SGD

CPSC 532S: Modern Statistical Learning Theory 16 February 2022 cs.ubc.ca/~dsuth/532S/22/

Admin

- In hybrid mode now:
 - Thursday office hours available both in-person (ICICS X563) and on Zoom
- A2 due Friday night

 - Groups of up to three, allowed separate per question • If you don't have a group and want one, post on Piazza (asap)
- A1 grading: still all all and a done sorry again

Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems

- Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems
 - \mathcal{H} is a convex set (e.g. convex set of parameters in \mathbb{R}^d), $||w|| \leq B$

- Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems
 - \mathcal{H} is a convex set (e.g. convex set of parameters in \mathbb{R}^d), $||w|| \leq B$
 - $\ell(\cdot, z)$ is ρ -Lipschitz or β -smooth

- Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems • \mathcal{H} is a convex set (e.g. convex set of parameters in \mathbb{R}^d), $||w|| \leq B$

 - $\ell(\cdot, z)$ is ρ -Lipschitz or β -smooth
 - β -smooth means that $\nabla \ell(\cdot, z)$ is β -Lipschitz

- Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems • \mathcal{H} is a convex set (e.g. convex set of parameters in \mathbb{R}^d), $||w|| \leq B$

 - $\ell(\cdot, z)$ is ρ -Lipschitz or β -smooth
 - β -smooth means that $\nabla \ell(\cdot, z)$ is β -Lipschitz
- Showed gradient descent can optimize convex β -smooth functions in $\frac{B\beta}{2\epsilon}$ steps

- Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems • \mathcal{H} is a convex set (e.g. convex set of parameters in \mathbb{R}^d), $||w|| \leq B$

 - $\ell(\cdot, z)$ is ρ -Lipschitz or β -smooth
 - β -smooth means that $\nabla \ell(\cdot, z)$ is β -Lipschitz
- Showed gradient descent can optimize convex β -smooth functions in $\frac{B\beta}{2\epsilon}$ steps

• SSBD 14.1.1 shows $\frac{B^2 \rho^2}{\epsilon^2}$ steps for ρ -Lipschitz functions

- Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems • \mathcal{H} is a convex set (e.g. convex set of parameters in \mathbb{R}^d), $||w|| \leq B$

 - $\ell(\cdot, z)$ is ρ -Lipschitz or β -smooth
 - β -smooth means that $\nabla \ell(\cdot, z)$ is β -Lipschitz

• SSBD 14.1.1 shows $\frac{B^2 \rho^2}{\epsilon^2}$ steps for ρ -Lipschitz functions

• We can run ERM efficiently...but does it work statistically?

• Showed gradient descent can optimize convex β -smooth functions in $\frac{B\beta}{2\epsilon}$ steps

One thing I forgot to say...

- Convexity implies that any local minimum is a global minimum
 - We didn't use this directly in the proof, but good to know!

mum is a global minimum roof, but good to know!

One thing I forgot to say...

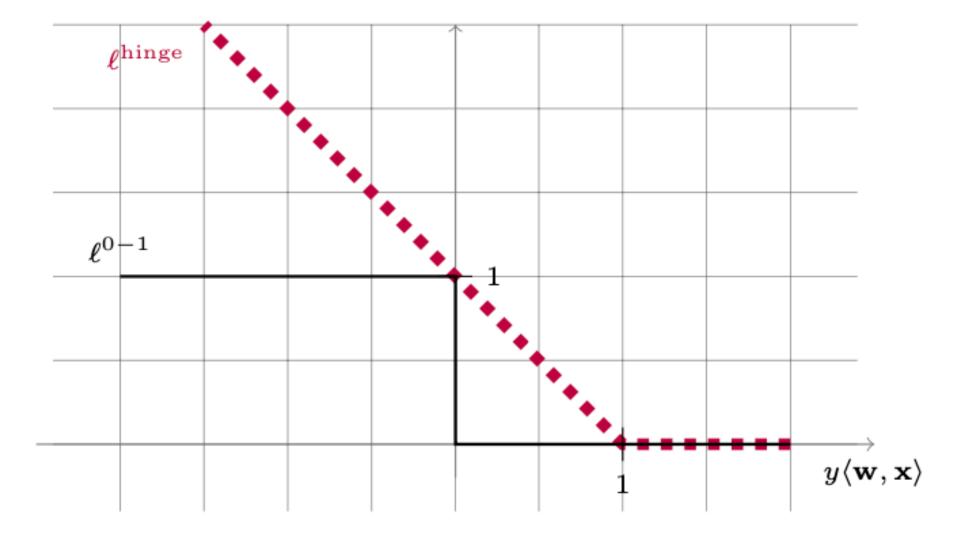
- Convexity implies that any local minimum is a global minimum • We didn't use this directly in the proof, but good to know!

- Strict convexity implies there's only one global minimum
 - $f(\alpha x_1 + (1 \alpha)x_2) > \alpha f(x_1) + (1 \alpha)f(x_2)$ for $\alpha \in (0, 1)$
 - Hessian > 0 implies strictly convex, but converse not true (e.g. $f(x) = x^4$)

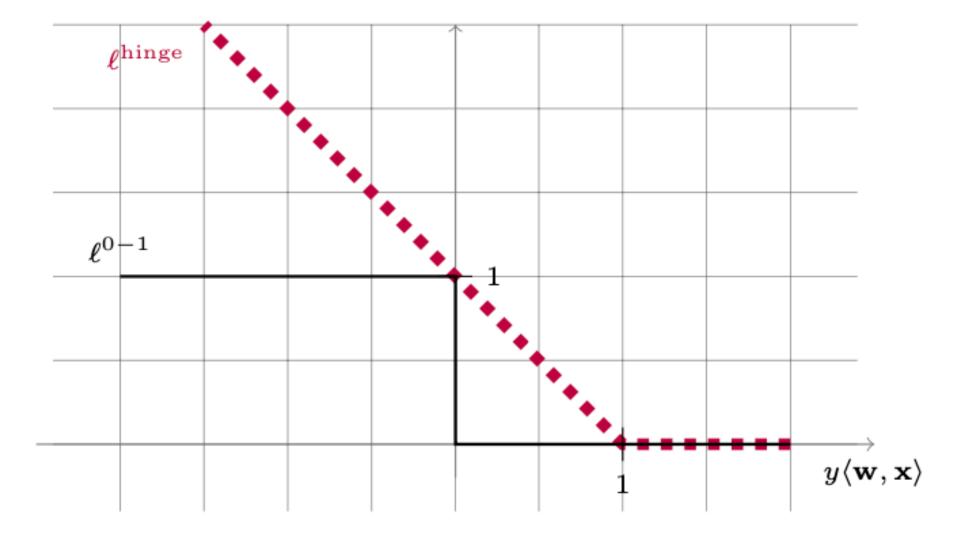
There's more to say, but just the basics for now:

• The 0-1 loss is not convex

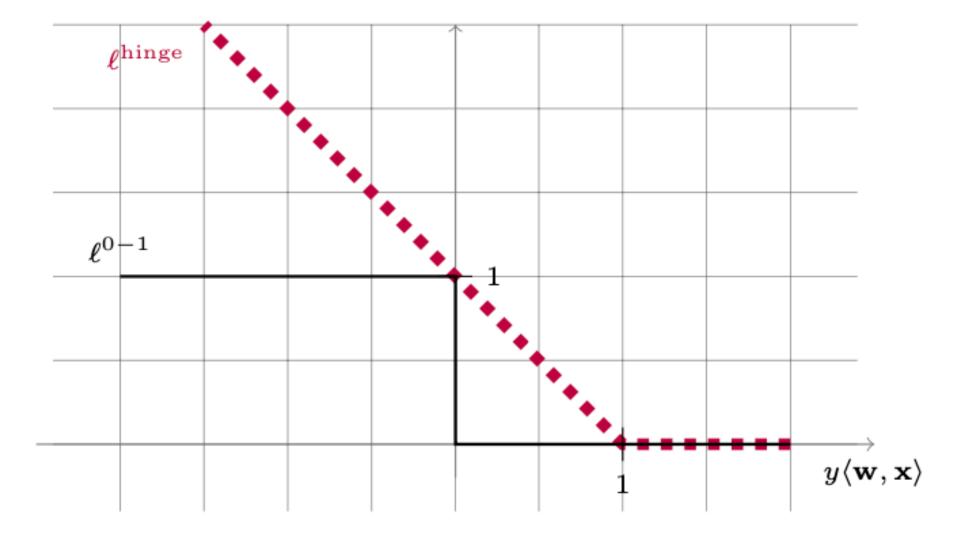
- The 0-1 loss is not convex
- Hinge loss is: $\ell(h, (x, y)) = \max\{0, 1 yh(x)\}$



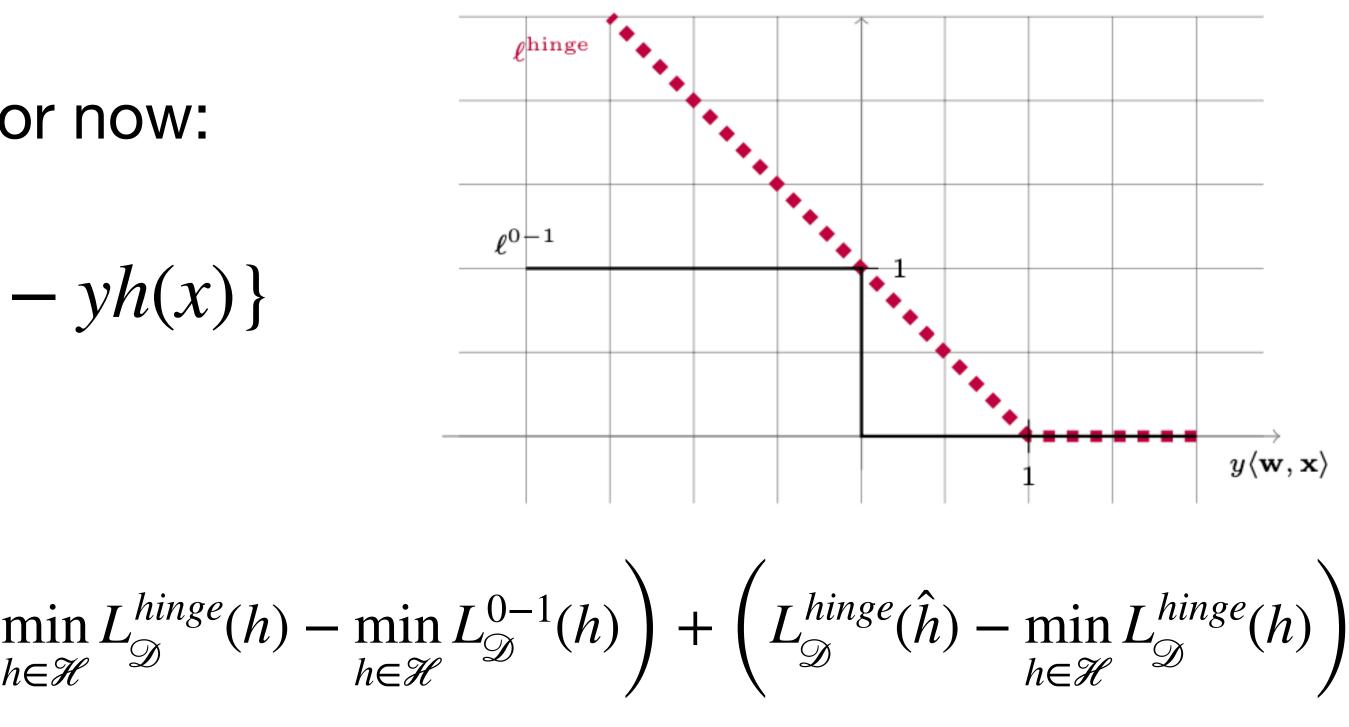
- The 0-1 loss is not convex
- Hinge loss is: $\ell(h, (x, y)) = \max\{0, 1 yh(x)\}$
- Also, $\ell^{0-1}(h, z) \leq \ell^{hinge}(h, z)$



- The 0-1 loss is not convex
- Hinge loss is: $\ell(h, (x, y)) = \max\{0, 1 yh(x)\}$
- Also, $\ell^{0-1}(h, z) \leq \ell^{hinge}(h, z)$
 - So, $L^{0-1}_{\mathcal{D}}(h) \leq L^{hinge}_{\mathcal{D}}(h)$



- The 0-1 loss is not convex
- Hinge loss is: $\ell(h, (x, y)) = \max\{0, 1 yh(x)\}$
- Also, $\ell^{0-1}(h, z) \leq \ell^{hinge}(h, z)$
 - So, $L^{0-1}_{\mathcal{D}}(h) \leq L^{hinge}_{\mathcal{D}}(h)$
- $L^{0-1}_{\mathscr{D}}(\hat{h}) L^{0-1,*}_{\mathscr{D}} \leq \left(\min_{h \in \mathscr{H}} L^{0-1}_{\mathscr{D}}(h) L^{0-1,*}_{\mathscr{D}}\right) + \left(\prod_{h \in \mathscr{H}} L^{0-1}_{\mathscr{D}}(h) L^{0-1,*}_{\mathscr{D}}\right)$



$$\min_{h \in \mathcal{H}} L^{hinge}_{\mathcal{D}}(h) - \min_{h \in \mathcal{H}} L^{0-1}_{\mathcal{D}}(h) + \left(L^{hinge}_{\mathcal{D}}(\hat{h}) - \min_{h \in \mathcal{H}} L^{hinge}_{\mathcal{D}}(\hat{h}) - \min_{h \in \mathcal{H}} L^{hinge}_{\mathcal{D}}(\hat{h}) \right)$$

- A subgradient of f at w is a vector v such that the tangent with normal v lies below f:
 - For all u in the domain of f, $f(u) \ge f(w) + \langle u w, v \rangle$

- - For all u in the domain of f, $f(u) \ge f(u)$
 - The subdifferential at w, $\partial f(w)$, is the set of all valid subgradients

$$f(w) + \langle u - w, v \rangle$$

- - For all u in the domain of f, $f(u) \ge 1$
 - The subdifferential at w, $\partial f(w)$, is the set of all valid subgradients
 - (SSBD call this the "differential set" for some reason)

$$f(w) + \langle u - w, v \rangle$$

- - For all u in the domain of f, $f(u) \ge 1$
 - The subdifferential at w, $\partial f(w)$, is the set of all valid subgradients
 - (SSBD call this the "differential set" for some reason)
- If f is differentiable at w, the gradient is the only subderivative there

$$f(w) + \langle u - w, v \rangle$$

- - For all u in the domain of f, $f(u) \ge 1$
 - The subdifferential at w, $\partial f(w)$, is the set of all valid subgradients
 - (SSBD call this the "differential set" for some reason)
- If f is differentiable at w, the gradient is the only subderivative there
- Can have more than one

$$f(w) + \langle u - w, v \rangle$$

- - For all u in the domain of f, $f(u) \ge 1$
 - The subdifferential at w, $\partial f(w)$, is the set of all valid subgradients
 - (SSBD call this the "differential set" for some reason)
- If f is differentiable at w, the gradient is the only subderivative there
- Can have more than one
- Subdifferential is always a nonempty, compact, convex set

$$f(w) + \langle u - w, v \rangle$$

- - For all u in the domain of f, $f(u) \ge 1$
 - The subdifferential at w, $\partial f(w)$, is the set of all valid subgradients
 - (SSBD call this the "differential set" for some reason)
- If f is differentiable at w, the gradient is the only subderivative there
- Can have more than one
- Subdifferential is always a nonempty, compact, convex set
- A convex f is ρ -Lipschitz (on a convex open set) iff all of its subgradients have $\|v\| \leq \rho$

$$f(w) + \langle u - w, v \rangle$$

- - For all u in the domain of f, $f(u) \ge 1$
 - The subdifferential at w, $\partial f(w)$, is the set of all valid subgradients
 - (SSBD call this the "differential set" for some reason)
- If f is differentiable at w, the gradient is the only subderivative there
- Can have more than one
- Subdifferential is always a nonempty, compact, convex set
- A convex f is ρ -Lipschitz (on a convex open set) iff all of its subgradients have $\|v\| \leq \rho$
- Subgradient descent: instead of a gradient, pick any subgradient

$$f(w) + \langle u - w, v \rangle$$

- - For all u in the domain of f, $f(u) \ge f(u)$
 - The subdifferential at w, $\partial f(w)$, is the set of all valid subgradients
 - (SSBD call this the "differential set" for some reason)
- If f is differentiable at w, the gradient is the only subderivative there
- Can have more than one
- Subdifferential is always a nonempty, compact, convex set
- A convex f is ρ -Lipschitz (on a convex open set) iff all of its subgradients have $\|v\| \leq \rho$
- Subgradient descent: instead of a gradient, pick any subgradient
 - The analysis is exactly the same

$$f(w) + \langle u - w, v \rangle$$

- - For all u in the domain of f, $f(u) \ge f(u)$
 - The subdifferential at w, $\partial f(w)$, is the set of all valid subgradients
 - (SSBD call this the "differential set" for some reason)
- If f is differentiable at w, the gradient is the only subderivative there
- Can have more than one
- Subdifferential is always a nonempty, compact, convex set
- A convex f is ρ -Lipschitz (on a convex open set) iff all of its subgradients have $\|v\| \leq \rho$
- Subgradient descent: instead of a gradient, pick any subgradient
 - The analysis is exactly the same
 - (kind of) what PyTorch/etc do for ReLU functions anyway!

$$f(w) + \langle u - w, v \rangle$$

- - For all u in the domain of f, $f(u) \ge f(u)$
 - The subdifferential at w, $\partial f(w)$, is the set of all valid subgradients
 - (SSBD call this the "differential set" for some reason)
- If f is differentiable at w, the gradient is the only subderivative there
- Can have more than one
- Subdifferential is always a nonempty, compact, convex set
- Subgradient descent: instead of a gradient, pick any subgradient
 - The analysis is exactly the same
 - (kind of) what PyTorch/etc do for ReLU functions anyway!

• A subgradient of f at w is a vector v such that the tangent with normal v lies below f:

$$f(w) + \langle u - w, v \rangle$$

• A convex f is ρ -Lipschitz (on a convex open set) iff all of its subgradients have $\|v\| \leq \rho$

For the real details: "On Correctness of Automatic Differentiation for Non-Differentiable Functions"

• What if gradient descent takes us outside of \mathcal{H} ?

- What if gradient descent takes us outside of $\mathcal{H}?$
 - Remember, ${\mathscr H}$ should be bounded...

outside of *H*? ded...

- What if gradient descent takes us outside of $\mathcal{H}?$
 - Remember, ${\mathscr H}$ should be bounded...
- Projected gradient descent: after each gradient update, project back
- s outside of \mathcal{H} ? ded...

- What if gradient descent takes us outside of $\mathcal{H}?$
 - Remember, ${\mathscr H}$ should be bounded...
- Projected gradient descent: after each gradient update, project back • $w^+ = \operatorname{proj}_{\mathscr{H}} (w - \eta \nabla f(w))$ $\operatorname{proj}_{\mathscr{H}} (w) = \operatorname{argmin}_{\hat{w} \in \mathscr{H}} \|\hat{w} - w\|$
- outside of *H*? ded...

- What if gradient descent takes us outside of $\mathcal{H}?$
 - Remember, ${\mathscr H}$ should be bounded...
- Projected gradient descent: after each gradient update, project back • $w^+ = \operatorname{proj}_{\mathscr{H}} (w - \eta \nabla f(w)) \quad \operatorname{proj}_{\mathscr{H}} (w) = \operatorname{argmin}_{\hat{w} \in \mathscr{H}} \|\hat{w} - w\|$

• For $\mathscr{H} = \{w : \|w\| \le B\}$, proj

outside of *H*? ded...

$$j_{\mathscr{H}}(w) = \begin{cases} w & \text{if } ||w|| \leq B \\ \frac{B}{||w||} w & \text{otherwise} \end{cases}$$

- What if gradient descent takes us outside of \mathscr{H} ?
 - Remember, \mathcal{H} should be bounded...
- Projected gradient descent: after each gradient update, project back • $w^+ = \operatorname{proj}_{\mathscr{H}}(w - \eta \nabla f(w))$ $\operatorname{proj}_{\mathscr{H}}(w) = \operatorname{argmin}_{\hat{w} \in \mathscr{H}} \|\hat{w} - w\|$

- For $\mathscr{H} = \{w : ||w|| \le B\}$, proj
- Analysis is again basically the same

$$j_{\mathscr{H}}(w) = \begin{cases} w & \text{if } ||w|| \leq B \\ \frac{B}{||w||} w & \text{otherwise} \end{cases}$$

• SGD: why bother computing $L_S(w)$ on the full S every time?

- SGD: why bother computing $L_S(w)$ on the full S every time?

• Instead, "pure SGD" picks a fresh z_i and steps to $w^+ = w - \eta \nabla_w \ell(w, z_i)$

- SGD: why bother computing $L_S(w)$ on the full S every time?
 - - or, rather, on a direction in $\partial_w \ell(w, z_i)$

• Instead, "pure SGD" picks a fresh z_i and steps to $w^+ = w - \eta \nabla_w \ell(w, z_i)$

- SGD: why bother computing $L_{S}(w)$ on the full S every time?
 - Instead, "pure SGD" picks a fresh z_i and steps to $w^+ = w \eta \nabla_w \ell(w, z_i)$ • or, rather, on a direction in $\partial_w \ell(w, z_i)$

 - or, rather, any vector \hat{v} such that $\mathbb{E}[\hat{v} \mid w] \in \partial_w L_{\mathcal{D}}(w)$

- SGD: why bother computing $L_S(w)$ on the full S every time?
 - Instead, "pure SGD" picks a fresh z_i and steps to $w^+ = w \eta \nabla_w \ell(w, z_i)$
- or, rather, on a direction in $\partial_w \ell(w, z_i)$
 - or, rather, any vector \hat{v} such that $\mathbb{E}[\hat{v} \mid w] \in \partial_w L_{\infty}(w)$
 - In general, for an objective f(w) with constraint set \mathcal{M} :

- SGD: why bother computing $L_{S}(w)$ on the full S every time?
 - Instead, "pure SGD" picks a fresh z_i and steps to $w^+ = w \eta \nabla_w \ell(w, z_i)$
- or, rather, on a direction in $\partial_w \ell(w, z_i)$
 - or, rather, any vector \hat{v} such that $\mathbb{E}[\hat{v} \mid w] \in \partial_w L_{\mathcal{D}}(w)$
 - In general, for an objective f(w) with constraint set \mathcal{M} :
 - Start at some $w^{(1)}$, say 0

- SGD: why bother computing $L_S(w)$ on the full S every time?
 - Instead, "pure SGD" picks a fresh z_i and steps to $w^+ = w \eta \nabla_w \ell(w, z_i)$
- or, rather, on a direction in $\partial_w \ell(w, z_i)$
 - or, rather, any vector \hat{v} such that $\mathbb{E}[\hat{v} \mid w] \in \partial_w L_{\infty}(w)$
 - In general, for an objective f(w) with constraint set \mathcal{M} :
 - Start at some $w^{(1)}$, say 0
 - Get a random $\hat{g}^{(t)}$ such that $\mathbb{E}\hat{g}^{(t)} \in \partial f(w^{(t)})$

- SGD: why bother computing $L_S(w)$ on the full S every time?
 - Instead, "pure SGD" picks a fresh z_i and steps to $w^+ = w \eta \nabla_w \ell(w, z_i)$ • or, rather, on a direction in $\partial_w \ell(w, z_i)$
- - or, rather, any vector \hat{v} such that $\mathbb{E}[\hat{v} \mid w] \in \partial_w L_{\mathcal{D}}(w)$
 - In general, for an objective f(w) with constraint set \mathcal{M} :
 - Start at some $w^{(1)}$, say 0
 - Get a random $\hat{g}^{(t)}$ such that $\mathbb{E}\hat{g}^{(t)}$
 - Set $w^{(t+1)} = \operatorname{proj}_{\mathscr{W}} (w^{(t)} \eta^{(t)} \hat{g})$

$$\stackrel{t)}{\in} \partial f(w^{(t)})$$

- SGD: why bother computing $L_S(w)$ on the full S every time?
 - Instead, "pure SGD" picks a fresh z_i and steps to $w^+ = w \eta \nabla_w \ell(w, z_i)$ • or, rather, on a direction in $\partial_w \ell(w, z_i)$
- - or, rather, any vector \hat{v} such that $\mathbb{E}[\hat{v} \mid w] \in \partial_w L_{\mathcal{D}}(w)$
 - In general, for an objective f(w) with constraint set \mathcal{M} :
 - Start at some $w^{(1)}$, say 0
 - Get a random $\hat{g}^{(t)}$ such that $\mathbb{E}\hat{g}^{(t)}$
 - Set $w^{(t+1)} = \operatorname{proj}_{\mathscr{W}} (w^{(t)} \eta^{(t)} \hat{g})$
 - Return $w^{(T)}$, or $\frac{1}{T} \sum_{t=1}^{T} w^{(t)}$, or whatever

$$\stackrel{t)}{\in} \partial f(w^{(t)})$$

SGD for Lipschitz objectives

sup $||w|| \le B$, $\mathbb{E}[||\hat{g}^{(t)}||^2] \le G^2$ for all *t*, and $\eta^{(t)} = c/\sqrt{t}$: $w \in \mathcal{H}$

 $\mathbb{E}[f(w^{(T)})] - f(w^*) \leq 1$

Theorem (Shamir and Zhang, ICML 2013): if f is convex, minimized at $w^* \in \mathcal{H}$,

$$\left(\frac{4B^2}{c} + cG^2\right)\frac{2 + \log T}{\sqrt{T}}$$

SGD for Lipschitz objectives

sup $||w|| \le B$, $\mathbb{E}[||\hat{g}^{(t)}||^2] \le G^2$ for all *t*, and $\eta^{(t)} = c/\sqrt{t}$: $w \in \mathcal{H}$

$\mathbb{E}[f(w^{(T)})] - f(w^*) \leq 1$

but... I think the proof might be wrong? or I was too tired last night to understand :(

Theorem (Shamir and Zhang, ICML 2013): if f is convex, minimized at $w^* \in \mathcal{H}$,

$$\left(\frac{4B^2}{c} + cG^2\right)\frac{2 + \log T}{\sqrt{T}}$$

SGD for Lipschitz objectives

sup $||w|| \le B$, $\mathbb{E}[||\hat{g}^{(t)}||^2] \le G^2$ for all *t*, and $\eta^{(t)} = c/\sqrt{t}$: $w \in \mathcal{H}$

$\mathbb{E}[f(w^{(T)})] - f(w^*) \leq 1$

but... I think the proof might be wrong? or I was too tired last night to understand :(

SSBD Theorem 14.8 gives $\mathbb{E}[f(\bar{w})] - f(\bar{w})$

Theorem (Shamir and Zhang, ICML 2013): if f is convex, minimized at $w^* \in \mathcal{H}$,

$$\left(\frac{4B^2}{c} + cG^2\right)\frac{2 + \log T}{\sqrt{T}}$$

$$\tilde{P}(w^*) \leq \frac{B\rho}{\sqrt{T}}$$
 for $\eta = \frac{B}{\rho\sqrt{T}}$, \bar{w} the average

Theorem (Shamir and Zhang, ICML 2013): if f is λ -strongly convex, $\mathbb{E}[f(w_T)] - f(w^*) \le \frac{17cG^2(1 + \log T)}{\lambda T}$

minimized at $w^* \in \mathscr{H}$, $\mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq G^2$ for all t, and $\eta^{(t)} = c/(\lambda t)$ for $c \geq 1$:

Theorem (Shamir and Zhang, ICML minimized at $w^* \in \mathcal{H}, \mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq$ $\mathbb{E}[f(w_T)] - f(w^*) \le -\frac{1}{2}$

• f is λ -strongly convex for a param

• $f(\alpha x + (1 - \alpha)y) \le \alpha f(y) + (1$

2013): if *f* is
$$\lambda$$
-**strongly** convex,
 $\leq G^2$ for all *t*, and $\eta^{(t)} = c/(\lambda t)$ for $c \geq 1$:
 $17cG^2(1 + \log T)$
 λT

Heter
$$\lambda > 0$$
 if:
 $-\alpha f(y) - \frac{1}{2}\lambda\alpha(1-\alpha)||x-y||^2$

Theorem (Shamir and Zhang, ICML minimized at $w^* \in \mathcal{H}$, $\mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq$ $\mathbb{E}[f(w_T)] - f(w^*) \le -\frac{1}{2}$

• f is λ -strongly convex for a param

- $f(\alpha x + (1 \alpha)y) \le \alpha f(y) + (1$
- $\langle \nabla f(x) \nabla f(y), x y \rangle \ge \lambda ||x|$

$$\frac{2013}{5}$$
 if f is λ -strongly convex,
 $\leq G^2$ for all t , and $\eta^{(t)} = c/(\lambda t)$ for $c \geq 1$:

$$\frac{17cG^2(1 + \log T)}{\lambda T}$$

heter
$$\lambda > 0$$
 if:
 $-\alpha f(y) - \frac{1}{2}\lambda\alpha(1-\alpha) ||x-y||^2$
 $-y||^2$

Theorem (Shamir and Zhang, ICML minimized at $w^* \in \mathcal{H}$, $\mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq$ $\mathbb{E}[f(w_T)] - f(w^*) \le -\frac{1}{2}$

• f is λ -strongly convex for a parameter $\lambda > 0$ if:

- $\langle \nabla f(x) \nabla f(y), x y \rangle \ge \lambda ||x y||^2$
- $\nabla^2 f \ge \lambda I$ i.e. $\nabla^2 f \lambda I \ge 0$ i.e. all eigenvalues of $\nabla^2 f$ are at least λ

$$\frac{2013}{5}$$
 if f is λ -strongly convex,
 $\leq G^2$ for all t , and $\eta^{(t)} = c/(\lambda t)$ for $c \geq 1$:

$$\frac{17cG^2(1 + \log T)}{\lambda T}$$

• $f(\alpha x + (1 - \alpha)y) \le \alpha f(y) + (1 - \alpha)f(y) - \frac{1}{2}\lambda\alpha(1 - \alpha)||x - y||^2$

Theorem: if *f* is λ -strongly convex and β -smooth, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}[\|\hat{g}^{(t)}\|^2] \le G^2$ for all *t*, and $\eta^{(t)} = c/(\lambda t)$ for $c \ge 1$:

 $\mathbb{E}[f(w_T)] - f(w^*) \le \frac{2\beta c^2 G^2}{\lambda^2 T}$

SGD for strongly convex objectives **Theorem:** if *f* is λ -strongly convex and β -smooth, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq G^2 \text{ for all } t, \text{ and } \eta^{(t)} =$

 $\mathbb{E}[f(w_T)] - f(w_T)] = f(w_T)$

Can assume c = 1 WLOG: If f is λ -strongly convex, it's also $\frac{\lambda}{c}$ -strongly convex; just use the c = 1 theorem with the (weaker) $\frac{\lambda}{c}$ strong convexity param

$$c/(\lambda t)$$
 for $c \geq 1$:

$$(w^*) \le \frac{2\beta c^2 G^2}{\lambda^2 T}$$

Theorem: if *f* is λ -strongly convex and β -smooth, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq G^2$ for all *t*, and $\eta^{(t)} = 1/(\lambda t)$:

 $\mathbb{E}[f(w_T)] - f(w_T)] = f(w_T)$

$$f(w^*) \le \frac{2\beta G^2}{\lambda^2 T}$$

SGD for strongly convex objectives **Theorem:** if *f* is λ -strongly convex and β -smooth, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq G^2$ for all *t*, and $\eta^{(t)} = 1/(\lambda t)$:

 $\mathbb{E}[f(w_T)] - f$

$$f(w^*) \le \frac{2\beta G^2}{\lambda^2 T}$$

Recall key property of β -smoothness: $f(v) \leq f(w) + \langle \nabla f(w), v - w \rangle + \frac{\beta}{2} ||v - w||^2$

SGD for strongly convex objectives **Theorem:** if *f* is λ -strongly convex and β -smooth, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq G^2$ for all *t*, and $\eta^{(t)} = 1/(\lambda t)$:

 $\mathbb{E}[f(w_T)] - f$

Recall key property of β -smoothness: f Plug in W_T , W^* : $f(W_T) - f(W^*) \leq \langle \nabla f(W_T) - f(W^*) \rangle \leq \langle \nabla f(W_T) -$

$$f(w^*) \le \frac{2\beta G^2}{\lambda^2 T}$$

$$f(v) \leq f(w) + \langle \nabla f(w), v - w \rangle + \frac{\beta}{2} ||v - w|$$

$$w^*), w_T - w^* \rangle + \frac{\beta}{2} ||w_T - w^*||^2$$

SGD for strongly convex objectives **Theorem:** if *f* is λ -strongly convex and β -smooth, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq G^2$ for all *t*, and $\eta^{(t)} = 1/(\lambda t)$:

 $\mathbb{E}[f(w_T)] -$

Recall key property of β -smoothness: f Plug in w_T , w^* : $f(w_T) - f(w^*) \le \langle \nabla f(v_T) - f(w^*) \rangle \le \langle \nabla f(v_T) - f(w^*) \rangle$ $=\frac{\beta}{2} \| w_T$

$$f(w^*) \le \frac{2\beta G^2}{\lambda^2 T}$$

$$f(v) \le f(w) + \langle \nabla f(w), v - w \rangle + \frac{\beta}{2} ||v - w|^{2}$$

w*), w_T - w* \rangle + \frac{\beta}{2} ||w_{T} - w* ||^{2}
T - w* ||^{2}

SGD for strongly convex objectives **Theorem:** if *f* is λ -strongly convex and β -smooth, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}[\|\hat{g}^{(t)}\|^2] \leq G^2$ for all t, and $\eta^{(t)} = 1/(\lambda t)$:

 $\mathbb{E}[f(w_T)] - f(w_T)] = f(w_T)$

Recall key property of β -smoothness: f Plug in w_T , w^* : $f(w_T) - f(w^*) \le \langle \nabla f(w_T) - f(w^*) - f(w^*) \le \langle \nabla f(w_T) - f(w^*) - f(w^*) - f(w^*) \le \langle \nabla f(w_T) - f(w^*) - f(w^*) - f(w^*) \le \langle \nabla f(w_T) - f(w^*) - f(w^*) - f(w^*) - f(w^*) - f(w^*) \le \langle \nabla f(w_T) - f(w^*) -$ $=\frac{\beta}{2} \| w_T$

Lemma: if f is λ -strongly convex, mini

and $\eta^{(t)} = 1/(\lambda t)$, then $\mathbb{E} ||w_T - w^*|$

$$\tilde{k}(w^*) \leq \frac{2\beta G^2}{\lambda^2 T}$$

$$f(v) \le f(w) + \langle \nabla f(w), v - w \rangle + \frac{\beta}{2} ||v - w|^{2}$$

w*), w_T - w* \rangle + \frac{\beta}{2} ||w_{T} - w* ||^{2}
T - w* ||^{2}

$$\begin{array}{l} \text{imized at } w^* \in \mathscr{H}, \mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq G^2 \text{ for a} \\ \left\|\|^2\right\| \leq \frac{4G^2}{\lambda^2 T}. \end{array}$$

Assumptions: $f\lambda$ -strongly convex, $\mathbb{E}[||g||^2] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$

Assumptions: $f\lambda$ -strongly convex, $\mathbb{E}[||g||^2] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$ $\mathbb{E}[||w_{t+1} - w^*||^2]$

Assumptions: $f \lambda$ -strongly convex, $\begin{bmatrix} \|w_{t+1} - w^*\|^2 \end{bmatrix} = \mathbb{E} \left[\|\operatorname{proj}_{\mathscr{W}}(w_t - w^*)\|^2 \right]$

$$\mathbb{E}[\|g\|^2] \le G^2, w^{(0)} = 0, \eta^{(t)} = 1/(\lambda t)$$

- $\eta_t \hat{g}_t - w^* \|^2$

Assumptions: $f \lambda$ -strongly convex, [$\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] = \mathbb{E}\left[\|\operatorname{proj}_{\mathscr{W}}(w_t - \xi_t) - \mathbb{E}\left[\|w_t - \eta_t \hat{g}_t - \eta_t \hat{g}_t\right]\right]$

$$\mathbb{E} [\|g\|^2] \le G^2, w^{(0)} = 0, \eta^{(t)} = 1/(\lambda t)$$

- $\eta_t \hat{g}_t - w^* \|^2$
- $w^* \|^2$ since \mathscr{W} is convex

Assumptions: $f \lambda$ -strongly convex, $\mathbb{E} \left[\|w_{t+1} - w^*\|^2 \right] = \mathbb{E} \left[\|\text{proj}_{\mathscr{W}}(w_t - s_t)\|^2 \right]$ $\leq \mathbb{E} \left[\|w_t - \eta_t \hat{g}_t - s_t\|^2 \right]$ $= \mathbb{E} \left[\|w_t - w^*\|^2 \right]$

$$\mathbb{E}\left[\|g\|^{2}\right] \leq G^{2}, w^{(0)} = 0, \eta^{(t)} = 1/(\lambda t)$$

$$-\eta_{t}\hat{g}_{t}) - w^{*}\|^{2}$$

$$-w^{*}\|^{2} \qquad \text{since } \mathscr{W} \text{ is convex}$$

$$^{2} - 2\eta_{t}\mathbb{E}\left[\langle\hat{g}_{t}, w_{t} - w^{*}\rangle\right] + \eta_{t}^{2}\mathbb{E}\left[\|\hat{g}_{t}\|^{2}\right]$$

Assumptions: $f \lambda$ -strongly convex, $\mathbb{E} \left[\|w_{t+1} - w^*\|^2 \right] = \mathbb{E} \left[\|\text{proj}_{\mathscr{W}}(w_t - s_t)\|^2 \right]$ $\leq \mathbb{E} \left[\|w_t - \eta_t \hat{g}_t - s_t\|^2 \right]$ $= \mathbb{E} \left[\|w_t - w^*\|^2 \right]$

 $\mathbb{E}[\langle \hat{g}_t, w_t - w^* \rangle] = \mathbb{E}_{w_t} \left[\mathbb{E}_{\hat{g}_t} \left[\langle \hat{g}_t, w_t - w \rangle \right] \right]$

$$\mathbb{E}\left[\|g\|^{2}\right] \leq G^{2}, w^{(0)} = 0, \eta^{(t)} = 1/(\lambda t)$$

$$-\eta_{t}\hat{g}_{t}) - w^{*}\|^{2}$$

$$-w^{*}\|^{2} \qquad \text{since } \mathscr{W} \text{ is convex}$$

$$^{2} - 2\eta_{t}\mathbb{E}\left[\langle\hat{g}_{t}, w_{t} - w^{*}\rangle\right] + \eta_{t}^{2}\mathbb{E}\left[\|\hat{g}_{t}\|^{2}\right]$$

$$\langle v^* \rangle \mid w_t \end{bmatrix}$$

Assumptions: $f \lambda$ -strongly convex, $\mathbb{E} \left[\|w_{t+1} - w^*\|^2 \right] = \mathbb{E} \left[\|\operatorname{proj}_{\mathscr{W}}(w_t - s_t)\|^2 \right]$ $\leq \mathbb{E} \left[\|w_t - \eta_t \hat{g}_t - s_t\|^2 \right]$ $= \mathbb{E} \left[\|w_t - w^*\|^2 \right]$

$$\mathbb{E}[\langle \hat{g}_t, w_t - w^* \rangle] = \mathbb{E}_{w_t} \left[\mathbb{E}_{\hat{g}_t} \left[\langle \hat{g}_t, w_t - w^* \rangle \mid w_t \right] \right]$$
$$= \mathbb{E}_{w_t} \left[\langle g_t, w_t - w^* \rangle \right]$$

$$\mathbb{E}\left[\|g\|^{2}\right] \leq G^{2}, w^{(0)} = 0, \eta^{(t)} = 1/(\lambda t)$$

$$-\eta_{t}\hat{g}_{t}) - w^{*}\|^{2}$$

$$-w^{*}\|^{2} \qquad \text{since } \mathscr{W} \text{ is convex}$$

$$^{2} - 2\eta_{t}\mathbb{E}\left[\langle\hat{g}_{t}, w_{t} - w^{*}\rangle\right] + \eta_{t}^{2}\mathbb{E}\left[\|\hat{g}_{t}\|^{2}\right]$$

for some $g_t \in \partial f(w_t)$

Assumptions:
$$f \lambda$$
-strongly convex, $\mathbb{E}[||g||^2] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$
 $\mathbb{E}[||w_{t+1} - w^*||^2] = \mathbb{E}[||\operatorname{proj}_{\mathscr{W}}(w_t - \eta_t \hat{g}_t) - w^*||^2]$
 $\leq \mathbb{E}[||w_t - \eta_t \hat{g}_t - w^*||^2]$ since \mathscr{W} is convex
 $= \mathbb{E}[||w_t - w^*||^2] - 2\eta_t \mathbb{E}[\langle \hat{g}_t, w_t - w^* \rangle] + \eta_t^2 \mathbb{E}[||\hat{g}_t||^2]$

$$\mathbb{E}[\langle \hat{g}_t, w_t - w^* \rangle] = \mathbb{E}_{w_t} \left[\mathbb{E}_{\hat{g}_t} \left[\langle \hat{g}_t, w_t - w^* \rangle \mid w_t \right] \right]$$
$$= \mathbb{E}_{w_t} \left[\langle g_t, w_t - w^* \rangle \right]$$
$$= \mathbb{E}_{w_t} \left[\langle g_t - \nabla f(w^*), w_t - w^* \rangle \right]$$

for some $g_t \in \partial f(w_t)$

Assumptions: $f \lambda$ -strongly convex, $\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] = \mathbb{E}\left[\|\operatorname{proj}_{\mathcal{W}}(w_t - w^*)\|^2\right]$ $\leq \mathbb{E} \left[\| w_t - \eta_t \hat{g}_t - \eta_t \hat{g}_t \right]$ $= \mathbb{E} \left[\| w_t - w^* \|^2 \right]$

$$\begin{split} \mathbb{E}[\langle \hat{g}_t, w_t - w^* \rangle] &= \mathbb{E}_{w_t} \left[\mathbb{E}_{\hat{g}_t} \left[\langle \hat{g}_t, w_t - w^* \rangle \mid w_t \right] \right] \\ &= \mathbb{E}_{w_t} \left[\langle g_t, w_t - w^* \rangle \right] \\ &= \mathbb{E}_{w_t} \left[\langle g_t - \nabla f(w^*), w_t - w^* \rangle \right] \\ &\geq \lambda ||w_t - w^*||^2 \end{split}$$

$$\mathbb{E}\left[\|g\|^{2}\right] \leq G^{2}, w^{(0)} = 0, \eta^{(t)} = 1/(\lambda t)$$

$$-\eta_{t}\hat{g}_{t}) - w^{*}\|^{2}$$

$$-w^{*}\|^{2} \qquad \text{since } \mathscr{W} \text{ is convex}$$

$$2 - 2\eta_{t}\mathbb{E}\left[\langle \hat{g}_{t}, w_{t} - w^{*} \rangle\right] + \eta_{t}^{2}\mathbb{E}\left[\|\hat{g}_{t}\|^{2}\right]$$

for some $g_t \in \partial f(w_t)$

first-order strong convexity def

Assumptions: $f \lambda$ -strongly convex, $\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] = \mathbb{E}\left[\|\operatorname{proj}_{\mathcal{W}}(w_t)\|^2\right]$ $\leq \mathbb{E} \left[\| w_t - \eta_t \hat{g}_t - \eta_t \hat{g}_t \right]$ $= \mathbb{E} \left[\| w_t - w^* \|^2 \right]$ $\leq (1 - 2\eta_t \lambda) \mathbb{E} \left[\parallel \right]$

$$\begin{split} \mathbb{E}[\langle \hat{g}_t, w_t - w^* \rangle] &= \mathbb{E}_{w_t} \left[\mathbb{E}_{\hat{g}_t} \left[\langle \hat{g}_t, w_t - w^* \rangle \mid w_t \right] \right] \\ &= \mathbb{E}_{w_t} \left[\langle g_t, w_t - w^* \rangle \right] \\ &= \mathbb{E}_{w_t} \left[\langle g_t - \nabla f(w^*), w_t - w^* \rangle \right] \\ &\geq \lambda \|w_t - w^*\|^2 \end{split}$$

$$\mathbb{E}[\|g\|^{2}] \leq G^{2}, w^{(0)} = 0, \eta^{(t)} = 1/(\lambda t)$$

- $\eta_{t}\hat{g}_{t}) - w^{*}\|^{2}]$
- $w^{*}\|^{2}$] since \mathscr{W} is convex
 $[2^{2}] - 2\eta_{t}\mathbb{E}[\langle \hat{g}_{t}, w_{t} - w^{*} \rangle] + \eta_{t}^{2}\mathbb{E}[\|\hat{g}_{t}\|^{2}]$
 $|w_{t} - w^{*}\|^{2}] + \eta_{t}^{2}G^{2}$

 $\langle w^* \rangle \mid w_t]$

for some $g_t \in \partial f(w_t)$

first-order strong convexity def

Assumptions: $f \lambda$ -strongly convex, $\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] = \mathbb{E}\left[\|\operatorname{proj}_{\mathcal{M}}(w_t)\|^2\right]$ $\leq \mathbb{E} \left| \| w_t - \eta_t \hat{g}_t \right|$ $= \mathbb{E} \left\| \| w_t - w^* \|^2 \right\|$ $\leq (1 - 2\eta_t \lambda) \mathbb{E} \|$ $= \left(1 - \frac{2}{t}\right) \mathbb{E}\left[\|w_t^{*}\right|$ $\mathbb{E}[\langle \hat{g}_t, w_t - w^* \rangle] = \mathbb{E}_{w_t} \left[\mathbb{E}_{\hat{g}_t} \left[\langle \hat{g}_t, w_t - w \rangle \right] \right]$ $= \mathbb{E}_{w_t} \left| \left\langle g_t, w_t - w^* \right\rangle \right|$ $= \mathbb{E}_{w_t} \left| \langle g_t - \nabla f(w^*), w_t - w^* \rangle \right|$ $\geq \lambda \| w_t - w^* \|^2$

$$\mathbb{E} [\|g\|^{2}] \leq G^{2}, w^{(0)} = 0, \eta^{(t)} = 1/(\lambda t)$$

$$-\eta_{t} \hat{g}_{t}) - w^{*} \|^{2}]$$

$$-w^{*} \|^{2}] \qquad \text{since } \mathscr{W} \text{ is convex}$$

$$P^{2} - 2\eta_{t} \mathbb{E} [\langle \hat{g}_{t}, w_{t} - w^{*} \rangle] + \eta_{t}^{2} \mathbb{E} [\|\hat{g}_{t}\|^{2}]$$

$$|w_{t} - w^{*} \|^{2}] + \eta_{t}^{2} G^{2}$$

$$|w_{t} - w^{*} \|^{2}] + \frac{G^{2}}{\lambda^{2} t^{2}}$$

for some $g_t \in \partial f(w_t)$

first-order strong convexity def

Assumptions: $f \lambda$ -strongly convex, $\mathbb{E}[\|g\|^2] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$ WTS $\mathbb{E}[\|w_t - w^*\|^2] \leq \frac{4G^2}{\lambda^2 t}$

Assumptions: $f\lambda$ -strongly convex, $\mathbb{E}[||g||^2] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$ WTS $\mathbb{E}\left[\|w_t - w^*\|^2\right] \leq \frac{4G^2}{22t}$ have $\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] \le \left(1 - \frac{2}{t}\right) \mathbb{E}\left[\|w_t - w^*\|^2\right] + \frac{G^2}{\lambda^2 t^2}$

Assumptions:
$$f \lambda$$
-strongly convex, $\mathbb{E}[||g||^2] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$
WTS $\mathbb{E}[||w_t - w^*||^2] \leq \frac{4G^2}{\lambda^2 t}$
have $\mathbb{E}[||w_{t+1} - w^*||^2] \leq (1 - \frac{2}{t}) \mathbb{E}[||w_t - w^*||^2] + \frac{G^2}{\lambda^2 t^2}$
plugging in $t = 1$, $\mathbb{E}[||w_2 - w^*||^2] \leq (1 - \frac{2}{1}) \mathbb{E}[||w_1 - w^*||^2] + \frac{G^2}{\lambda^2 \cdot 1^2}$

have
$$\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] \le \left(1 - \frac{2}{t}\right) \mathbb{E}\left[$$

plugging in $t = 1$, $\mathbb{E}\left[\|w_2 - w^*\|^2\right]$
 $\mathbb{E}\left[\|w_1 - w^*\|\right]$

Assumptions: $f\lambda$ -strongly convex, $\mathbb{E}\left[\|g\|^2\right] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$ WTS $\mathbb{E}\left[\|w_t - w^*\|^2\right] \leq \frac{4G^2}{\lambda^2 t}$ $\left(1-\frac{2}{t}\right) \mathbb{E}\left[\|w_t - w^*\|^2\right] + \frac{G^2}{\lambda^2 t^2}$ $\left[\left\| w_{1} - \frac{2}{1} \right\| \right] \mathbb{E} \left[\left\| w_{1} - w^{*} \right\|^{2} \right] + \frac{G^{2}}{\lambda^{2} \cdot 1^{2}}$ $|^{2}] + \mathbb{E}\left[\|w_{2} - w^{*}\|^{2} \right] \leq \frac{G^{2}}{2^{2}}$

have
$$\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] \le \left(1 - \frac{2}{t}\right) \mathbb{E}\left[$$

plugging in $t = 1$, $\mathbb{E}\left[\|w_2 - w^*\|^2\right]$
 $\mathbb{E}\left[\|w_1 - w^*\|$
implies $\mathbb{E}\left[\|w_1 - w^*\|^2\right] \le \frac{4G^2}{\lambda^2 \cdot 1}$

Assumptions: $f\lambda$ -strongly convex, $\mathbb{E}\left[\|g\|^2\right] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$ WTS $\mathbb{E}\left[\|w_t - w^*\|^2\right] \leq \frac{4G^2}{2t}$ $\left[\| w_t - w^* \|^2 \right] + \frac{G^2}{2^{2t^2}}$ $\left[\left\| w_{1} - \frac{2}{1} \right\| \right] \mathbb{E} \left[\left\| w_{1} - w^{*} \right\|^{2} \right] + \frac{G^{2}}{\lambda^{2} \cdot 1^{2}}$ $|^{2}] + \mathbb{E}\left[\|w_{2} - w^{*}\|^{2} \right] \leq \frac{G^{2}}{2^{2}}$

have
$$\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] \le \left(1 - \frac{2}{t}\right) \mathbb{E}\left[$$

plugging in $t = 1$, $\mathbb{E}\left[\|w_2 - w^*\|^2\right]$
 $\mathbb{E}\left[\|w_1 - w^*\|$
implies $\mathbb{E}\left[\|w_1 - w^*\|^2\right] \le \frac{4G^2}{\lambda^2 \cdot 1}$

Assumptions: $f\lambda$ -strongly convex, $\mathbb{E}\left[\|g\|^2\right] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$ WTS $\mathbb{E}\left[\|w_t - w^*\|^2\right] \leq \frac{4G^2}{22t}$ $\left[\|w_t - w^*\|^2 \right] + \frac{G^2}{2^{2+2}}$ $\left[\left\| w_{1} - w^{*} \right\|^{2} \right] + \frac{G^{2}}{\lambda^{2} \cdot 1^{2}}$ $|^{2}] + \mathbb{E}\left[\|w_{2} - w^{*}\|^{2}\right] \leq \frac{G^{2}}{2^{2}}$ $\mathbb{E}\left[\|w_2 - w^*\|^2\right] \le \frac{4G^2}{22 - 2}$

have
$$\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] \le \left(1 - \frac{2}{t}\right) \mathbb{E}\left[$$

plugging in $t = 1$, $\mathbb{E}\left[\|w_2 - w^*\|^2\right]$
 $\mathbb{E}\left[\|w_1 - w^*\|$
implies $\mathbb{E}\left[\|w_1 - w^*\|^2\right] \le \frac{4G^2}{\lambda^2 \cdot 1}$

induction for $t \geq 3$: have

Assumptions: $f\lambda$ -strongly convex, $\mathbb{E}[||g||^2] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$ WTS $\mathbb{E}\left[\|w_t - w^*\|^2\right] \leq \frac{4G^2}{22t}$ $\left[\|w_t - w^*\|^2 \right] + \frac{G^2}{2^{2+2}}$ $\left[\left\| W_{1} - W^{*} \right\|^{2} \right] \leq \left(1 - \frac{2}{1} \right) \mathbb{E} \left[\left\| W_{1} - W^{*} \right\|^{2} \right] + \frac{G^{2}}{\lambda^{2} \cdot 1^{2}}$ $|^{2}] + \mathbb{E}\left[\|w_{2} - w^{*}\|^{2}\right] \leq \frac{G^{2}}{2^{2}}$ $\mathbb{E}\left[\|w_2 - w^*\|^2\right] \le \frac{4G^2}{22 \cdot 2}$

have
$$\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] \le \left(1 - \frac{2}{t}\right) \mathbb{E}\left[\|w_{t+1} - w^*\|^2\right]$$

plugging in $t = 1$, $\mathbb{E}\left[\|w_2 - w^*\|^2\right]$
 $\mathbb{E}\left[\|w_1 - w^*\|^2\right] \le \frac{4G^2}{\lambda^2 \cdot 1}$
induction for $t \ge 3$: have
 $\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] \le \left(1 - \frac{2}{t}\right) \frac{4G^2}{\lambda^2 t} + \frac{1}{\lambda^2 t}$

Assumptions: $f\lambda$ -strongly convex, $\mathbb{E}\left[\|g\|^2\right] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$ WTS $\mathbb{E}\left[\|w_t - w^*\|^2\right] \leq \frac{4G^2}{224}$ $\left[\|w_t - w^*\|^2 \right] + \frac{G^2}{2^{2+2}}$ $\left[2 \right] \leq \left(1 - \frac{2}{1} \right) \mathbb{E} \left[\|w_1 - w^*\|^2 \right] + \frac{G^2}{\lambda^2 \cdot 1^2}$ $|^{2}] + \mathbb{E}\left[\|w_{2} - w^{*}\|^{2}\right] \leq \frac{G^{2}}{2^{2}}$ $\mathbb{E}\left[\|w_2 - w^*\|^2\right] \le \frac{4G^2}{22 \cdot 2}$

 $\lambda^2 t^2$

have
$$\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] \le \left(1 - \frac{2}{t}\right) \mathbb{E}$$

plugging in $t = 1$, $\mathbb{E}\left[\|w_2 - w^*\|^2\right]$
 $\mathbb{E}\left[\|w_1 - w^*\|$
implies $\mathbb{E}\left[\|w_1 - w^*\|^2\right] \le \frac{4G^2}{\lambda^2 \cdot 1}$
induction for $t \ge 3$: have
 $\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] \le \left(1 - \frac{2}{t}\right) \frac{4G^2}{\lambda^2 t}$.

Assumptions: $f\lambda$ -strongly convex, $\mathbb{E}\left[\|g\|^2\right] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$ WTS $\mathbb{E}\left[\|w_t - w^*\|^2\right] \leq \frac{4G^2}{224}$ $\left[\|w_t - w^*\|^2 \right] + \frac{G^2}{2^{2+2}}$ $\left[2 \right] \leq \left(1 - \frac{2}{1} \right) \mathbb{E} \left[\|w_1 - w^*\|^2 \right] + \frac{G^2}{\lambda^2 \cdot 1^2}$ $|^{2}] + \mathbb{E}\left[\|w_{2} - w^{*}\|^{2} \right] \leq \frac{G^{2}}{2^{2}}$ $\mathbb{E}\left[\|w_2 - w^*\|^2\right] \le \frac{4G^2}{22 \cdot 2}$

$$\frac{G^2}{\lambda^2 t^2} = \frac{G^2}{\lambda^2} \left[\frac{4}{t} - \frac{8}{t^2} + \frac{1}{t^2} \right]$$

have
$$\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] \le \left(1 - \frac{2}{t}\right) \mathbb{E}\left[\|w_t - w^*\|^2\right] + \frac{G^2}{\lambda^2 t^2}$$

plugging in $t = 1$, $\mathbb{E}\left[\|w_2 - w^*\|^2\right] \le \left(1 - \frac{2}{1}\right) \mathbb{E}\left[\|w_1 - w^*\|^2\right] + \frac{G^2}{\lambda^2 \cdot 1^2}$
 $\mathbb{E}\left[\|w_1 - w^*\|^2\right] + \mathbb{E}\left[\|w_2 - w^*\|^2\right] \le \frac{G^2}{\lambda^2}$
implies $\mathbb{E}\left[\|w_1 - w^*\|^2\right] \le \frac{4G^2}{\lambda^2 \cdot 1}$ $\mathbb{E}\left[\|w_2 - w^*\|^2\right] \le \frac{4G^2}{\lambda^2 \cdot 2}$
induction for $t \ge 3$: have
 $\mathbb{E}\left[\|w_{t+1} - w^*\|^2\right] \le \left(1 - \frac{2}{t}\right) \frac{4G^2}{\lambda^2 t} + \frac{G^2}{\lambda^2 t^2} = \frac{G^2}{\lambda^2} \left[\frac{4}{t} - \frac{8}{t^2} + \frac{1}{t^2}\right] \le \frac{G^2}{\lambda^2} \left[\frac{4}{t+1}\right]$

Assumptions: $f\lambda$ -strongly convex, $\mathbb{E}[\|g\|^2] \leq G^2$, $w^{(0)} = 0$, $\eta^{(t)} = 1/(\lambda t)$ WTS $\mathbb{E}\left[\|w_t - w^*\|^2\right] \leq \frac{4G^2}{\lambda^2 t}$

SGD for strongly convex objectives

Theorem (Shamir and Zhang, ICML minimized at $w^* \in \mathcal{H}$, $\mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq$ $\mathbb{E}[f(w_T)] - f(w^*) \le \frac{1}{-1}$

Proof uses that lemma (which doesn't need β -smoothness) as a key step, but does some more tricks – read it if you're interested!

$$\frac{2013}{5}$$
: if f is λ -strongly convex,
 $\leq G^2$ for all t , and $\eta^{(t)} = c/(\lambda t)$ for $c \geq 1$:

$$\frac{17cG^2(1 + \log T)}{\lambda T}$$

Theorem: if f is λ -strongly convex and β -smooth, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq G^2$ for all t, and $\eta^{(t)} = c/(\lambda t)$ for $c \geq 1$:

 $\mathbb{E}[f(w_T)] - f(w_T)] = f(w_T)$

$$(w^*) \le \frac{2\beta c^2 G^2}{\lambda^2 T}$$

Theorem: if *f* is λ -strongly convex and β -smooth, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq G^2$ for all *t*, and $\eta^{(t)} = c/(\lambda t)$ for $c \geq 1$:

 $\mathbb{E}[f(w_T)] - f(w_T)] = f(w_T)$

- So, if:
 - $L_{\mathcal{D}}$ is λ -strongly convex
 - $L_{\mathcal{D}}$ is β -smooth (e.g. implied if
 - $\mathbb{E}\left[\|\hat{g}_t\|^2\right] \leq G^2$ (e.g. implied if
 - minimizer is inside ${\mathscr H}$

$$(w^*) \le \frac{2\beta c^2 G^2}{\lambda^2 T}$$

f
$$\ell(\cdot, z)$$
 is β -smooth)
f $\ell(\cdot, z)$ is G -Lipschitz)

Theorem: if *f* is λ -strongly convex and β -smooth, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}\left[\|\hat{g}^{(t)}\|^2\right] \leq G^2 \text{ for all } t, \text{ and } \eta^{(t)} =$

 $\mathbb{E}[f(w_T)] - f(w_T)] = f(w_T)$

- So, if:
 - L_{∞} is λ -strongly convex
 - L_{∞} is β -smooth (e.g. implied if
 - $\mathbb{E}\left[\|\hat{g}_t\|^2\right] \leq G^2$ (e.g. implied if
 - minimizer is inside \mathcal{H}
- then we have a bound on expected excess error for SGD
 - Needs $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ samples, since this analysis is for one-pass only

$$c/(\lambda t)$$
 for $c \ge 1$:

$$(w^*) \leq \frac{2\beta c^- G^-}{\lambda^2 T}$$

f
$$\ell(\cdot,z)$$
 is eta -smooth)
f $\ell(\cdot,z)$ is G -Lipschitz)

SSBD Theorem 14.11: if *f* is λ -strongly convex, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}[\|\hat{g}^{(t)}\|^2] \le G^2$ for all *t*, and $\eta^{(t)} = c/(\lambda t)$ for $c \ge 1$: $\mathbb{E}[f(\bar{w})] - f(w^*) \le \frac{cG^2}{2\lambda T}(1 + \log(T))$

SSBD Theorem 14.11: if *f* is λ -strongly convex, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}[\|\hat{g}^{(t)}\|^2] \le G^2$ for all *t*, and $\eta^{(t)} = c/(\lambda t)$ for $c \ge 1$:

 $\mathbb{E}[f(\bar{w})] - f(w^*) \le \frac{cG^2}{2\lambda T}(1 + \log(T))$

- So, if:
 - L_{∞} is λ -strongly convex
 - $\mathbb{E}\left[\|\hat{g}_t\|^2\right] \leq G^2$ (e.g. implied if $\ell(\cdot, z)$ is G-Lipschitz)
 - minimizer is inside \mathcal{H}

 $\mathbb{E}[\|\hat{g}^{(t)}\|^2] \le G^2$ for all *t*, and $\eta^{(t)} = c/(\lambda t)$ for $c \ge 1$:

- **SSBD Theorem 14.11:** if *f* is λ -strongly convex, minimized at $w^* \in \mathcal{H}$, $\mathbb{E}[f(\bar{w})] - f(w^*) \le \frac{cG^2}{2\lambda T}(1 + \log(T))$
- So, if:
 - L_{∞} is λ -strongly convex
 - $\mathbb{E}\left[\|\hat{g}_t\|^2\right] \leq G^2$ (e.g. implied if $\ell(\cdot, z)$ is *G*-Lipschitz)
 - minimizer is inside ${\mathscr H}$
- then we have a bound on expected excess error for average iterate of SGD $\begin{pmatrix} 1 \end{pmatrix}$ • Needs $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ samples, since this analysis is for one-pass only

Implications for learning **SSBD Theorem 14.8:** if f is convex, $\mathcal{H} = \{w : ||w|| \le B\}$, $w^* \in \operatorname{argmin}_{w \in \mathcal{H}} f(w)$, $\mathbb{E}[f(\bar{w})] - f(w^*) \le \frac{B\rho}{\sqrt{T}}.$

 $\Pr(\|\hat{g}_t\| \le \rho) = 1$ for all *t*, and $\eta = B/(\rho\sqrt{T})$, then

Implications for learning **SSBD Theorem 14.8:** if f is convex, $\mathscr{H} = \{w : ||w|| \le B\}$, $w^* \in \operatorname{argmin}_{w \in \mathscr{H}} f(w)$, $\mathbb{E}[f(\bar{w})] - f(w^*) \le \frac{B\rho}{\sqrt{T}}.$

 $\Pr(\|\hat{g}_t\| \le \rho) = 1$ for all *t*, and $\eta = B/(\rho\sqrt{T})$, then

- So, if:
 - L_{∞} is convex (e.g. implied if $\ell(\cdot, z)$ is convex)
 - $\|\hat{g}_t\| \leq \rho$ a.s. (e.g. implied if $\ell(\cdot, z)$ is G-Lipschitz)

Implications for learning **SSBD Theorem 14.8:** if f is convex, $\mathcal{H} = \{w : ||w|| \le B\}$, $w^* \in \operatorname{argmin}_{w \in \mathcal{H}} f(w)$, $\mathbb{E}[f(\bar{w})] - f(w^*) \le \frac{B\rho}{\sqrt{T}}.$

 $\Pr(\|\hat{g}_t\| \le \rho) = 1$ for all *t*, and $\eta = B/(\rho\sqrt{T})$, then

- So, if:
 - L_{\odot} is convex (e.g. implied if $\ell(\cdot, z)$ is convex)
 - $\|\hat{g}_t\| \leq \rho$ a.s. (e.g. implied if $\ell(\cdot, z)$ is G-Lipschitz)
- then we have a bound on expected excess error for SGD
 - Needs $\mathcal{O}\left(\frac{1}{c^2}\right)$ samples, since this analysis is for one-pass only $\langle e^{-} \rangle$
 - Covers the Convex-Lipschitz-Bounded case

SSBD Theorem 14.13: if $\ell(\cdot, z)$ is convex, β -smooth, and nonnegative, $\mathscr{H} = \{w : \|w\| \le B\}$, and η is constant, then for any w^* $\mathbb{E}[L_{\mathscr{D}}(\bar{w})] \le \frac{1}{1 - \eta\beta} \left(L_{\mathscr{D}}(w^*) + \frac{\|w^*\|^2}{2\eta T} \right).$

SSBD Theorem 14.13: if $\ell(\cdot, z)$ is convex, β -smooth, and nonnegative, $\mathcal{H} = \{w : \|w\| \leq B\}$, and η is constant, then for any w^* $\mathbb{E}[L_{\mathscr{D}}(\bar{w})] \leq \frac{1}{1 - \eta\beta} \left(L_{\mathscr{D}}(w^*) + \frac{\|w^*\|^2}{2\eta T} \right).$

 $\mathbb{E}[L_{\mathscr{D}}(\bar{w})] \leq \min_{w \in \mathscr{H}} L_{\mathscr{D}}(w) + \varepsilon.$

• So, if we take $\eta = 1/(\beta(1 + 3/\epsilon)), T \ge 12B^2\beta^2/\epsilon^2$, and assume $\ell(0,z) \le 1$,

SSBD Theorem 14.13: if $\ell(\cdot, z)$ is convex, β -smooth, and nonnegative, $\mathcal{H} = \{w : \|w\| \leq B\}$, and η is constant, then for any w^* $\mathbb{E}[L_{\mathscr{D}}(\bar{w})] \leq \frac{1}{1 - n\beta} \left(L_{\mathscr{D}}(w^*) + \frac{\|w^*\|^2}{2nT} \right).$

- So, if we take $\eta = 1/(\beta(1 + 3/\varepsilon)), T$ $\mathbb{E}[L_{\mathcal{D}}(\bar{w})] \leq \min L_{\mathcal{D}}(w) + \varepsilon.$ $w \in \mathcal{H}$
 - Covers the Convex-Smooth-Bounded case

$$\sum_{\mathcal{D}(W^{*})} + \frac{1}{2\eta T} \int \\ \geq 12B^2\beta^2/\varepsilon^2, \text{ and assume } \ell(0,z) \leq 1,$$

- Rate is better with strong convexity

- Rate is better with strong convexity
 - $\mathcal{O}(1/n)$ excess error, vs $\mathcal{O}(1/\sqrt{n})$ without

- Rate is better with strong convexity
 - $\mathcal{O}(1/n)$ excess error, vs $\mathcal{O}(1/\sqrt{n})$ without

One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems

• For gradient descent, the gap is enormous: $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ steps vs $\mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$

- Rate is better with strong convexity
 - $\mathcal{O}(1/n)$ excess error, vs $\mathcal{O}(1/\sqrt{n})$ without
- We didn't analyze multi-pass SGD

One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems

• For gradient descent, the gap is enormous: $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ steps vs $\mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$

- Rate is better with strong convexity
 - $\mathcal{O}(1/n)$ excess error, vs $\mathcal{O}(1/\sqrt{n})$ without • For gradient descent, the gap is enormous: $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ steps vs $\mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$
- We didn't analyze multi-pass SGD
 - Only looking at each data point once might be wasteful...

- Rate is better with strong convexity
 - $\mathcal{O}(1/n)$ excess error, vs $\mathcal{O}(1/\sqrt{n})$ without • For gradient descent, the gap is enormous: $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ steps vs $\mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$
- We didn't analyze multi-pass SGD
 - Only looking at each data point once might be wasteful...
 - But it's necessary in this framework

- Rate is better with strong convexity
 - $\mathcal{O}(1/n)$ excess error, vs $\mathcal{O}(1/\sqrt{n})$ without • For gradient descent, the gap is enormous: $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ steps vs $\mathcal{O}\left(\log\frac{1}{\epsilon}\right)$
- We didn't analyze multi-pass SGD
 - Only looking at each data point once might be wasteful...
 - But it's necessary in this framework
 - ERM with gradient descent does *not* always work

- Rate is better with strong convexity
 - $\mathcal{O}(1/n)$ excess error, vs $\mathcal{O}(1/\sqrt{n})$ without • For gradient descent, the gap is enormous: $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ steps vs $\mathcal{O}\left(\log\frac{1}{\epsilon}\right)$
- We didn't analyze multi-pass SGD
 - Only looking at each data point once might be wasteful...
 - But it's necessary in this framework
 - ERM with gradient descent does not always work
- "Early stopping" with one-pass SGD is a form of (implicit) regularization

- Rate is better with strong convexity
 - $\mathcal{O}(1/n)$ excess error, vs $\mathcal{O}(1/\sqrt{n})$ without • For gradient descent, the gap is enormous: $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ steps vs $\mathcal{O}\left(\log\frac{1}{\epsilon}\right)$
- We didn't analyze multi-pass SGD
 - Only looking at each data point once might be wasteful...
 - But it's necessary in this framework
 - ERM with gradient descent does *not* always work
- "Early stopping" with one-pass SGD is a form of (implicit) regularization
- After the break, *explicit* regularization:

- Rate is better with strong convexity
 - $\mathcal{O}(1/n)$ excess error, vs $\mathcal{O}(1/\sqrt{n})$ without • For gradient descent, the gap is enormous: $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ steps vs $\mathcal{O}\left(\log\frac{1}{\epsilon}\right)$
- We didn't analyze multi-pass SGD
 - Only looking at each data point once might be wasteful...
 - But it's necessary in this framework
 - ERM with gradient descent does *not* always work
- "Early stopping" with one-pass SGD is a form of (implicit) regularization
- After the break, *explicit* regularization:
 - makes things strongly convex

- Rate is better with strong convexity
 - $\mathcal{O}(1/n)$ excess error, vs $\mathcal{O}(1/\sqrt{n})$ without • For gradient descent, the gap is enormous: $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ steps vs $\mathcal{O}\left(\log\frac{1}{\epsilon}\right)$
- We didn't analyze multi-pass SGD

 - Only looking at each data point once might be wasteful... • But it's necessary in this framework
 - ERM with gradient descent does *not* always work
- "Early stopping" with one-pass SGD is a form of (implicit) regularization • After the break, *explicit* regularization:
- - makes things strongly convex
 - lets us learn even if we fully optimize on S

One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems

20

