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Admin

• In hybrid mode now:

• Thursday office hours available both in-person (ICICS X563) and on Zoom 

• A2 due Friday night

• Groups of up to three, allowed separate per question

• If you don’t have a group and want one, post on Piazza (asap) 

• A1 grading: still allllllllmost done – sorry again 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• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems
•  is a convex set (e.g. convex set of parameters in ), ℋ ℝd ∥w∥ ≤ B
•  is -Lipschitz or -smoothℓ( ⋅ , z) ρ β
• -smooth means that  is -Lipschitz β ∇ℓ( ⋅ , z) β

• Showed gradient descent can optimize convex -smooth functions in  stepsβ
Bβ
2ε

• SSBD 14.1.1 shows  steps for -Lipschitz functions
B2ρ2

ε2
ρ

• We can run ERM efficiently…but does it work statistically?
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One thing I forgot to say…

• Convexity implies that any local minimum is a global minimum

• We didn’t use this directly in the proof, but good to know! 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One thing I forgot to say…

• Convexity implies that any local minimum is a global minimum

• We didn’t use this directly in the proof, but good to know! 

 

• Strict convexity implies there’s only one global minimum

•   for 


• Hessian  implies strictly convex, but converse not true (e.g. )
f (αx1 + (1 − α)x2) > αf(x1) + (1 − α)f(x2) α ∈ (0,1)

≻ 0 f(x) = x4
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There’s more to say, but just the basics for now:
• The 0-1 loss is not convex
• Hinge loss is: ℓ(h, (x, y)) = max{0,1 − yh(x)}
• Also, ℓ0−1(h, z) ≤ ℓhinge(h, z)
• So,  L0−1

𝒟 (h) ≤ Lhinge
𝒟 (h)

• L0−1
𝒟 (ĥ) − L0−1,*

𝒟 ≤ (min
h∈ℋ

L0−1
𝒟 (h) − L0−1,*

𝒟 ) + (min
h∈ℋ

Lhinge
𝒟 (h) − min

h∈ℋ
L0−1

𝒟 (h)) + (Lhinge
𝒟 (ĥ) − min

h∈ℋ
Lhinge

𝒟 (h))
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• Subdifferential is always a nonempty, compact, convex set
• A convex  is -Lipschitz (on a convex open set) iff all of its subgradients have  f ρ ∥v∥ ≤ ρ

• Subgradient descent: instead of a gradient, pick any subgradient
• The analysis is exactly the same
• (kind of) what PyTorch/etc do for ReLU functions anyway!

• For the real details: “On Correctness of Automatic Differentiation for Non-Differentiable Functions”
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• Projected gradient descent: after each gradient update, project back
•         w+ = projℋ(w − η∇f(w)) projℋ(w) = argminŵ∈ℋ∥ŵ − w∥

• For , ℋ = {w : ∥w∥ ≤ B} projℋ(w) = {
w if ∥w∥ ≤ B

B
∥w∥ w otherwise

• Analysis is again basically the same
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• SGD: why bother computing  on the full  every time?LS(w) S
• Instead, “pure SGD” picks a fresh  and steps to zi w+ = w − η∇wℓ(w, zi)
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• Start at some , say w(1) 0
• Get a random  such that ̂g(t) 𝔼 ̂g(t) ∈ ∂f(w(t))
• Set w(t+1) = proj𝒲(w(t) − η(t) ̂g(t))

• Return , or , or whateverw(T) 1
T
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SGD for Lipschitz objectives

Theorem (Shamir and Zhang, ICML 2013): if  is convex, minimized at , 
,  for all , and : 

                      

f w* ∈ ℋ
sup
w∈ℋ

∥w∥ ≤ B 𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/ t

𝔼[ f(w(T))] − f(w*) ≤ ( 4B2

c
+ cG2) 2 + log T

T
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but…I think the proof might be wrong? or I was too tired last night to understand :(

SSBD Theorem 14.8 gives  for ,  the average𝔼[ f(w̄)] − f(w*) ≤
Bρ

T
η =

B

ρ T
w̄

http://proceedings.mlr.press/v28/shamir13.html


SGD for strongly convex objectives
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Can assume  WLOG:

    If  is -strongly convex, it’s also -strongly convex;


    just use the  theorem with the (weaker)  strong convexity param

c = 1
f λ λ

c
c = 1 λ

c
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SGD for strongly convex objectives

Theorem (Shamir and Zhang, ICML 2013): if  is -strongly convex, 
minimized at ,  for all , and  for : 

                      

f λ
w* ∈ ℋ 𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(wT)] − f(w*) ≤
17cG2(1 + log T)

λT

15

Proof uses that lemma (which doesn’t need -smoothness) as a key step, 
but does some more tricks – read it if you’re interested!

β

http://proceedings.mlr.press/v28/shamir13.html


Implications for learning
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•  is -strongly convex

•  is -smooth  (e.g. implied if  is -smooth)


•   (e.g. implied if  is -Lipschitz)


• minimizer is inside 

L𝒟 λ
L𝒟 β ℓ( ⋅ , z) β
𝔼 [∥ ̂gt∥2] ≤ G2 ℓ( ⋅ , z) G

ℋ
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• then we have a bound on expected excess error for SGD


• Needs  samples, since this analysis is for one-pass only𝒪 ( 1
ε )
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Implications for learning
SSBD Theorem 14.11: if  is -strongly convex, minimized at , 
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Implications for learning
SSBD Theorem 14.8: if  is convex, , , 

 for all , and , then 

                                                .

f ℋ = {w : ∥w∥ ≤ B} w* ∈ argminw∈ℋ f(w)
Pr(∥ ̂gt∥ ≤ ρ) = 1 t η = B/(ρ T)

𝔼[ f(w̄)] − f(w*) ≤
Bρ

T

18
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• then we have a bound on expected excess error for SGD


• Needs  samples, since this analysis is for one-pass only


• Covers the Convex-Lipschitz-Bounded case

𝒪 ( 1
ε2 )
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Implications for learning

SSBD Theorem 14.13: if  is convex, -smooth, and nonnegative, 
, and  is constant, then for any  

                            .

ℓ( ⋅ , z) β
ℋ = {w : ∥w∥ ≤ B} η w*

𝔼[L𝒟(w̄)] ≤
1

1 − ηβ (L𝒟(w*) +
∥w*∥2

2ηT )

19
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• So, if we take , , and assume , 

.
η = 1/(β(1 + 3/ε)) T ≥ 12B2β2/ε2 ℓ(0,z) ≤ 1

𝔼[L𝒟(w̄)] ≤ min
w∈ℋ

L𝒟(w) + ε
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Implications for learning

SSBD Theorem 14.13: if  is convex, -smooth, and nonnegative, 
, and  is constant, then for any  

                            .

ℓ( ⋅ , z) β
ℋ = {w : ∥w∥ ≤ B} η w*

𝔼[L𝒟(w̄)] ≤
1

1 − ηβ (L𝒟(w*) +
∥w*∥2

2ηT )
• So, if we take , , and assume , 

.
η = 1/(β(1 + 3/ε)) T ≥ 12B2β2/ε2 ℓ(0,z) ≤ 1

𝔼[L𝒟(w̄)] ≤ min
w∈ℋ

L𝒟(w) + ε

• Covers the Convex-Smooth-Bounded case
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• Only looking at each data point once might be wasteful…
• But it’s necessary in this framework
• ERM with gradient descent does not always work

• “Early stopping” with one-pass SGD is a form of (implicit) regularization
• After the break, explicit regularization:
• makes things strongly convex
• lets us learn even if we fully optimize on S
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