
SGD
CPSC 532S: Modern Statistical Learning Theory


16 February 2022

cs.ubc.ca/~dsuth/532S/22/

1

https://www.cs.ubc.ca/~dsuth/532S/22/


Admin

• In hybrid mode now:

• Thursday office hours available both in-person (ICICS X563) and on Zoom 

• A2 due Friday night

• Groups of up to three, allowed separate per question

• If you don’t have a group and want one, post on Piazza (asap) 

• A1 grading: still allllllllmost done – sorry again 

2



Last time: convex learning problems

3



Last time: convex learning problems
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems

3



Last time: convex learning problems
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems
•  is a convex set (e.g. convex set of parameters in ), ℋ ℝd ∥w∥ ≤ B

3



Last time: convex learning problems
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems
•  is a convex set (e.g. convex set of parameters in ), ℋ ℝd ∥w∥ ≤ B
•  is -Lipschitz or -smoothℓ( ⋅ , z) ρ β

3



Last time: convex learning problems
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems
•  is a convex set (e.g. convex set of parameters in ), ℋ ℝd ∥w∥ ≤ B
•  is -Lipschitz or -smoothℓ( ⋅ , z) ρ β
• -smooth means that  is -Lipschitz β ∇ℓ( ⋅ , z) β

3



Last time: convex learning problems
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems
•  is a convex set (e.g. convex set of parameters in ), ℋ ℝd ∥w∥ ≤ B
•  is -Lipschitz or -smoothℓ( ⋅ , z) ρ β
• -smooth means that  is -Lipschitz β ∇ℓ( ⋅ , z) β

• Showed gradient descent can optimize convex -smooth functions in  stepsβ
Bβ
2ε

3



Last time: convex learning problems
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems
•  is a convex set (e.g. convex set of parameters in ), ℋ ℝd ∥w∥ ≤ B
•  is -Lipschitz or -smoothℓ( ⋅ , z) ρ β
• -smooth means that  is -Lipschitz β ∇ℓ( ⋅ , z) β

• Showed gradient descent can optimize convex -smooth functions in  stepsβ
Bβ
2ε

• SSBD 14.1.1 shows  steps for -Lipschitz functions
B2ρ2

ε2
ρ

3



Last time: convex learning problems
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded problems
•  is a convex set (e.g. convex set of parameters in ), ℋ ℝd ∥w∥ ≤ B
•  is -Lipschitz or -smoothℓ( ⋅ , z) ρ β
• -smooth means that  is -Lipschitz β ∇ℓ( ⋅ , z) β

• Showed gradient descent can optimize convex -smooth functions in  stepsβ
Bβ
2ε

• SSBD 14.1.1 shows  steps for -Lipschitz functions
B2ρ2

ε2
ρ

• We can run ERM efficiently…but does it work statistically?

3



One thing I forgot to say…

• Convexity implies that any local minimum is a global minimum

• We didn’t use this directly in the proof, but good to know! 

 

4



One thing I forgot to say…

• Convexity implies that any local minimum is a global minimum

• We didn’t use this directly in the proof, but good to know! 

 

• Strict convexity implies there’s only one global minimum

•   for 


• Hessian  implies strictly convex, but converse not true (e.g. )
f (αx1 + (1 − α)x2) > αf(x1) + (1 − α)f(x2) α ∈ (0,1)

≻ 0 f(x) = x4

4



Convex surrogate losses

There’s more to say, but just the basics for now:

5



Convex surrogate losses

There’s more to say, but just the basics for now:
• The 0-1 loss is not convex

5



Convex surrogate losses

There’s more to say, but just the basics for now:
• The 0-1 loss is not convex
• Hinge loss is: ℓ(h, (x, y)) = max{0,1 − yh(x)}

5



Convex surrogate losses

There’s more to say, but just the basics for now:
• The 0-1 loss is not convex
• Hinge loss is: ℓ(h, (x, y)) = max{0,1 − yh(x)}
• Also, ℓ0−1(h, z) ≤ ℓhinge(h, z)

5



Convex surrogate losses

There’s more to say, but just the basics for now:
• The 0-1 loss is not convex
• Hinge loss is: ℓ(h, (x, y)) = max{0,1 − yh(x)}
• Also, ℓ0−1(h, z) ≤ ℓhinge(h, z)
• So,  L0−1

𝒟 (h) ≤ Lhinge
𝒟 (h)

5



Convex surrogate losses

There’s more to say, but just the basics for now:
• The 0-1 loss is not convex
• Hinge loss is: ℓ(h, (x, y)) = max{0,1 − yh(x)}
• Also, ℓ0−1(h, z) ≤ ℓhinge(h, z)
• So,  L0−1

𝒟 (h) ≤ Lhinge
𝒟 (h)

• L0−1
𝒟 (ĥ) − L0−1,*

𝒟 ≤ (min
h∈ℋ

L0−1
𝒟 (h) − L0−1,*

𝒟 ) + (min
h∈ℋ

Lhinge
𝒟 (h) − min

h∈ℋ
L0−1

𝒟 (h)) + (Lhinge
𝒟 (ĥ) − min

h∈ℋ
Lhinge

𝒟 (h))

5



Subgradients
• A subgradient of  at  is a vector  such that the tangent with normal  lies below :f w v v f

6

https://arxiv.org/abs/2006.06903


Subgradients
• A subgradient of  at  is a vector  such that the tangent with normal  lies below :f w v v f
• For all  in the domain of ,       u f f(u) ≥ f(w) + ⟨u − w, v⟩

6

https://arxiv.org/abs/2006.06903


Subgradients
• A subgradient of  at  is a vector  such that the tangent with normal  lies below :f w v v f
• For all  in the domain of ,       u f f(u) ≥ f(w) + ⟨u − w, v⟩
• The subdifferential at , , is the set of all valid subgradientsw ∂f(w)

6

https://arxiv.org/abs/2006.06903


Subgradients
• A subgradient of  at  is a vector  such that the tangent with normal  lies below :f w v v f
• For all  in the domain of ,       u f f(u) ≥ f(w) + ⟨u − w, v⟩
• The subdifferential at , , is the set of all valid subgradientsw ∂f(w)
• (SSBD call this the “differential set” for some reason) 

6

https://arxiv.org/abs/2006.06903


Subgradients
• A subgradient of  at  is a vector  such that the tangent with normal  lies below :f w v v f
• For all  in the domain of ,       u f f(u) ≥ f(w) + ⟨u − w, v⟩
• The subdifferential at , , is the set of all valid subgradientsw ∂f(w)
• (SSBD call this the “differential set” for some reason) 

• If  is differentiable at , the gradient is the only subderivative theref w

6

https://arxiv.org/abs/2006.06903


Subgradients
• A subgradient of  at  is a vector  such that the tangent with normal  lies below :f w v v f
• For all  in the domain of ,       u f f(u) ≥ f(w) + ⟨u − w, v⟩
• The subdifferential at , , is the set of all valid subgradientsw ∂f(w)
• (SSBD call this the “differential set” for some reason) 

• If  is differentiable at , the gradient is the only subderivative theref w
• Can have more than one

6

https://arxiv.org/abs/2006.06903


Subgradients
• A subgradient of  at  is a vector  such that the tangent with normal  lies below :f w v v f
• For all  in the domain of ,       u f f(u) ≥ f(w) + ⟨u − w, v⟩
• The subdifferential at , , is the set of all valid subgradientsw ∂f(w)
• (SSBD call this the “differential set” for some reason) 

• If  is differentiable at , the gradient is the only subderivative theref w
• Can have more than one
• Subdifferential is always a nonempty, compact, convex set

6

https://arxiv.org/abs/2006.06903


Subgradients
• A subgradient of  at  is a vector  such that the tangent with normal  lies below :f w v v f
• For all  in the domain of ,       u f f(u) ≥ f(w) + ⟨u − w, v⟩
• The subdifferential at , , is the set of all valid subgradientsw ∂f(w)
• (SSBD call this the “differential set” for some reason) 

• If  is differentiable at , the gradient is the only subderivative theref w
• Can have more than one
• Subdifferential is always a nonempty, compact, convex set
• A convex  is -Lipschitz (on a convex open set) iff all of its subgradients have  f ρ ∥v∥ ≤ ρ

6

https://arxiv.org/abs/2006.06903


Subgradients
• A subgradient of  at  is a vector  such that the tangent with normal  lies below :f w v v f
• For all  in the domain of ,       u f f(u) ≥ f(w) + ⟨u − w, v⟩
• The subdifferential at , , is the set of all valid subgradientsw ∂f(w)
• (SSBD call this the “differential set” for some reason) 

• If  is differentiable at , the gradient is the only subderivative theref w
• Can have more than one
• Subdifferential is always a nonempty, compact, convex set
• A convex  is -Lipschitz (on a convex open set) iff all of its subgradients have  f ρ ∥v∥ ≤ ρ

• Subgradient descent: instead of a gradient, pick any subgradient

6

https://arxiv.org/abs/2006.06903


Subgradients
• A subgradient of  at  is a vector  such that the tangent with normal  lies below :f w v v f
• For all  in the domain of ,       u f f(u) ≥ f(w) + ⟨u − w, v⟩
• The subdifferential at , , is the set of all valid subgradientsw ∂f(w)
• (SSBD call this the “differential set” for some reason) 

• If  is differentiable at , the gradient is the only subderivative theref w
• Can have more than one
• Subdifferential is always a nonempty, compact, convex set
• A convex  is -Lipschitz (on a convex open set) iff all of its subgradients have  f ρ ∥v∥ ≤ ρ

• Subgradient descent: instead of a gradient, pick any subgradient
• The analysis is exactly the same

6

https://arxiv.org/abs/2006.06903


Subgradients
• A subgradient of  at  is a vector  such that the tangent with normal  lies below :f w v v f
• For all  in the domain of ,       u f f(u) ≥ f(w) + ⟨u − w, v⟩
• The subdifferential at , , is the set of all valid subgradientsw ∂f(w)
• (SSBD call this the “differential set” for some reason) 

• If  is differentiable at , the gradient is the only subderivative theref w
• Can have more than one
• Subdifferential is always a nonempty, compact, convex set
• A convex  is -Lipschitz (on a convex open set) iff all of its subgradients have  f ρ ∥v∥ ≤ ρ

• Subgradient descent: instead of a gradient, pick any subgradient
• The analysis is exactly the same
• (kind of) what PyTorch/etc do for ReLU functions anyway!

6

https://arxiv.org/abs/2006.06903


Subgradients
• A subgradient of  at  is a vector  such that the tangent with normal  lies below :f w v v f
• For all  in the domain of ,       u f f(u) ≥ f(w) + ⟨u − w, v⟩
• The subdifferential at , , is the set of all valid subgradientsw ∂f(w)
• (SSBD call this the “differential set” for some reason) 

• If  is differentiable at , the gradient is the only subderivative theref w
• Can have more than one
• Subdifferential is always a nonempty, compact, convex set
• A convex  is -Lipschitz (on a convex open set) iff all of its subgradients have  f ρ ∥v∥ ≤ ρ

• Subgradient descent: instead of a gradient, pick any subgradient
• The analysis is exactly the same
• (kind of) what PyTorch/etc do for ReLU functions anyway!

• For the real details: “On Correctness of Automatic Differentiation for Non-Differentiable Functions”
6

https://arxiv.org/abs/2006.06903


Projected gradient descent
• What if gradient descent takes us outside of ?ℋ

7



Projected gradient descent
• What if gradient descent takes us outside of ?ℋ
• Remember,  should be bounded… ℋ

7



Projected gradient descent
• What if gradient descent takes us outside of ?ℋ
• Remember,  should be bounded… ℋ

• Projected gradient descent: after each gradient update, project back

7



Projected gradient descent
• What if gradient descent takes us outside of ?ℋ
• Remember,  should be bounded… ℋ

• Projected gradient descent: after each gradient update, project back
•         w+ = projℋ(w − η∇f(w)) projℋ(w) = argminŵ∈ℋ∥ŵ − w∥

7



Projected gradient descent
• What if gradient descent takes us outside of ?ℋ
• Remember,  should be bounded… ℋ

• Projected gradient descent: after each gradient update, project back
•         w+ = projℋ(w − η∇f(w)) projℋ(w) = argminŵ∈ℋ∥ŵ − w∥

• For , ℋ = {w : ∥w∥ ≤ B} projℋ(w) = {
w if ∥w∥ ≤ B

B
∥w∥ w otherwise

7



Projected gradient descent
• What if gradient descent takes us outside of ?ℋ
• Remember,  should be bounded… ℋ

• Projected gradient descent: after each gradient update, project back
•         w+ = projℋ(w − η∇f(w)) projℋ(w) = argminŵ∈ℋ∥ŵ − w∥

• For , ℋ = {w : ∥w∥ ≤ B} projℋ(w) = {
w if ∥w∥ ≤ B

B
∥w∥ w otherwise

• Analysis is again basically the same

7



Stochastic gradient descent

8



Stochastic gradient descent
• SGD: why bother computing  on the full  every time?LS(w) S

8



Stochastic gradient descent
• SGD: why bother computing  on the full  every time?LS(w) S
• Instead, “pure SGD” picks a fresh  and steps to zi w+ = w − η∇wℓ(w, zi)

8



Stochastic gradient descent
• SGD: why bother computing  on the full  every time?LS(w) S
• Instead, “pure SGD” picks a fresh  and steps to zi w+ = w − η∇wℓ(w, zi)
• or, rather, on a direction in ∂wℓ(w, zi)

8



Stochastic gradient descent
• SGD: why bother computing  on the full  every time?LS(w) S
• Instead, “pure SGD” picks a fresh  and steps to zi w+ = w − η∇wℓ(w, zi)
• or, rather, on a direction in ∂wℓ(w, zi)
• or, rather, any vector  such that ̂v 𝔼[ ̂v ∣ w] ∈ ∂wL𝒟(w)

8



Stochastic gradient descent
• SGD: why bother computing  on the full  every time?LS(w) S
• Instead, “pure SGD” picks a fresh  and steps to zi w+ = w − η∇wℓ(w, zi)
• or, rather, on a direction in ∂wℓ(w, zi)
• or, rather, any vector  such that ̂v 𝔼[ ̂v ∣ w] ∈ ∂wL𝒟(w)

• In general, for an objective  with constraint set :f(w) 𝒲

8



Stochastic gradient descent
• SGD: why bother computing  on the full  every time?LS(w) S
• Instead, “pure SGD” picks a fresh  and steps to zi w+ = w − η∇wℓ(w, zi)
• or, rather, on a direction in ∂wℓ(w, zi)
• or, rather, any vector  such that ̂v 𝔼[ ̂v ∣ w] ∈ ∂wL𝒟(w)

• In general, for an objective  with constraint set :f(w) 𝒲
• Start at some , say w(1) 0

8



Stochastic gradient descent
• SGD: why bother computing  on the full  every time?LS(w) S
• Instead, “pure SGD” picks a fresh  and steps to zi w+ = w − η∇wℓ(w, zi)
• or, rather, on a direction in ∂wℓ(w, zi)
• or, rather, any vector  such that ̂v 𝔼[ ̂v ∣ w] ∈ ∂wL𝒟(w)

• In general, for an objective  with constraint set :f(w) 𝒲
• Start at some , say w(1) 0
• Get a random  such that ̂g(t) 𝔼 ̂g(t) ∈ ∂f(w(t))

8



Stochastic gradient descent
• SGD: why bother computing  on the full  every time?LS(w) S
• Instead, “pure SGD” picks a fresh  and steps to zi w+ = w − η∇wℓ(w, zi)
• or, rather, on a direction in ∂wℓ(w, zi)
• or, rather, any vector  such that ̂v 𝔼[ ̂v ∣ w] ∈ ∂wL𝒟(w)

• In general, for an objective  with constraint set :f(w) 𝒲
• Start at some , say w(1) 0
• Get a random  such that ̂g(t) 𝔼 ̂g(t) ∈ ∂f(w(t))
• Set w(t+1) = proj𝒲(w(t) − η(t) ̂g(t))

8



Stochastic gradient descent
• SGD: why bother computing  on the full  every time?LS(w) S
• Instead, “pure SGD” picks a fresh  and steps to zi w+ = w − η∇wℓ(w, zi)
• or, rather, on a direction in ∂wℓ(w, zi)
• or, rather, any vector  such that ̂v 𝔼[ ̂v ∣ w] ∈ ∂wL𝒟(w)

• In general, for an objective  with constraint set :f(w) 𝒲
• Start at some , say w(1) 0
• Get a random  such that ̂g(t) 𝔼 ̂g(t) ∈ ∂f(w(t))
• Set w(t+1) = proj𝒲(w(t) − η(t) ̂g(t))

• Return , or , or whateverw(T) 1
T

T

∑
t=1

w(t)

8



SGD for Lipschitz objectives

Theorem (Shamir and Zhang, ICML 2013): if  is convex, minimized at , 
,  for all , and : 

                      

f w* ∈ ℋ
sup
w∈ℋ

∥w∥ ≤ B 𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/ t

𝔼[ f(w(T))] − f(w*) ≤ ( 4B2

c
+ cG2) 2 + log T

T

9

http://proceedings.mlr.press/v28/shamir13.html


SGD for Lipschitz objectives

Theorem (Shamir and Zhang, ICML 2013): if  is convex, minimized at , 
,  for all , and : 

                      

f w* ∈ ℋ
sup
w∈ℋ

∥w∥ ≤ B 𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/ t

𝔼[ f(w(T))] − f(w*) ≤ ( 4B2

c
+ cG2) 2 + log T

T

9

but…I think the proof might be wrong? or I was too tired last night to understand :(

http://proceedings.mlr.press/v28/shamir13.html


SGD for Lipschitz objectives

Theorem (Shamir and Zhang, ICML 2013): if  is convex, minimized at , 
,  for all , and : 

                      

f w* ∈ ℋ
sup
w∈ℋ

∥w∥ ≤ B 𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/ t

𝔼[ f(w(T))] − f(w*) ≤ ( 4B2

c
+ cG2) 2 + log T

T

9

but…I think the proof might be wrong? or I was too tired last night to understand :(

SSBD Theorem 14.8 gives  for ,  the average𝔼[ f(w̄)] − f(w*) ≤
Bρ

T
η =

B

ρ T
w̄

http://proceedings.mlr.press/v28/shamir13.html


SGD for strongly convex objectives

Theorem (Shamir and Zhang, ICML 2013): if  is -strongly convex, 
minimized at ,  for all , and  for : 

                      

f λ
w* ∈ ℋ 𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(wT)] − f(w*) ≤
17cG2(1 + log T)

λT

10

http://proceedings.mlr.press/v28/shamir13.html


SGD for strongly convex objectives

Theorem (Shamir and Zhang, ICML 2013): if  is -strongly convex, 
minimized at ,  for all , and  for : 

                      

f λ
w* ∈ ℋ 𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(wT)] − f(w*) ≤
17cG2(1 + log T)

λT

10

•  is -strongly convex for a parameter  if:f λ λ > 0
• f(αx + (1 − α)y) ≤ αf(y) + (1 − α)f(y)− 1

2 λα(1 − α)∥x − y∥2

http://proceedings.mlr.press/v28/shamir13.html


SGD for strongly convex objectives

Theorem (Shamir and Zhang, ICML 2013): if  is -strongly convex, 
minimized at ,  for all , and  for : 

                      

f λ
w* ∈ ℋ 𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(wT)] − f(w*) ≤
17cG2(1 + log T)

λT

10

•  is -strongly convex for a parameter  if:f λ λ > 0
• f(αx + (1 − α)y) ≤ αf(y) + (1 − α)f(y)− 1

2 λα(1 − α)∥x − y∥2

• ⟨∇f(x) − ∇f(y), x − y⟩ ≥ λ∥x − y∥2

http://proceedings.mlr.press/v28/shamir13.html


SGD for strongly convex objectives

Theorem (Shamir and Zhang, ICML 2013): if  is -strongly convex, 
minimized at ,  for all , and  for : 

                      

f λ
w* ∈ ℋ 𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(wT)] − f(w*) ≤
17cG2(1 + log T)

λT

10

•  is -strongly convex for a parameter  if:f λ λ > 0
• f(αx + (1 − α)y) ≤ αf(y) + (1 − α)f(y)− 1

2 λα(1 − α)∥x − y∥2

• ⟨∇f(x) − ∇f(y), x − y⟩ ≥ λ∥x − y∥2

•     i.e.   i.e. all eigenvalues of  are at least ∇2f ⪰ λI ∇2f − λI ⪰ 0 ∇2f λ

http://proceedings.mlr.press/v28/shamir13.html


SGD for strongly convex objectives
Theorem: if  is -strongly convex and -smooth, minimized at , 

 for all , and  for : 

                                    

f λ β w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(wT)] − f(w*) ≤
2βc2G2

λ2T

11



SGD for strongly convex objectives
Theorem: if  is -strongly convex and -smooth, minimized at , 

 for all , and  for : 

                                    

f λ β w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(wT)] − f(w*) ≤
2βc2G2

λ2T

11

Can assume  WLOG:

    If  is -strongly convex, it’s also -strongly convex;


    just use the  theorem with the (weaker)  strong convexity param

c = 1
f λ λ

c
c = 1 λ

c



SGD for strongly convex objectives
Theorem: if  is -strongly convex and -smooth, minimized at , 

 for all , and : 

                                    

f λ β w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = 1/(λt)

𝔼[ f(wT)] − f(w*) ≤
2βG2

λ2T

12



SGD for strongly convex objectives
Theorem: if  is -strongly convex and -smooth, minimized at , 

 for all , and : 

                                    

f λ β w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = 1/(λt)

𝔼[ f(wT)] − f(w*) ≤
2βG2

λ2T

12

Recall key property of -smoothness:   β f(v) ≤ f(w) + ⟨∇f(w), v − w⟩+ β
2 ∥v − w∥2



SGD for strongly convex objectives
Theorem: if  is -strongly convex and -smooth, minimized at , 

 for all , and : 

                                    

f λ β w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = 1/(λt)

𝔼[ f(wT)] − f(w*) ≤
2βG2

λ2T

12

Recall key property of -smoothness:   β f(v) ≤ f(w) + ⟨∇f(w), v − w⟩+ β
2 ∥v − w∥2

Plug in , :  wT w* f(wT) − f(w*) ≤ ⟨∇f(w*), wT − w*⟩+ β
2 ∥wT − w*∥2



SGD for strongly convex objectives
Theorem: if  is -strongly convex and -smooth, minimized at , 

 for all , and : 

                                    

f λ β w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = 1/(λt)

𝔼[ f(wT)] − f(w*) ≤
2βG2

λ2T

12

Recall key property of -smoothness:   β f(v) ≤ f(w) + ⟨∇f(w), v − w⟩+ β
2 ∥v − w∥2

= β
2 ∥wT − w*∥2

Plug in , :  wT w* f(wT) − f(w*) ≤ ⟨∇f(w*), wT − w*⟩+ β
2 ∥wT − w*∥2



SGD for strongly convex objectives
Theorem: if  is -strongly convex and -smooth, minimized at , 

 for all , and : 

                                    

f λ β w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = 1/(λt)

𝔼[ f(wT)] − f(w*) ≤
2βG2

λ2T

12

Lemma: if  is -strongly convex, minimized at ,  for all , 

and , then  .

f λ w* ∈ ℋ 𝔼[∥ ̂g(t)∥2] ≤ G2 t

η(t) = 1/(λt) 𝔼 [∥wT − w*∥2] ≤
4G2

λ2T

Recall key property of -smoothness:   β f(v) ≤ f(w) + ⟨∇f(w), v − w⟩+ β
2 ∥v − w∥2

= β
2 ∥wT − w*∥2

Plug in , :  wT w* f(wT) − f(w*) ≤ ⟨∇f(w*), wT − w*⟩+ β
2 ∥wT − w*∥2



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

13



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

𝔼 [∥wt+1 − w*∥2]

13



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

𝔼 [∥wt+1 − w*∥2] = 𝔼 [∥proj𝒲(wt − ηt ̂gt) − w*∥2]

13



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

𝔼 [∥wt+1 − w*∥2] = 𝔼 [∥proj𝒲(wt − ηt ̂gt) − w*∥2]
≤ 𝔼 [∥wt − ηt ̂gt − w*∥2] since  is convex𝒲

13



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

𝔼 [∥wt+1 − w*∥2] = 𝔼 [∥proj𝒲(wt − ηt ̂gt) − w*∥2]
≤ 𝔼 [∥wt − ηt ̂gt − w*∥2]
= 𝔼 [∥wt − w*∥2] − 2ηt𝔼 [⟨ ̂gt, wt − w*⟩] + η2

t 𝔼 [∥ ̂gt∥2]
since  is convex𝒲

13



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

𝔼 [∥wt+1 − w*∥2] = 𝔼 [∥proj𝒲(wt − ηt ̂gt) − w*∥2]
≤ 𝔼 [∥wt − ηt ̂gt − w*∥2]
= 𝔼 [∥wt − w*∥2] − 2ηt𝔼 [⟨ ̂gt, wt − w*⟩] + η2

t 𝔼 [∥ ̂gt∥2]
since  is convex𝒲

𝔼[⟨ ̂gt, wt − w*⟩] = 𝔼wt [𝔼 ̂gt [⟨ ̂gt, wt − w*⟩ ∣ wt]]

13



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

𝔼 [∥wt+1 − w*∥2] = 𝔼 [∥proj𝒲(wt − ηt ̂gt) − w*∥2]
≤ 𝔼 [∥wt − ηt ̂gt − w*∥2]
= 𝔼 [∥wt − w*∥2] − 2ηt𝔼 [⟨ ̂gt, wt − w*⟩] + η2

t 𝔼 [∥ ̂gt∥2]
since  is convex𝒲

𝔼[⟨ ̂gt, wt − w*⟩] = 𝔼wt [𝔼 ̂gt [⟨ ̂gt, wt − w*⟩ ∣ wt]]
= 𝔼wt [⟨gt, wt − w*⟩] for some gt ∈ ∂f(wt)

13



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

𝔼 [∥wt+1 − w*∥2] = 𝔼 [∥proj𝒲(wt − ηt ̂gt) − w*∥2]
≤ 𝔼 [∥wt − ηt ̂gt − w*∥2]
= 𝔼 [∥wt − w*∥2] − 2ηt𝔼 [⟨ ̂gt, wt − w*⟩] + η2

t 𝔼 [∥ ̂gt∥2]
since  is convex𝒲

𝔼[⟨ ̂gt, wt − w*⟩] = 𝔼wt [𝔼 ̂gt [⟨ ̂gt, wt − w*⟩ ∣ wt]]
= 𝔼wt [⟨gt, wt − w*⟩] for some gt ∈ ∂f(wt)

= 𝔼wt [⟨gt − ∇f(w*), wt − w*⟩]
13



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

𝔼 [∥wt+1 − w*∥2] = 𝔼 [∥proj𝒲(wt − ηt ̂gt) − w*∥2]
≤ 𝔼 [∥wt − ηt ̂gt − w*∥2]
= 𝔼 [∥wt − w*∥2] − 2ηt𝔼 [⟨ ̂gt, wt − w*⟩] + η2

t 𝔼 [∥ ̂gt∥2]
since  is convex𝒲

𝔼[⟨ ̂gt, wt − w*⟩] = 𝔼wt [𝔼 ̂gt [⟨ ̂gt, wt − w*⟩ ∣ wt]]
= 𝔼wt [⟨gt, wt − w*⟩] for some gt ∈ ∂f(wt)

= 𝔼wt [⟨gt − ∇f(w*), wt − w*⟩]
first-order strong convexity def13≥ λ∥wt − w*∥2



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

𝔼 [∥wt+1 − w*∥2] = 𝔼 [∥proj𝒲(wt − ηt ̂gt) − w*∥2]
≤ 𝔼 [∥wt − ηt ̂gt − w*∥2]
= 𝔼 [∥wt − w*∥2] − 2ηt𝔼 [⟨ ̂gt, wt − w*⟩] + η2

t 𝔼 [∥ ̂gt∥2]
since  is convex𝒲

𝔼[⟨ ̂gt, wt − w*⟩] = 𝔼wt [𝔼 ̂gt [⟨ ̂gt, wt − w*⟩ ∣ wt]]
= 𝔼wt [⟨gt, wt − w*⟩] for some gt ∈ ∂f(wt)

= 𝔼wt [⟨gt − ∇f(w*), wt − w*⟩]
first-order strong convexity def13≥ λ∥wt − w*∥2

≤ (1 − 2ηtλ)𝔼 [∥wt − w*∥2] + η2
t G2



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

𝔼 [∥wt+1 − w*∥2] = 𝔼 [∥proj𝒲(wt − ηt ̂gt) − w*∥2]
≤ 𝔼 [∥wt − ηt ̂gt − w*∥2]
= 𝔼 [∥wt − w*∥2] − 2ηt𝔼 [⟨ ̂gt, wt − w*⟩] + η2

t 𝔼 [∥ ̂gt∥2]
since  is convex𝒲

𝔼[⟨ ̂gt, wt − w*⟩] = 𝔼wt [𝔼 ̂gt [⟨ ̂gt, wt − w*⟩ ∣ wt]]
= 𝔼wt [⟨gt, wt − w*⟩] for some gt ∈ ∂f(wt)

= 𝔼wt [⟨gt − ∇f(w*), wt − w*⟩]
first-order strong convexity def13≥ λ∥wt − w*∥2

≤ (1 − 2ηtλ)𝔼 [∥wt − w*∥2] + η2
t G2

= (1− 2
t ) 𝔼 [∥wt − w*∥2]+ G2

λ2t2



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

WTS 𝔼 [∥wt − w*∥2] ≤ 4G2

λ2t

14



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

have 𝔼 [∥wt+1 − w*∥2] ≤ (1− 2
t ) 𝔼 [∥wt − w*∥2]+ G2

λ2t2

WTS 𝔼 [∥wt − w*∥2] ≤ 4G2

λ2t

14



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

have 𝔼 [∥wt+1 − w*∥2] ≤ (1− 2
t ) 𝔼 [∥wt − w*∥2]+ G2

λ2t2

𝔼 [∥w2 − w*∥2] ≤ (1− 2
1 ) 𝔼 [∥w1 − w*∥2]+ G2

λ2 ⋅ 12plugging in ,t = 1

WTS 𝔼 [∥wt − w*∥2] ≤ 4G2

λ2t

14



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

have 𝔼 [∥wt+1 − w*∥2] ≤ (1− 2
t ) 𝔼 [∥wt − w*∥2]+ G2

λ2t2

𝔼 [∥w2 − w*∥2] ≤ (1− 2
1 ) 𝔼 [∥w1 − w*∥2]+ G2

λ2 ⋅ 12

𝔼 [∥w1 − w*∥2] + 𝔼 [∥w2 − w*∥2] ≤ G2

λ2

plugging in ,t = 1

WTS 𝔼 [∥wt − w*∥2] ≤ 4G2

λ2t

14



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

have 𝔼 [∥wt+1 − w*∥2] ≤ (1− 2
t ) 𝔼 [∥wt − w*∥2]+ G2

λ2t2

𝔼 [∥w2 − w*∥2] ≤ (1− 2
1 ) 𝔼 [∥w1 − w*∥2]+ G2

λ2 ⋅ 12

𝔼 [∥w1 − w*∥2] + 𝔼 [∥w2 − w*∥2] ≤ G2

λ2

𝔼 [∥w1 − w*∥2] ≤ 4G2

λ2 ⋅ 1

plugging in ,t = 1

WTS 𝔼 [∥wt − w*∥2] ≤ 4G2

λ2t

implies

14



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

have 𝔼 [∥wt+1 − w*∥2] ≤ (1− 2
t ) 𝔼 [∥wt − w*∥2]+ G2

λ2t2

𝔼 [∥w2 − w*∥2] ≤ (1− 2
1 ) 𝔼 [∥w1 − w*∥2]+ G2

λ2 ⋅ 12

𝔼 [∥w1 − w*∥2] + 𝔼 [∥w2 − w*∥2] ≤ G2

λ2

𝔼 [∥w1 − w*∥2] ≤ 4G2

λ2 ⋅ 1
𝔼 [∥w2 − w*∥2] ≤ 4G2

λ2 ⋅ 2

plugging in ,t = 1

WTS 𝔼 [∥wt − w*∥2] ≤ 4G2

λ2t

implies

14



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

have 𝔼 [∥wt+1 − w*∥2] ≤ (1− 2
t ) 𝔼 [∥wt − w*∥2]+ G2

λ2t2

𝔼 [∥w2 − w*∥2] ≤ (1− 2
1 ) 𝔼 [∥w1 − w*∥2]+ G2

λ2 ⋅ 12

𝔼 [∥w1 − w*∥2] + 𝔼 [∥w2 − w*∥2] ≤ G2

λ2

𝔼 [∥w1 − w*∥2] ≤ 4G2

λ2 ⋅ 1
𝔼 [∥w2 − w*∥2] ≤ 4G2

λ2 ⋅ 2

induction for : havet ≥ 3

plugging in ,t = 1

WTS 𝔼 [∥wt − w*∥2] ≤ 4G2

λ2t

implies

14



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

have 𝔼 [∥wt+1 − w*∥2] ≤ (1− 2
t ) 𝔼 [∥wt − w*∥2]+ G2

λ2t2

𝔼 [∥w2 − w*∥2] ≤ (1− 2
1 ) 𝔼 [∥w1 − w*∥2]+ G2

λ2 ⋅ 12

𝔼 [∥w1 − w*∥2] + 𝔼 [∥w2 − w*∥2] ≤ G2

λ2

𝔼 [∥w1 − w*∥2] ≤ 4G2

λ2 ⋅ 1
𝔼 [∥w2 − w*∥2] ≤ 4G2

λ2 ⋅ 2

induction for : havet ≥ 3

𝔼 [∥wt+1 − w*∥2] ≤ (1− 2
t ) 4G2

λ2t
+ G2

λ2t2

plugging in ,t = 1

WTS 𝔼 [∥wt − w*∥2] ≤ 4G2

λ2t

implies

14



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

have 𝔼 [∥wt+1 − w*∥2] ≤ (1− 2
t ) 𝔼 [∥wt − w*∥2]+ G2

λ2t2

𝔼 [∥w2 − w*∥2] ≤ (1− 2
1 ) 𝔼 [∥w1 − w*∥2]+ G2

λ2 ⋅ 12

𝔼 [∥w1 − w*∥2] + 𝔼 [∥w2 − w*∥2] ≤ G2

λ2

𝔼 [∥w1 − w*∥2] ≤ 4G2

λ2 ⋅ 1
𝔼 [∥w2 − w*∥2] ≤ 4G2

λ2 ⋅ 2

induction for : havet ≥ 3

𝔼 [∥wt+1 − w*∥2] ≤ (1− 2
t ) 4G2

λ2t
+ G2

λ2t2

plugging in ,t = 1

WTS 𝔼 [∥wt − w*∥2] ≤ 4G2

λ2t

implies

= G2

λ2 [ 4
t − 8

t2 + 1
t2 ]

14



Assumptions:  -strongly convex,  , , f λ 𝔼[∥g∥2] ≤ G2 w(0) = 0 η(t) = 1/(λt)

have 𝔼 [∥wt+1 − w*∥2] ≤ (1− 2
t ) 𝔼 [∥wt − w*∥2]+ G2

λ2t2

𝔼 [∥w2 − w*∥2] ≤ (1− 2
1 ) 𝔼 [∥w1 − w*∥2]+ G2

λ2 ⋅ 12

𝔼 [∥w1 − w*∥2] + 𝔼 [∥w2 − w*∥2] ≤ G2

λ2

𝔼 [∥w1 − w*∥2] ≤ 4G2

λ2 ⋅ 1
𝔼 [∥w2 − w*∥2] ≤ 4G2

λ2 ⋅ 2

induction for : havet ≥ 3

𝔼 [∥wt+1 − w*∥2] ≤ (1− 2
t ) 4G2

λ2t
+ G2

λ2t2

plugging in ,t = 1

WTS 𝔼 [∥wt − w*∥2] ≤ 4G2

λ2t

implies

= G2

λ2 [ 4
t − 8

t2 + 1
t2 ] ≤ G2

λ2 [ 4
t + 1 ]

14



SGD for strongly convex objectives

Theorem (Shamir and Zhang, ICML 2013): if  is -strongly convex, 
minimized at ,  for all , and  for : 

                      

f λ
w* ∈ ℋ 𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(wT)] − f(w*) ≤
17cG2(1 + log T)

λT

15

Proof uses that lemma (which doesn’t need -smoothness) as a key step, 
but does some more tricks – read it if you’re interested!

β

http://proceedings.mlr.press/v28/shamir13.html


Implications for learning
Theorem: if  is -strongly convex and -smooth, minimized at , 

 for all , and  for : 

                                    

f λ β w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(wT)] − f(w*) ≤
2βc2G2

λ2T

16



Implications for learning
Theorem: if  is -strongly convex and -smooth, minimized at , 

 for all , and  for : 

                                    

f λ β w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(wT)] − f(w*) ≤
2βc2G2

λ2T
• So, if:

•  is -strongly convex

•  is -smooth  (e.g. implied if  is -smooth)


•   (e.g. implied if  is -Lipschitz)


• minimizer is inside 

L𝒟 λ
L𝒟 β ℓ( ⋅ , z) β
𝔼 [∥ ̂gt∥2] ≤ G2 ℓ( ⋅ , z) G

ℋ

16



Implications for learning
Theorem: if  is -strongly convex and -smooth, minimized at , 

 for all , and  for : 

                                    

f λ β w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(wT)] − f(w*) ≤
2βc2G2

λ2T
• So, if:

•  is -strongly convex

•  is -smooth  (e.g. implied if  is -smooth)


•   (e.g. implied if  is -Lipschitz)


• minimizer is inside 

L𝒟 λ
L𝒟 β ℓ( ⋅ , z) β
𝔼 [∥ ̂gt∥2] ≤ G2 ℓ( ⋅ , z) G

ℋ
• then we have a bound on expected excess error for SGD


• Needs  samples, since this analysis is for one-pass only𝒪 ( 1
ε )

16



Implications for learning
SSBD Theorem 14.11: if  is -strongly convex, minimized at , 

 for all , and  for : 

                                    

f λ w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(w̄)] − f(w*) ≤
cG2

2λT
(1 + log(T))

17



Implications for learning
SSBD Theorem 14.11: if  is -strongly convex, minimized at , 

 for all , and  for : 

                                    

f λ w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(w̄)] − f(w*) ≤
cG2

2λT
(1 + log(T))

• So, if:

•  is -strongly convex


•   (e.g. implied if  is -Lipschitz)


• minimizer is inside 

L𝒟 λ
𝔼 [∥ ̂gt∥2] ≤ G2 ℓ( ⋅ , z) G

ℋ

17



Implications for learning
SSBD Theorem 14.11: if  is -strongly convex, minimized at , 

 for all , and  for : 

                                    

f λ w* ∈ ℋ
𝔼[∥ ̂g(t)∥2] ≤ G2 t η(t) = c/(λt) c ≥ 1

𝔼[ f(w̄)] − f(w*) ≤
cG2

2λT
(1 + log(T))

• So, if:

•  is -strongly convex


•   (e.g. implied if  is -Lipschitz)


• minimizer is inside 

L𝒟 λ
𝔼 [∥ ̂gt∥2] ≤ G2 ℓ( ⋅ , z) G

ℋ
• then we have a bound on expected excess error for average iterate of SGD


• Needs  samples, since this analysis is for one-pass only𝒪 ( 1
ε )

17



Implications for learning
SSBD Theorem 14.8: if  is convex, , , 

 for all , and , then 

                                                .

f ℋ = {w : ∥w∥ ≤ B} w* ∈ argminw∈ℋ f(w)
Pr(∥ ̂gt∥ ≤ ρ) = 1 t η = B/(ρ T)

𝔼[ f(w̄)] − f(w*) ≤
Bρ

T

18



Implications for learning
SSBD Theorem 14.8: if  is convex, , , 

 for all , and , then 

                                                .

f ℋ = {w : ∥w∥ ≤ B} w* ∈ argminw∈ℋ f(w)
Pr(∥ ̂gt∥ ≤ ρ) = 1 t η = B/(ρ T)

𝔼[ f(w̄)] − f(w*) ≤
Bρ

T
• So, if:

•  is convex  (e.g. implied if  is convex)

•  a.s. (e.g. implied if  is -Lipschitz)

L𝒟 ℓ( ⋅ , z)
∥ ̂gt∥ ≤ ρ ℓ( ⋅ , z) G

18



Implications for learning
SSBD Theorem 14.8: if  is convex, , , 

 for all , and , then 

                                                .

f ℋ = {w : ∥w∥ ≤ B} w* ∈ argminw∈ℋ f(w)
Pr(∥ ̂gt∥ ≤ ρ) = 1 t η = B/(ρ T)

𝔼[ f(w̄)] − f(w*) ≤
Bρ

T
• So, if:

•  is convex  (e.g. implied if  is convex)

•  a.s. (e.g. implied if  is -Lipschitz)

L𝒟 ℓ( ⋅ , z)
∥ ̂gt∥ ≤ ρ ℓ( ⋅ , z) G

• then we have a bound on expected excess error for SGD


• Needs  samples, since this analysis is for one-pass only


• Covers the Convex-Lipschitz-Bounded case

𝒪 ( 1
ε2 )

18



Implications for learning

SSBD Theorem 14.13: if  is convex, -smooth, and nonnegative, 
, and  is constant, then for any  

                            .

ℓ( ⋅ , z) β
ℋ = {w : ∥w∥ ≤ B} η w*

𝔼[L𝒟(w̄)] ≤
1

1 − ηβ (L𝒟(w*) +
∥w*∥2

2ηT )

19



Implications for learning

SSBD Theorem 14.13: if  is convex, -smooth, and nonnegative, 
, and  is constant, then for any  

                            .

ℓ( ⋅ , z) β
ℋ = {w : ∥w∥ ≤ B} η w*

𝔼[L𝒟(w̄)] ≤
1

1 − ηβ (L𝒟(w*) +
∥w*∥2

2ηT )
• So, if we take , , and assume , 

.
η = 1/(β(1 + 3/ε)) T ≥ 12B2β2/ε2 ℓ(0,z) ≤ 1

𝔼[L𝒟(w̄)] ≤ min
w∈ℋ

L𝒟(w) + ε

19



Implications for learning

SSBD Theorem 14.13: if  is convex, -smooth, and nonnegative, 
, and  is constant, then for any  

                            .

ℓ( ⋅ , z) β
ℋ = {w : ∥w∥ ≤ B} η w*

𝔼[L𝒟(w̄)] ≤
1

1 − ηβ (L𝒟(w*) +
∥w*∥2

2ηT )
• So, if we take , , and assume , 

.
η = 1/(β(1 + 3/ε)) T ≥ 12B2β2/ε2 ℓ(0,z) ≤ 1

𝔼[L𝒟(w̄)] ≤ min
w∈ℋ

L𝒟(w) + ε

• Covers the Convex-Smooth-Bounded case

19



Summary
• One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems

20



Summary
• One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems
• Rate is better with strong convexity

20



Summary
• One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems
• Rate is better with strong convexity
•  excess error, vs  without𝒪(1/n) 𝒪(1/ n)

20



Summary
• One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems
• Rate is better with strong convexity
•  excess error, vs  without𝒪(1/n) 𝒪(1/ n)

• For gradient descent, the gap is enormous:  steps vs 𝒪 ( 1
ε ) 𝒪 (log 1

ε )

20



Summary
• One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems
• Rate is better with strong convexity
•  excess error, vs  without𝒪(1/n) 𝒪(1/ n)

• For gradient descent, the gap is enormous:  steps vs 𝒪 ( 1
ε ) 𝒪 (log 1

ε )
• We didn’t analyze multi-pass SGD

20



Summary
• One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems
• Rate is better with strong convexity
•  excess error, vs  without𝒪(1/n) 𝒪(1/ n)

• For gradient descent, the gap is enormous:  steps vs 𝒪 ( 1
ε ) 𝒪 (log 1

ε )
• We didn’t analyze multi-pass SGD
• Only looking at each data point once might be wasteful…

20



Summary
• One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems
• Rate is better with strong convexity
•  excess error, vs  without𝒪(1/n) 𝒪(1/ n)

• For gradient descent, the gap is enormous:  steps vs 𝒪 ( 1
ε ) 𝒪 (log 1

ε )
• We didn’t analyze multi-pass SGD
• Only looking at each data point once might be wasteful…
• But it’s necessary in this framework

20



Summary
• One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems
• Rate is better with strong convexity
•  excess error, vs  without𝒪(1/n) 𝒪(1/ n)

• For gradient descent, the gap is enormous:  steps vs 𝒪 ( 1
ε ) 𝒪 (log 1

ε )
• We didn’t analyze multi-pass SGD
• Only looking at each data point once might be wasteful…
• But it’s necessary in this framework
• ERM with gradient descent does not always work

20



Summary
• One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems
• Rate is better with strong convexity
•  excess error, vs  without𝒪(1/n) 𝒪(1/ n)

• For gradient descent, the gap is enormous:  steps vs 𝒪 ( 1
ε ) 𝒪 (log 1

ε )
• We didn’t analyze multi-pass SGD
• Only looking at each data point once might be wasteful…
• But it’s necessary in this framework
• ERM with gradient descent does not always work

• “Early stopping” with one-pass SGD is a form of (implicit) regularization

20



Summary
• One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems
• Rate is better with strong convexity
•  excess error, vs  without𝒪(1/n) 𝒪(1/ n)

• For gradient descent, the gap is enormous:  steps vs 𝒪 ( 1
ε ) 𝒪 (log 1

ε )
• We didn’t analyze multi-pass SGD
• Only looking at each data point once might be wasteful…
• But it’s necessary in this framework
• ERM with gradient descent does not always work

• “Early stopping” with one-pass SGD is a form of (implicit) regularization
• After the break, explicit regularization:

20



Summary
• One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems
• Rate is better with strong convexity
•  excess error, vs  without𝒪(1/n) 𝒪(1/ n)

• For gradient descent, the gap is enormous:  steps vs 𝒪 ( 1
ε ) 𝒪 (log 1

ε )
• We didn’t analyze multi-pass SGD
• Only looking at each data point once might be wasteful…
• But it’s necessary in this framework
• ERM with gradient descent does not always work

• “Early stopping” with one-pass SGD is a form of (implicit) regularization
• After the break, explicit regularization:
• makes things strongly convex

20



Summary
• One-pass SGD can always learn convex, Lipschitz/smooth, bounded problems
• Rate is better with strong convexity
•  excess error, vs  without𝒪(1/n) 𝒪(1/ n)

• For gradient descent, the gap is enormous:  steps vs 𝒪 ( 1
ε ) 𝒪 (log 1

ε )
• We didn’t analyze multi-pass SGD
• Only looking at each data point once might be wasteful…
• But it’s necessary in this framework
• ERM with gradient descent does not always work

• “Early stopping” with one-pass SGD is a form of (implicit) regularization
• After the break, explicit regularization:
• makes things strongly convex
• lets us learn even if we fully optimize on S

20


