Also, 2" (h,z) < £""8¢(h, ) BE I

. So, LY (h) < LI"(h)

o LT — L9V < [ min L9 Y(h) — Lo~V ) + ( min L2¢(h) — min Lo '(h) ) + [ L""s¢(h
01y — LY _(he%go 0 min LA"(h) — min L&~ (h) ) + ( Ly"*(h)

— min Lgnge(h)>
he#
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Subgradients

A subgradient of f at w is a vector v such that the tangent with normal v lies below f:
» Forall uinthedomainoff, Au) > f(w)+ (u—w,v)

« The subdifferential at w, df(w), is the set of all valid subgradients
* (SSBD call this the “differential set” for some reason)

If f is differentiable at w, the gradient is the only subderivative there
Can have more than one
Subdifferential is always a nonempty, compact, convex set

A convex f is p-Lipschitz (on a convex open set) iff all of its subgradients have ||v|| < p

Subgradient descent: instead of a gradient, pick any subgradient

 The analysis is exactly the same
» (kind of) what PyTorch/etc do for ReLU functions anyway!

e For the real details: “On Correctness of Automa6tic Differentiation for Non-Differentiable Functions”
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Projected gradient descent

» What if gradient descent takes us outside of #Z°?
« Remember, # should be bounded...

* Projected gradient descent: after each gradient update, project back
e W = proj%(w — an(w)) proj o (w) = argming, o ||w — w||

" if ||lw|| < B

— : < | —
For # = {w : ||lw| < B}, proj g (w) HfV;HW otherwise

* Analysis is again basically the same
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Stochastic gradient descent

» SGD: why bother computing Lg¢(w) on the full § every time?

e Instead, “pure SGD” picks a fresh z; and stepstow™ = w — 7 sz/”(w, Z))
» or, rather, on a direction in 0,2 (w, z,)

» or, rather, any vector v such that E[V | w] € 0, Lg(w)
» In general, for an objective f(w) with constraint set 7

. Start at some w'), say 0

. Get a random g\ such that =600 e gf(w™)

. Set w1 = proj,, (w® — @)

1 T
Return W(T), or — w(t), or whatever

=1




SGD for Lipschitz objectives

Theorem (Shamir and Zhang, ICML 2013): if f is convex, minimized at w* € #,
sup |[w]| £ B, [||g(t)|| ] < G*forall t,and " = c/\/;

WEHA
,
[ fw™)] = fow*) < (—4B ¥ cGz) z+ogl

: Vi
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Theorem (Shamir and Zhang, ICML 2013): if f is convex, minimized at w* € %,

sup ||w|| < B, E [||§(t)||2] < G*forall t,and " = c/\/;:
WEH

2+ 1logT
VT

but...l think the proof might be wrong? or | was too tired last night to understand :(

C

2
S[fw )] = flw*) < (41 + cGz)
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SGD for Lipschitz objectives

Theorem (Shamlrand Zhang ICML 2013): if f is convex, minimized at w* € A,
sup |[w]| £ B, [||g(t)|| ] < G*forall t,and " = c/\/;

WEHA
,
[ fw™)] = fow*) < (—4B ¥ CGZ) z+ogl

: Vi

but...l think the proof might be wrong? or | was too tired last night to understand :(

B B
SSBD Theorem 14.8 gives E[ f(w)] — f(w™) < i for n = ——, w the average

VT VT

9
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SGD for strongly convex objectives

s
L

Theorem (Shamir and Zhang, ICML 2013): if f is A-strongly convex,

minimized at w* € A, b [\\§<f>\\2] < G*forallt, and n” = ¢/(At) for ¢ > 1:

17¢G*(1 +log T
=[f(wp)] = f(w™) < %Og)

10
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» fis A-strongly convex for a parameter A > O if:
. flax+ (1= a)y) < afy) + (1 — a)fy)—Aa(l — a)lx — y|I’

o (Vf(x) = VAY),x—y) > Alx =yl
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Theorem (Shamir and Zhang, ICML 2013): if f is A-strongly convex,

minimized at w* € A, b [\\§<f>\\2] < G*forallt, and n” = ¢/(At) for ¢ > 1:

17¢G*(1 +log T
=[f(wp)] = f(w™) < %Og)

» fis A-strongly convex for a parameter A > O if:
. flax+ (1= a)y) < afy) + (1 — a)fy)—Aa(l — a)lx — y|I’

+ (VAx) = VA, x—y) > Allx = yll”
e V’f> A ie. V*f— >0 ie. all eigenvalues of V*fare at least 1

10
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SGD for strongly convex objectives

Theorem: if fis A-strongly convex and ff-smooth, minimized at w* € #,
= [Hg’(t)Hz] < G*forall t,and ¥ = ¢/(At) for ¢ > 1:

22
Lfowy)] — fowr) < 222G
A2T

11



SGD for strongly convex objectives

Theorem: if fis A-strongly convex and ff-smooth, minimized at w* € #,
= [Hg’(t)Hz] < G*forall t,and ¥ = ¢/(At) for ¢ > 1:

2072
(o)) — fows) <
A2T

Can assume ¢ = 1 WLOG:
A

If fis A-strongly convex, it’s also —-strongly convex;
just use the ¢ = 1 theorem with the (weaker) % strong convexity param

11
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Theorem: if fis A-strongly convex and ff-smooth, minimized at w* € #,
n [Hg@uz] < G*forall t, and n” = 1/(1¢):
28G?

) = fov) < =22

Recall key property of f-smoothness: f(v) < f(w) + (Vf(w), v — W)+§Hv — w|?

Plug n w, W flowr) = fO0%) < (A0, wp = wE)+E lwy — w2

p 2
= EHWT_ w¥||

Lemma: if f is A-strongly convex, minimized at w* € #, [H(g?(t)Hz] < G*forallt,
4G*
12T

and n'Y = 1/(At), then [HWT W*HZ] < ——

12
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IN

—[(&,w, —w¥)] = — W, [_g’t [<§t’ W, — w*) | Wt]]
=E, [(gt, W, — w*)] for some g, € df(w,)

— Ly, [<gt o Vf(W*)a Wi — W*>]
> /U\Wt o W*”z

- first-order strong convexity def
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- [”Wt+1 — W*Hz]
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SGD for strongly convex objectives

Theorem (Shamir and Zhang, ICML 2013): if f is A-strongly convex,
minimized at w* € A, b [\\§<f>\\2] < G*forallt, and n” = ¢/(At) for ¢ > 1:

17¢G*(1 +log T
=[f(wp)] = f(w™) < %

Proof uses that lemma (which doesn’t need ff-smoothness) as a key step,
but does some more tricks — read it if you're interested!

15


http://proceedings.mlr.press/v28/shamir13.html

Implications for learning

Theorem: if fis A-strongly convex and ff-smooth, minimized at w* € #,
= [\\§<f>\\2] < G*forall t,and ¥ = ¢/(At) for ¢ > 1:
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A2T
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=118PN1°| < G*forall £, and n® = ¢/(Ar) for ¢ > 1:

GZ
)] — fw*) < ;—Ta + log(T))

e SO, If:
» L is A-strongly convex

. E (12| < G* (e.g. implied if £( -, ) is G-Lipschitz)
e minimizer is inside #Z

* then we have a bound on expected excess error for average iterate of SGD
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E

) samples, since this analysis is for one-pass only
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Implications for learning

SSBD Theorem 14.8: if f is convex, Z = {w : ||w|| < B}, w* € argmin, 4 f(w),

Pr(]|g,|l < p) = 1forallt,and y = B/(pﬁ), then

B
)] = flw) < ——.

VT
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Pr(]|g,|l < p) = 1forallt,and y = B/(pﬁ), then
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JT
¢ SO, If:

» L is convex (e.g.impliedif £( -, z) is convex)

e ||g;]| £ pas.(e.g.impliedif £( -, z) is G-Lipschitz)
* then we have a bound on expected excess error for SGD

. Needs O (i

> ) samples, since this analysis is for one-pass only
E

* Covers the Convex-Lipschitz-Bounded case
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Implications for learning

SSBD Theorem 14.13: if £( - , 7) is convex, /-smooth, and nonnegative,
Z = {w : ||lw|| £ B}, and 7 is constant, then for any w*

112
(L, ()] < — (L@(w*) Al )
1 —np 2nT
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Implications for learning

SSBD Theorem 14.13: if £( - , 7) is convex, /-smooth, and nonnegative,
Z = {w : ||lw|| £ B}, and 7 is constant, then for any w*

o 1 )
[L@(W)] < L@(W ) + -

1 —np 2nT
. So, if we take 7 = 1/(B(1 + 3/¢)), T > 12B*/3*/€?, and assume £(0,7) < 1,

~[Lo,(W)] < miyl} Lo,(w) + €.
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Summary
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» Rate is better with strong convexity

. O(1/n) excess error, vs O(1/4/n) without
. For gradient descent, the gap is enormous: O (l) steps vs (0 (10g %)

E

 We didn’t analyze multi-pass SGD
* Only looking at each data point once might be wasteful...
 But it’'s necessary in this framework
« ERM with gradient descent does not always work
o “Early stopping” with one-pass SGD is a form of (implicit) regularization
o After the break, explicit regularization:
* makes things strongly convex

e |lets us learn even if we fully optimize on S
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