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Admin

• In hybrid mode now:

• Thursday office hours available both in-person (ICICS X563) and on Zoom  

• A2 due Friday night

• Groups of up to three, allowed separate per question

• If you don’t have a group and want one, post on Piazza (asap)  

• A1 grading: allllllllmost done – sorry 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Practical learning algorithms
• So far, only really talked about ERM (and variants like SRM)  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Practical learning algorithms
• So far, only really talked about ERM (and variants like SRM)  

• Not always practical: e.g. NP-hard to maximize accuracy of a linear binary classifier 

• A scheme that usually is practical: convex learning problems
• Can get an -approximate ERM with gradient descent:ε

• in  steps, if loss is convex and has Lipschitz gradients! ( 1
ε )

• in  steps, if loss is strongly convex with Lipschitz gradients ! (log 1
ε )
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Convexity review

• Most of you probably already know most of this  
(based on the survey), but a quick reminder! 

• For proofs and details, see e.g. chaps 2-3  
of Boyd and Vandenberghe (free pdf)
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Convex sets
• If , then  for all x, y ∈ C αx + (1 − α)y ∈ C α ∈ [0,1]
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Convex functions
 is convex if, when  is a convex set:f : $ → ℝ $

• the epigraph  is a convex set{(x, r) ∈ $ × ℝ : r ≥ f(x)}
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Convex functions
 is convex if, when  is a convex set:f : $ → ℝ $

• the epigraph  is a convex set{(x, r) ∈ $ × ℝ : r ≥ f(x)}
• it lies below its chords,    for f (αx + (1 − α)y) ≥ αf(x) + (1 − α)f(y) α ∈ [0,1]
• if  is differentiable: convex iff  lies above its tangent planes  

                                        for all 
f f

f(x) ≥ f(y) + [∇f(y)](x − y) x, y
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Convex functions
 is convex if, when  is a convex set:f : $ → ℝ $

• the epigraph  is a convex set{(x, r) ∈ $ × ℝ : r ≥ f(x)}
• it lies below its chords,    for f (αx + (1 − α)y) ≥ αf(x) + (1 − α)f(y) α ∈ [0,1]
• if  is differentiable: convex iff  lies above its tangent planes  

                                        for all 
f f

f(x) ≥ f(y) + [∇f(y)](x − y) x, y
• if  is twice-differentiable: convex iff its Hessian  is positive semidefinite  

       or    all eigenvalues     or      for all     or 
f ∇2f
∇2f ⪰ 0 ≥ 0 v⊤[∇2f ]v ≥ 0 v ∇2f = A⊤A
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Operations that preserve convexity
If  and  are convex functions, then so aref g
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Operations that preserve convexity
If  and  are convex functions, then so aref g
•  for any αf α ≥ 0

• , or even   if each  is convex and  a measuref + g ∫,
fy(x) dw(y) fy w

• x ↦ f(Ax + b)
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Operations that preserve convexity
If  and  are convex functions, then so aref g
•  for any αf α ≥ 0

• , or even   if each  is convex and  a measuref + g ∫,
fy(x) dw(y) fy w

• x ↦ f(Ax + b)
•  if  and  is nondecreasingx ↦ g( f(x)) f : $ → ℝ g

• ,  or even x ↦ max( f(x), g(x)) x ↦ sup
y∈,

fy(x)

• If  is convex in , then  for nonempty convex f(x, y) (x, y) h(x) = inf
y∈C

f(x, y) C

• Perspective transform:  for h(x, t) = tf ( x
t ) t > 0

7



(pause)

8



Convex learning problems

• A learning problem  is convex if(ℋ, /, ℓ)
•  is a convex setℋ
• for each ,   is a convex function z ∈ / ℓ( ⋅ , z)
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Convex learning problems

• A learning problem  is convex if(ℋ, /, ℓ)
•  is a convex setℋ
• for each ,   is a convex function z ∈ / ℓ( ⋅ , z)

• Example: linear regression with square loss
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Convex learning problems

• A learning problem  is convex if(ℋ, /, ℓ)
•  is a convex setℋ
• for each ,   is a convex function z ∈ / ℓ( ⋅ , z)

• Example: linear regression with square loss
• Non-example: linear classifiers with 0-1 loss 

• For convex learning problems, ERM is a convex optimization problem
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Convex learning problems

• A learning problem  is convex if(ℋ, /, ℓ)
•  is a convex setℋ
• for each ,   is a convex function z ∈ / ℓ( ⋅ , z)

• Example: linear regression with square loss
• Non-example: linear classifiers with 0-1 loss 

• For convex learning problems, ERM is a convex optimization problem
• Usually implies learnable in polynomial time (but not always)
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Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2
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Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

• Suppose a deterministic  can (agnostically) PAC learn this problemA
• Take , ,  big enough that ε = 0.01 δ = 1/2 n L1(A(S)) − inf

w
L1(w) ≤ ε

• Let ;   ;   ;   μ = 1
2n log 100

99
z1 = (1,0)
z2 = (μ, − 1) 11({z}) = {μ z = z1

1 − μ z = z2
12({z2}) = 1
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• Let :ŵ = A ((z2, …, z2))

10



Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

• Suppose a deterministic  can (agnostically) PAC learn this problemA
• Take , ,  big enough that ε = 0.01 δ = 1/2 n L1(A(S)) − inf

w
L1(w) ≤ ε

• Let ;   ;   ;   μ = 1
2n log 100

99
z1 = (1,0)
z2 = (μ, − 1) 11({z}) = {μ z = z1

1 − μ z = z2
12({z2}) = 1

• At least 99% prob to only see  in :    z2 S 1n
1 ((z2, …, z2)) = (1 − μ)n ≥ e−2μn = 0.99

• Let :ŵ = A ((z2, …, z2))
• If , have .ŵ < −1

2μ L11
(ŵ) ≥ μ ⋅ (ŵ − 0)2 ≥ 1

4μ = 8n/log 100
99 > 795n
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Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

• Suppose a deterministic  can (agnostically) PAC learn this problemA
• Take , ,  big enough that ε = 0.01 δ = 1/2 n L1(A(S)) − inf

w
L1(w) ≤ ε

• Let ;   ;   ;   μ = 1
2n log 100

99
z1 = (1,0)
z2 = (μ, − 1) 11({z}) = {μ z = z1

1 − μ z = z2
12({z2}) = 1

• At least 99% prob to only see  in :    z2 S 1n
1 ((z2, …, z2)) = (1 − μ)n ≥ e−2μn = 0.99

• Let :ŵ = A ((z2, …, z2))
• If , have .ŵ < −1

2μ L11
(ŵ) ≥ μ ⋅ (ŵ − 0)2 ≥ 1

4μ = 8n/log 100
99 > 795n

• But , so excess error on L11
(0) = 1 − μ 11 ≥ 1

4μ −1 + μ > 795n − 1 > ε
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Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

• Suppose a deterministic  can (agnostically) PAC learn this problemA
• Take , ,  big enough that ε = 0.01 δ = 1/2 n L1(A(S)) − inf

w
L1(w) ≤ ε

• Let ;   ;   ;   μ = 1
2n log 100

99
z1 = (1,0)
z2 = (μ, − 1) 11({z}) = {μ z = z1

1 − μ z = z2
12({z2}) = 1

• At least 99% prob to only see  in :    z2 S 1n
1 ((z2, …, z2)) = (1 − μ)n ≥ e−2μn = 0.99

• Let :ŵ = A ((z2, …, z2))
• If , have .ŵ < −1

2μ L11
(ŵ) ≥ μ ⋅ (ŵ − 0)2 ≥ 1

4μ = 8n/log 100
99 > 795n

• But , so excess error on L11
(0) = 1 − μ 11 ≥ 1

4μ −1 + μ > 795n − 1 > ε

• If , then , but ŵ ≥ −1
2μ L12

(ŵ) ≥ 1 ⋅ (μŵ + 1)2 ≥ (1− 1
2 )2 ≥ 1

4 L12 ( −1
μ ) = 0
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Bounding  isn’t enoughℋ
• Remember our bounds on  for linear classes depended on bounding 

the norm of , 
ℜn

h ℋ = {w ∈ ℝd : ∥w∥ ≤ B}
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h ℋ = {w ∈ ℝd : ∥w∥ ≤ B}
• Optimal  on  is , which is really big w 12 −1/μ ≈ − 200n
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z2 = (1, − 1)
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Bounding  isn’t enoughℋ
• Remember our bounds on  for linear classes depended on bounding 

the norm of , 
ℜn

h ℋ = {w ∈ ℝd : ∥w∥ ≤ B}
• Optimal  on  is , which is really big w 12 −1/μ ≈ − 200n

• Counterexample for learning  with square loss:ℋ = {x ↦ wx : |w| ≤ 1}

• Exactly the same as before, but scale by :  1/μ z1 = (1/μ,0)
z2 = (1, − 1)

•  on the old problem corresponds to  here; same loss  wx w
μ (μx)

• Now  is bounded, but we have really big  valuesℋ x
• oh, yeah…our bound on  required bounding  too!ℜn ∥x∥
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Some learnable classes
• A learning problem  Convex -Lipschitz -Bounded if

•  is a convex set, with  for all 

• for each ,  is a convex, -Lipschitz function 

(ℋ, /, ℓ) ρ B
ℋ ⊂ ℝd ∥w∥ ≤ B w ∈ ℋ

z ∈ / ℓ( ⋅ , z) ρ
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Some learnable classes
• A learning problem  Convex -Lipschitz -Bounded if

•  is a convex set, with  for all 

• for each ,  is a convex, -Lipschitz function 

(ℋ, /, ℓ) ρ B
ℋ ⊂ ℝd ∥w∥ ≤ B w ∈ ℋ

z ∈ / ℓ( ⋅ , z) ρ

• A learning problem  Convex -Smooth -Bounded if

•  is a convex set, with  for all 

• for each ,  is a convex, nonnegative, -smooth function

• A function  is -smooth if  is -Lipschitz 

(ℋ, /, ℓ) β B
ℋ ⊂ ℝd ∥w∥ ≤ B w ∈ ℋ

z ∈ / ℓ( ⋅ , z) β
f β ∇f β
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Some learnable classes
• A learning problem  Convex -Lipschitz -Bounded if

•  is a convex set, with  for all 

• for each ,  is a convex, -Lipschitz function 

(ℋ, /, ℓ) ρ B
ℋ ⊂ ℝd ∥w∥ ≤ B w ∈ ℋ

z ∈ / ℓ( ⋅ , z) ρ

• A learning problem  Convex -Smooth -Bounded if

•  is a convex set, with  for all 

• for each ,  is a convex, nonnegative, -smooth function

• A function  is -smooth if  is -Lipschitz 

(ℋ, /, ℓ) β B
ℋ ⊂ ℝd ∥w∥ ≤ B w ∈ ℋ

z ∈ / ℓ( ⋅ , z) β
f β ∇f β

• We’ll see soon that these classes are always learnable (efficiently!)
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Key property of -smooth β f
f(y) − f(x) = ∫

1

0
∇f (ty + (1 − t)x) ⋅ (y − x) dt

= ∫
1

0
[∇f(x) + ∇f (ty + (1 − t)x) − ∇f(x)] ⋅ (y − x) dt

≤ ∇f(x) ⋅ (y − x) + ∫
1

0
∇f (ty + (1 − t)x) − ∇f(x) ∥y − x∥ dt

≤ ∇f(x) ⋅ (y − x) + ∫
1

0
β ty + (1 − t)x − x ∥y − x∥ dt

= ∇f(x) ⋅ (y − x) + β∥y − x∥2 ∫
1

0
t dt

= ∇f(x) ⋅ (y − x)+ 1
2 β∥y − x∥2

13
(implies , if it exists)∇2f(y) ⪯ βI
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(pause)
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Gradient descent
• Start at , maybe  or sampled randomly.    (SSBD calls this )w(0) 0 w(1)
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Gradient descent
• Start at , maybe  or sampled randomly.    (SSBD calls this )w(0) 0 w(1)

• Steps are , where  is a learning ratew(t+1) = w(t) − η∇f(w(t)) η > 0
• Output last iterate w(T)

• Not the only choice:
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Gradient descent
• Start at , maybe  or sampled randomly.    (SSBD calls this )w(0) 0 w(1)

• Steps are , where  is a learning ratew(t+1) = w(t) − η∇f(w(t)) η > 0
• Output last iterate w(T)

• Not the only choice:

• SSBD use average of iterates, w̄ = 1
T

T−1

∑
t=0

w(t)

• Sometimes tail average 
2
T

T

∑
t=T/2

w(t)

• Sometimes best iterate: argminw(t):t∈[T] f(w(t))
• Or best on a validation set: argminw(t):t∈[T] LV(w(t))
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Analysis of gradient descent
• SSBD section 14.1 analyzes:  

         average iterate, initialize at 0, Lipschitz  
         very particular fixed  that depends on length of optimization  (also , ) 

f
η T B ρ
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• We’ll prove:  f(w(T)) − f* ≤ ∥w(0) − w*∥
2ηT

• so can get suboptimality  in  steps ε !(1/ε)

• In practice, can be hard to compute , and  usually too smallβ 1/β
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•  is convex,  is -Lipschitz, learning rate f ∇f β η ≤ 1/β
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2 ∥v − w∥2
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now know f(w(k)) − f(w*) ≤ 1
2η (∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)

≤ 1
2ηT

T
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(∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)
= 1

2ηT (∥w(0) − w*∥2 − ∥w(T) − w*∥2)

f(w(T)) − f(w*) ≤ 1
T

T

∑
k=1

(f(w(k)) − f(w*)) (because of the descent lemma)
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So what?
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded classes

• Will show they’re learnable; didn’t quite get there yet
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So what?
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded classes

• Will show they’re learnable; didn’t quite get there yet

• We can ~efficiently optimize empirical risk for Convex-Smooth-Bounded classes

• SSBD section 14.1 shows (worse) rate for Convex-Lipschitz-Bounded, avg iterate

• Turns out can get much faster rate if objective is strongly convex 
• Don’t actually need differentiability everywhere: subgradient descent

• For more: check out Bubeck (Convex Optimization: Algorithms and Complexity), 

Nocedal and Wright (Numerical Optimization), or take CPSC 536M
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• Next time:

• How to use this / related stuff for learning guarantees

• How to analyze classifiers (since 0-1 loss isn’t Lipschitz or smooth)
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