
Convex learning problems
CPSC 532S: Modern Statistical Learning Theory

14 February 2022

cs.ubc.ca/~dsuth/532S/22/

1

https://www.cs.ubc.ca/~dsuth/532S/22/

Admin

• In hybrid mode now:

• Thursday office hours available both in-person (ICICS X563) and on Zoom  

• A2 due Friday night

• Groups of up to three, allowed separate per question

• If you don’t have a group and want one, post on Piazza (asap)  

• A1 grading: allllllllmost done – sorry 

2

Practical learning algorithms
• So far, only really talked about ERM (and variants like SRM)  

3

Practical learning algorithms
• So far, only really talked about ERM (and variants like SRM)  

• Not always practical: e.g. NP-hard to maximize accuracy of a linear binary classifier 

3

Practical learning algorithms
• So far, only really talked about ERM (and variants like SRM)  

• Not always practical: e.g. NP-hard to maximize accuracy of a linear binary classifier 

• A scheme that usually is practical: convex learning problems

3

Practical learning algorithms
• So far, only really talked about ERM (and variants like SRM)  

• Not always practical: e.g. NP-hard to maximize accuracy of a linear binary classifier 

• A scheme that usually is practical: convex learning problems
• Can get an -approximate ERM with gradient descent:ε

3

Practical learning algorithms
• So far, only really talked about ERM (and variants like SRM)  

• Not always practical: e.g. NP-hard to maximize accuracy of a linear binary classifier 

• A scheme that usually is practical: convex learning problems
• Can get an -approximate ERM with gradient descent:ε

• in steps, if loss is convex and has Lipschitz gradients! (1
ε)

3

Practical learning algorithms
• So far, only really talked about ERM (and variants like SRM)  

• Not always practical: e.g. NP-hard to maximize accuracy of a linear binary classifier 

• A scheme that usually is practical: convex learning problems
• Can get an -approximate ERM with gradient descent:ε

• in steps, if loss is convex and has Lipschitz gradients! (1
ε)

• in steps, if loss is strongly convex with Lipschitz gradients ! (log 1
ε)

3

Convexity review

• Most of you probably already know most of this  
(based on the survey), but a quick reminder! 

• For proofs and details, see e.g. chaps 2-3  
of Boyd and Vandenberghe (free pdf)

4

https://web.stanford.edu/~boyd/cvxbook/

Convex sets
• If , then for all x, y ∈ C αx + (1 − α)y ∈ C α ∈ [0,1]

5

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Convex functions
 is convex if, when is a convex set:f : $ → ℝ $

• the epigraph is a convex set{(x, r) ∈ $ × ℝ : r ≥ f(x)}

6

Convex functions
 is convex if, when is a convex set:f : $ → ℝ $

• the epigraph is a convex set{(x, r) ∈ $ × ℝ : r ≥ f(x)}
• it lies below its chords, for f (αx + (1 − α)y) ≥ αf(x) + (1 − α)f(y) α ∈ [0,1]

6

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Convex functions
 is convex if, when is a convex set:f : $ → ℝ $

• the epigraph is a convex set{(x, r) ∈ $ × ℝ : r ≥ f(x)}
• it lies below its chords, for f (αx + (1 − α)y) ≥ αf(x) + (1 − α)f(y) α ∈ [0,1]
• if is differentiable: convex iff lies above its tangent planes  

 for all
f f

f(x) ≥ f(y) + [∇f(y)](x − y) x, y

6

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Convex functions
 is convex if, when is a convex set:f : $ → ℝ $

• the epigraph is a convex set{(x, r) ∈ $ × ℝ : r ≥ f(x)}
• it lies below its chords, for f (αx + (1 − α)y) ≥ αf(x) + (1 − α)f(y) α ∈ [0,1]
• if is differentiable: convex iff lies above its tangent planes  

 for all
f f

f(x) ≥ f(y) + [∇f(y)](x − y) x, y
• if is twice-differentiable: convex iff its Hessian is positive semidefinite  

 or all eigenvalues or for all or
f ∇2f
∇2f ⪰ 0 ≥ 0 v⊤[∇2f]v ≥ 0 v ∇2f = A⊤A

6

Operations that preserve convexity
If and are convex functions, then so aref g

7

Operations that preserve convexity
If and are convex functions, then so aref g
• for any αf α ≥ 0

7

Operations that preserve convexity
If and are convex functions, then so aref g
• for any αf α ≥ 0

• , or even if each is convex and a measuref + g ∫,
fy(x) dw(y) fy w

7

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Operations that preserve convexity
If and are convex functions, then so aref g
• for any αf α ≥ 0

• , or even if each is convex and a measuref + g ∫,
fy(x) dw(y) fy w

• x ↦ f(Ax + b)

7

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Operations that preserve convexity
If and are convex functions, then so aref g
• for any αf α ≥ 0

• , or even if each is convex and a measuref + g ∫,
fy(x) dw(y) fy w

• x ↦ f(Ax + b)
• if and is nondecreasingx ↦ g(f(x)) f : $ → ℝ g

7

Operations that preserve convexity
If and are convex functions, then so aref g
• for any αf α ≥ 0

• , or even if each is convex and a measuref + g ∫,
fy(x) dw(y) fy w

• x ↦ f(Ax + b)
• if and is nondecreasingx ↦ g(f(x)) f : $ → ℝ g

• , or even x ↦ max(f(x), g(x)) x ↦ sup
y∈,

fy(x)

7

Operations that preserve convexity
If and are convex functions, then so aref g
• for any αf α ≥ 0

• , or even if each is convex and a measuref + g ∫,
fy(x) dw(y) fy w

• x ↦ f(Ax + b)
• if and is nondecreasingx ↦ g(f(x)) f : $ → ℝ g

• , or even x ↦ max(f(x), g(x)) x ↦ sup
y∈,

fy(x)

• If is convex in , then for nonempty convex f(x, y) (x, y) h(x) = inf
y∈C

f(x, y) C

7

Operations that preserve convexity
If and are convex functions, then so aref g
• for any αf α ≥ 0

• , or even if each is convex and a measuref + g ∫,
fy(x) dw(y) fy w

• x ↦ f(Ax + b)
• if and is nondecreasingx ↦ g(f(x)) f : $ → ℝ g

• , or even x ↦ max(f(x), g(x)) x ↦ sup
y∈,

fy(x)

• If is convex in , then for nonempty convex f(x, y) (x, y) h(x) = inf
y∈C

f(x, y) C

• Perspective transform: for h(x, t) = tf (x
t) t > 0

7

(pause)

8

Convex learning problems

• A learning problem is convex if(ℋ, /, ℓ)
• is a convex setℋ
• for each , is a convex function z ∈ / ℓ(⋅ , z)

9

https://mathoverflow.net/a/92961/19623
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Convex learning problems

• A learning problem is convex if(ℋ, /, ℓ)
• is a convex setℋ
• for each , is a convex function z ∈ / ℓ(⋅ , z)

• Example: linear regression with square loss

9

https://mathoverflow.net/a/92961/19623

Convex learning problems

• A learning problem is convex if(ℋ, /, ℓ)
• is a convex setℋ
• for each , is a convex function z ∈ / ℓ(⋅ , z)

• Example: linear regression with square loss
• Non-example: linear classifiers with 0-1 loss 

9

https://mathoverflow.net/a/92961/19623
Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Convex learning problems

• A learning problem is convex if(ℋ, /, ℓ)
• is a convex setℋ
• for each , is a convex function z ∈ / ℓ(⋅ , z)

• Example: linear regression with square loss
• Non-example: linear classifiers with 0-1 loss 

• For convex learning problems, ERM is a convex optimization problem

9

https://mathoverflow.net/a/92961/19623

Convex learning problems

• A learning problem is convex if(ℋ, /, ℓ)
• is a convex setℋ
• for each , is a convex function z ∈ / ℓ(⋅ , z)

• Example: linear regression with square loss
• Non-example: linear classifiers with 0-1 loss 

• For convex learning problems, ERM is a convex optimization problem
• Usually implies learnable in polynomial time (but not always)

9

https://mathoverflow.net/a/92961/19623

Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

10

Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

• Suppose a deterministic can (agnostically) PAC learn this problemA

10

Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

• Suppose a deterministic can (agnostically) PAC learn this problemA
• Take , , big enough that ε = 0.01 δ = 1/2 n L1(A(S)) − inf

w
L1(w) ≤ ε

10

Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

• Suppose a deterministic can (agnostically) PAC learn this problemA
• Take , , big enough that ε = 0.01 δ = 1/2 n L1(A(S)) − inf

w
L1(w) ≤ ε

• Let ; ; ; μ = 1
2n log 100

99
z1 = (1,0)
z2 = (μ, − 1) 11({z}) = {μ z = z1

1 − μ z = z2
12({z2}) = 1

10

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

• Suppose a deterministic can (agnostically) PAC learn this problemA
• Take , , big enough that ε = 0.01 δ = 1/2 n L1(A(S)) − inf

w
L1(w) ≤ ε

• Let ; ; ; μ = 1
2n log 100

99
z1 = (1,0)
z2 = (μ, − 1) 11({z}) = {μ z = z1

1 − μ z = z2
12({z2}) = 1

• At least 99% prob to only see in : z2 S 1n
1 ((z2, …, z2)) = (1 − μ)n ≥ e−2μn = 0.99

10

Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

• Suppose a deterministic can (agnostically) PAC learn this problemA
• Take , , big enough that ε = 0.01 δ = 1/2 n L1(A(S)) − inf

w
L1(w) ≤ ε

• Let ; ; ; μ = 1
2n log 100

99
z1 = (1,0)
z2 = (μ, − 1) 11({z}) = {μ z = z1

1 − μ z = z2
12({z2}) = 1

• At least 99% prob to only see in : z2 S 1n
1 ((z2, …, z2)) = (1 − μ)n ≥ e−2μn = 0.99

• Let :ŵ = A ((z2, …, z2))

10

Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

• Suppose a deterministic can (agnostically) PAC learn this problemA
• Take , , big enough that ε = 0.01 δ = 1/2 n L1(A(S)) − inf

w
L1(w) ≤ ε

• Let ; ; ; μ = 1
2n log 100

99
z1 = (1,0)
z2 = (μ, − 1) 11({z}) = {μ z = z1

1 − μ z = z2
12({z2}) = 1

• At least 99% prob to only see in : z2 S 1n
1 ((z2, …, z2)) = (1 − μ)n ≥ e−2μn = 0.99

• Let :ŵ = A ((z2, …, z2))
• If , have .ŵ < −1

2μ L11
(ŵ) ≥ μ ⋅ (ŵ − 0)2 ≥ 1

4μ = 8n/log 100
99 > 795n

10

Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

• Suppose a deterministic can (agnostically) PAC learn this problemA
• Take , , big enough that ε = 0.01 δ = 1/2 n L1(A(S)) − inf

w
L1(w) ≤ ε

• Let ; ; ; μ = 1
2n log 100

99
z1 = (1,0)
z2 = (μ, − 1) 11({z}) = {μ z = z1

1 − μ z = z2
12({z2}) = 1

• At least 99% prob to only see in : z2 S 1n
1 ((z2, …, z2)) = (1 − μ)n ≥ e−2μn = 0.99

• Let :ŵ = A ((z2, …, z2))
• If , have .ŵ < −1

2μ L11
(ŵ) ≥ μ ⋅ (ŵ − 0)2 ≥ 1

4μ = 8n/log 100
99 > 795n

• But , so excess error on L11
(0) = 1 − μ 11 ≥ 1

4μ −1 + μ > 795n − 1 > ε

10

Convex problems aren’t necessarily learnable
• Consider (homogeneous) linear regression on , ℝ ℓ(w, (x, y)) = (wx − y)2

• Suppose a deterministic can (agnostically) PAC learn this problemA
• Take , , big enough that ε = 0.01 δ = 1/2 n L1(A(S)) − inf

w
L1(w) ≤ ε

• Let ; ; ; μ = 1
2n log 100

99
z1 = (1,0)
z2 = (μ, − 1) 11({z}) = {μ z = z1

1 − μ z = z2
12({z2}) = 1

• At least 99% prob to only see in : z2 S 1n
1 ((z2, …, z2)) = (1 − μ)n ≥ e−2μn = 0.99

• Let :ŵ = A ((z2, …, z2))
• If , have .ŵ < −1

2μ L11
(ŵ) ≥ μ ⋅ (ŵ − 0)2 ≥ 1

4μ = 8n/log 100
99 > 795n

• But , so excess error on L11
(0) = 1 − μ 11 ≥ 1

4μ −1 + μ > 795n − 1 > ε

• If , then , but ŵ ≥ −1
2μ L12

(ŵ) ≥ 1 ⋅ (μŵ + 1)2 ≥ (1− 1
2)2 ≥ 1

4 L12 (−1
μ) = 0

10

Bounding isn’t enoughℋ
• Remember our bounds on for linear classes depended on bounding

the norm of ,
ℜn

h ℋ = {w ∈ ℝd : ∥w∥ ≤ B}

11

Bounding isn’t enoughℋ
• Remember our bounds on for linear classes depended on bounding

the norm of ,
ℜn

h ℋ = {w ∈ ℝd : ∥w∥ ≤ B}
• Optimal on is , which is really big w 12 −1/μ ≈ − 200n

11

Bounding isn’t enoughℋ
• Remember our bounds on for linear classes depended on bounding

the norm of ,
ℜn

h ℋ = {w ∈ ℝd : ∥w∥ ≤ B}
• Optimal on is , which is really big w 12 −1/μ ≈ − 200n

• Counterexample for learning with square loss:ℋ = {x ↦ wx : |w| ≤ 1}

11

Bounding isn’t enoughℋ
• Remember our bounds on for linear classes depended on bounding

the norm of ,
ℜn

h ℋ = {w ∈ ℝd : ∥w∥ ≤ B}
• Optimal on is , which is really big w 12 −1/μ ≈ − 200n

• Counterexample for learning with square loss:ℋ = {x ↦ wx : |w| ≤ 1}

• Exactly the same as before, but scale by : 1/μ z1 = (1/μ,0)
z2 = (1, − 1)

11

Bounding isn’t enoughℋ
• Remember our bounds on for linear classes depended on bounding

the norm of ,
ℜn

h ℋ = {w ∈ ℝd : ∥w∥ ≤ B}
• Optimal on is , which is really big w 12 −1/μ ≈ − 200n

• Counterexample for learning with square loss:ℋ = {x ↦ wx : |w| ≤ 1}

• Exactly the same as before, but scale by : 1/μ z1 = (1/μ,0)
z2 = (1, − 1)

• on the old problem corresponds to here; same loss  wx w
μ (μx)

11

Bounding isn’t enoughℋ
• Remember our bounds on for linear classes depended on bounding

the norm of ,
ℜn

h ℋ = {w ∈ ℝd : ∥w∥ ≤ B}
• Optimal on is , which is really big w 12 −1/μ ≈ − 200n

• Counterexample for learning with square loss:ℋ = {x ↦ wx : |w| ≤ 1}

• Exactly the same as before, but scale by : 1/μ z1 = (1/μ,0)
z2 = (1, − 1)

• on the old problem corresponds to here; same loss  wx w
μ (μx)

• Now is bounded, but we have really big valuesℋ x

11

Bounding isn’t enoughℋ
• Remember our bounds on for linear classes depended on bounding

the norm of ,
ℜn

h ℋ = {w ∈ ℝd : ∥w∥ ≤ B}
• Optimal on is , which is really big w 12 −1/μ ≈ − 200n

• Counterexample for learning with square loss:ℋ = {x ↦ wx : |w| ≤ 1}

• Exactly the same as before, but scale by : 1/μ z1 = (1/μ,0)
z2 = (1, − 1)

• on the old problem corresponds to here; same loss  wx w
μ (μx)

• Now is bounded, but we have really big valuesℋ x
• oh, yeah…our bound on required bounding too!ℜn ∥x∥

11

Some learnable classes
• A learning problem Convex -Lipschitz -Bounded if

• is a convex set, with for all

• for each , is a convex, -Lipschitz function 

(ℋ, /, ℓ) ρ B
ℋ ⊂ ℝd ∥w∥ ≤ B w ∈ ℋ

z ∈ / ℓ(⋅ , z) ρ

12

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Some learnable classes
• A learning problem Convex -Lipschitz -Bounded if

• is a convex set, with for all

• for each , is a convex, -Lipschitz function 

(ℋ, /, ℓ) ρ B
ℋ ⊂ ℝd ∥w∥ ≤ B w ∈ ℋ

z ∈ / ℓ(⋅ , z) ρ

• A learning problem Convex -Smooth -Bounded if

• is a convex set, with for all

• for each , is a convex, nonnegative, -smooth function

• A function is -smooth if is -Lipschitz 

(ℋ, /, ℓ) β B
ℋ ⊂ ℝd ∥w∥ ≤ B w ∈ ℋ

z ∈ / ℓ(⋅ , z) β
f β ∇f β

12

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Some learnable classes
• A learning problem Convex -Lipschitz -Bounded if

• is a convex set, with for all

• for each , is a convex, -Lipschitz function 

(ℋ, /, ℓ) ρ B
ℋ ⊂ ℝd ∥w∥ ≤ B w ∈ ℋ

z ∈ / ℓ(⋅ , z) ρ

• A learning problem Convex -Smooth -Bounded if

• is a convex set, with for all

• for each , is a convex, nonnegative, -smooth function

• A function is -smooth if is -Lipschitz 

(ℋ, /, ℓ) β B
ℋ ⊂ ℝd ∥w∥ ≤ B w ∈ ℋ

z ∈ / ℓ(⋅ , z) β
f β ∇f β

• We’ll see soon that these classes are always learnable (efficiently!)

12

Key property of -smooth β f
f(y) − f(x) = ∫

1

0
∇f (ty + (1 − t)x) ⋅ (y − x) dt

= ∫
1

0
[∇f(x) + ∇f (ty + (1 − t)x) − ∇f(x)] ⋅ (y − x) dt

≤ ∇f(x) ⋅ (y − x) + ∫
1

0
∇f (ty + (1 − t)x) − ∇f(x) ∥y − x∥ dt

≤ ∇f(x) ⋅ (y − x) + ∫
1

0
β ty + (1 − t)x − x ∥y − x∥ dt

= ∇f(x) ⋅ (y − x) + β∥y − x∥2 ∫
1

0
t dt

= ∇f(x) ⋅ (y − x)+ 1
2 β∥y − x∥2

13
(implies , if it exists)∇2f(y) ⪯ βI

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

(pause)

14

Gradient descent
• Start at , maybe or sampled randomly. (SSBD calls this)w(0) 0 w(1)

15

Gradient descent
• Start at , maybe or sampled randomly. (SSBD calls this)w(0) 0 w(1)

• Steps are , where is a learning ratew(t+1) = w(t) − η∇f(w(t)) η > 0

15

Gradient descent
• Start at , maybe or sampled randomly. (SSBD calls this)w(0) 0 w(1)

• Steps are , where is a learning ratew(t+1) = w(t) − η∇f(w(t)) η > 0
• Output last iterate w(T)

15

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Gradient descent
• Start at , maybe or sampled randomly. (SSBD calls this)w(0) 0 w(1)

• Steps are , where is a learning ratew(t+1) = w(t) − η∇f(w(t)) η > 0
• Output last iterate w(T)

• Not the only choice:

15

Gradient descent
• Start at , maybe or sampled randomly. (SSBD calls this)w(0) 0 w(1)

• Steps are , where is a learning ratew(t+1) = w(t) − η∇f(w(t)) η > 0
• Output last iterate w(T)

• Not the only choice:

• SSBD use average of iterates, w̄ = 1
T

T−1

∑
t=0

w(t)

• Sometimes tail average
2
T

T

∑
t=T/2

w(t)

• Sometimes best iterate: argminw(t):t∈[T] f(w(t))
• Or best on a validation set: argminw(t):t∈[T] LV(w(t))

15

Analysis of gradient descent
• SSBD section 14.1 analyzes:  

 average iterate, initialize at 0, Lipschitz  
 very particular fixed that depends on length of optimization (also ,) 

f
η T B ρ

16

Analysis of gradient descent
• SSBD section 14.1 analyzes:  

 average iterate, initialize at 0, Lipschitz  
 very particular fixed that depends on length of optimization (also ,) 

f
η T B ρ

• We’ll do something else (more standard):  
 last iterate, -smooth , fixed β f η ≤ 1/β

16

Analysis of gradient descent
• SSBD section 14.1 analyzes:  

 average iterate, initialize at 0, Lipschitz  
 very particular fixed that depends on length of optimization (also ,) 

f
η T B ρ

• We’ll do something else (more standard):  
 last iterate, -smooth , fixed β f η ≤ 1/β

• We’ll prove: f(w(T)) − f* ≤ ∥w(0) − w*∥
2ηT

16

Analysis of gradient descent
• SSBD section 14.1 analyzes:  

 average iterate, initialize at 0, Lipschitz  
 very particular fixed that depends on length of optimization (also ,) 

f
η T B ρ

• We’ll do something else (more standard):  
 last iterate, -smooth , fixed β f η ≤ 1/β

• We’ll prove: f(w(T)) − f* ≤ ∥w(0) − w*∥
2ηT

• so can get suboptimality in steps ε !(1/ε)

16

Analysis of gradient descent
• SSBD section 14.1 analyzes:  

 average iterate, initialize at 0, Lipschitz  
 very particular fixed that depends on length of optimization (also ,) 

f
η T B ρ

• We’ll do something else (more standard):  
 last iterate, -smooth , fixed β f η ≤ 1/β

• We’ll prove: f(w(T)) − f* ≤ ∥w(0) − w*∥
2ηT

• so can get suboptimality in steps ε !(1/ε)

• In practice, can be hard to compute , and usually too smallβ 1/β

16

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Analysis of gradient descent
• SSBD section 14.1 analyzes:  

 average iterate, initialize at 0, Lipschitz  
 very particular fixed that depends on length of optimization (also ,) 

f
η T B ρ

• We’ll do something else (more standard):  
 last iterate, -smooth , fixed β f η ≤ 1/β

• We’ll prove: f(w(T)) − f* ≤ ∥w(0) − w*∥
2ηT

• so can get suboptimality in steps ε !(1/ε)

• In practice, can be hard to compute , and usually too smallβ 1/β
• Backtracking line search has a similar rate

16

Analysis of gradient descent
• SSBD section 14.1 analyzes:  

 average iterate, initialize at 0, Lipschitz  
 very particular fixed that depends on length of optimization (also ,) 

f
η T B ρ

• We’ll do something else (more standard):  
 last iterate, -smooth , fixed β f η ≤ 1/β

• We’ll prove: f(w(T)) − f* ≤ ∥w(0) − w*∥
2ηT

• so can get suboptimality in steps ε !(1/ε)

• In practice, can be hard to compute , and usually too smallβ 1/β
• Backtracking line search has a similar rate

16

• is convex, is -Lipschitz, learning rate f ∇f β η ≤ 1/β

17

• is convex, is -Lipschitz, learning rate f ∇f β η ≤ 1/β

• -smooth functions have β f(v) ≤ f(w) + ∇f(w)⊤(v − w) + β
2 ∥v − w∥2

17

• is convex, is -Lipschitz, learning rate f ∇f β η ≤ 1/β

• -smooth functions have β f(v) ≤ f(w) + ∇f(w)⊤(v − w) + β
2 ∥v − w∥2

• Iterate goes to ; plugging in to above, getw w+ = w − η∇f(w)

17

• is convex, is -Lipschitz, learning rate f ∇f β η ≤ 1/β

• -smooth functions have β f(v) ≤ f(w) + ∇f(w)⊤(v − w) + β
2 ∥v − w∥2

• Iterate goes to ; plugging in to above, getw w+ = w − η∇f(w)

17

f(w+) ≤ f(w) + ∇f(w)⊤(w+ − w)+ β
2 ∥w+ − w∥2

• is convex, is -Lipschitz, learning rate f ∇f β η ≤ 1/β

• -smooth functions have β f(v) ≤ f(w) + ∇f(w)⊤(v − w) + β
2 ∥v − w∥2

• Iterate goes to ; plugging in to above, getw w+ = w − η∇f(w)

17

f(w+) ≤ f(w) + ∇f(w)⊤(w+ − w)+ β
2 ∥w+ − w∥2

= f(w) + ∇f(w)⊤(−η∇f(w))+ β
2 ∥−η∇f(w)∥2

• is convex, is -Lipschitz, learning rate f ∇f β η ≤ 1/β

• -smooth functions have β f(v) ≤ f(w) + ∇f(w)⊤(v − w) + β
2 ∥v − w∥2

• Iterate goes to ; plugging in to above, getw w+ = w − η∇f(w)

17

f(w+) ≤ f(w) + ∇f(w)⊤(w+ − w)+ β
2 ∥w+ − w∥2

= f(w) + ∇f(w)⊤(−η∇f(w))+ β
2 ∥−η∇f(w)∥2

= f(w) − η∥∇f(w)∥2 + βη2

2 ∥∇f(w)∥2

• is convex, is -Lipschitz, learning rate f ∇f β η ≤ 1/β

• -smooth functions have β f(v) ≤ f(w) + ∇f(w)⊤(v − w) + β
2 ∥v − w∥2

• Iterate goes to ; plugging in to above, getw w+ = w − η∇f(w)

17

f(w+) ≤ f(w) + ∇f(w)⊤(w+ − w)+ β
2 ∥w+ − w∥2

= f(w) + ∇f(w)⊤(−η∇f(w))+ β
2 ∥−η∇f(w)∥2

= f(w) − η∥∇f(w)∥2 + βη2

2 ∥∇f(w)∥2

= f(w) − η (1 − βη
2) ∥∇f(w)∥2

• is convex, is -Lipschitz, learning rate f ∇f β η ≤ 1/β

• -smooth functions have β f(v) ≤ f(w) + ∇f(w)⊤(v − w) + β
2 ∥v − w∥2

• Iterate goes to ; plugging in to above, getw w+ = w − η∇f(w)

17

f(w+) ≤ f(w) + ∇f(w)⊤(w+ − w)+ β
2 ∥w+ − w∥2

= f(w) + ∇f(w)⊤(−η∇f(w))+ β
2 ∥−η∇f(w)∥2

= f(w) − η∥∇f(w)∥2 + βη2

2 ∥∇f(w)∥2

= f(w) − η (1 − βη
2) ∥∇f(w)∥2

≤ f(w) − η
2 ∥∇f(w)∥2

• is convex, is -Lipschitz, learning rate f ∇f β η ≤ 1/β

• -smooth functions have β f(v) ≤ f(w) + ∇f(w)⊤(v − w) + β
2 ∥v − w∥2

• Iterate goes to ; plugging in to above, getw w+ = w − η∇f(w)

17

f(w+) ≤ f(w) + ∇f(w)⊤(w+ − w)+ β
2 ∥w+ − w∥2

= f(w) + ∇f(w)⊤(−η∇f(w))+ β
2 ∥−η∇f(w)∥2

= f(w) − η∥∇f(w)∥2 + βη2

2 ∥∇f(w)∥2

= f(w) − η (1 − βη
2) ∥∇f(w)∥2

≤ f(w) − η
2 ∥∇f(w)∥2

“descent lemma”: we’re decreasing the objective! (note: didn’t use convexity yet…)

• is convex, is -Lipschitz, learning rate f ∇f β η ≤ 1/β

• -smooth functions have β f(v) ≤ f(w) + ∇f(w)⊤(v − w) + β
2 ∥v − w∥2

• Iterate goes to ; plugging in to above, getw w+ = w − η∇f(w)

17

f(w+) ≤ f(w) + ∇f(w)⊤(w+ − w)+ β
2 ∥w+ − w∥2

= f(w) + ∇f(w)⊤(−η∇f(w))+ β
2 ∥−η∇f(w)∥2

= f(w) − η∥∇f(w)∥2 + βη2

2 ∥∇f(w)∥2

= f(w) − η (1 − βη
2) ∥∇f(w)∥2

≤ f(w) − η
2 ∥∇f(w)∥2

first-order convexity condition:

so
f(w*) ≥ f(w) + ∇f(w)⊤(w* − w)

f(w) ≤ f(w*) + ∇f(w)⊤(w − w*)
“descent lemma”: we’re decreasing the objective! (note: didn’t use convexity yet…)

• is convex, is -Lipschitz, learning rate f ∇f β η ≤ 1/β

• -smooth functions have β f(v) ≤ f(w) + ∇f(w)⊤(v − w) + β
2 ∥v − w∥2

• Iterate goes to ; plugging in to above, getw w+ = w − η∇f(w)

17

f(w+) ≤ f(w) + ∇f(w)⊤(w+ − w)+ β
2 ∥w+ − w∥2

= f(w) + ∇f(w)⊤(−η∇f(w))+ β
2 ∥−η∇f(w)∥2

= f(w) − η∥∇f(w)∥2 + βη2

2 ∥∇f(w)∥2

= f(w) − η (1 − βη
2) ∥∇f(w)∥2

≤ f(w) − η
2 ∥∇f(w)∥2

≤ f(w*) + ∇f(w)⊤(w − w*) − η
2 ∥∇f(w)∥2

first-order convexity condition:

so
f(w*) ≥ f(w) + ∇f(w)⊤(w* − w)

f(w) ≤ f(w*) + ∇f(w)⊤(w − w*)
“descent lemma”: we’re decreasing the objective! (note: didn’t use convexity yet…)

 is convex, is -Lipschitz, learning rate ;

Have
f ∇f β η ≤ 1/β w+ = w − η∇f(w)

f(w+) ≤ f(w*) + ∇f(w)⊤(w − w*) − η
2 ∥∇f(w)∥2

18

 is convex, is -Lipschitz, learning rate ;

Have
f ∇f β η ≤ 1/β w+ = w − η∇f(w)

f(w+) ≤ f(w*) + ∇f(w)⊤(w − w*) − η
2 ∥∇f(w)∥2

18

2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

 is convex, is -Lipschitz, learning rate ;

Have
f ∇f β η ≤ 1/β w+ = w − η∇f(w)

f(w+) ≤ f(w*) + ∇f(w)⊤(w − w*) − η
2 ∥∇f(w)∥2

18

2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

= ∥w − w*∥2 − ∥w − w*∥2 + 2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

 is convex, is -Lipschitz, learning rate ;

Have
f ∇f β η ≤ 1/β w+ = w − η∇f(w)

f(w+) ≤ f(w*) + ∇f(w)⊤(w − w*) − η
2 ∥∇f(w)∥2

18

2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

= ∥w − w*∥2 − ∥w − w*∥2 + 2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

= ∥w − w*∥2 − [∥w − w*∥2 − 2η∇f(w)⊤(w − w*) + η2∥∇f(w)∥2]

 is convex, is -Lipschitz, learning rate ;

Have
f ∇f β η ≤ 1/β w+ = w − η∇f(w)

f(w+) ≤ f(w*) + ∇f(w)⊤(w − w*) − η
2 ∥∇f(w)∥2

18

2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

= ∥w − w*∥2 − ∥w − w*∥2 + 2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

= ∥w − w*∥2 − [∥w − w*∥2 − 2η∇f(w)⊤(w − w*) + η2∥∇f(w)∥2]
= ∥w − w*∥2 − ∥(w − w*) − η∇f(w)∥2

 is convex, is -Lipschitz, learning rate ;

Have
f ∇f β η ≤ 1/β w+ = w − η∇f(w)

f(w+) ≤ f(w*) + ∇f(w)⊤(w − w*) − η
2 ∥∇f(w)∥2

18

2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

= ∥w − w*∥2 − ∥w − w*∥2 + 2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

= ∥w − w*∥2 − [∥w − w*∥2 − 2η∇f(w)⊤(w − w*) + η2∥∇f(w)∥2]
= ∥w − w*∥2 − ∥(w − w*) − η∇f(w)∥2

= ∥w − w*∥2 − ∥w+ − w*∥2

 is convex, is -Lipschitz, learning rate ;

Have
f ∇f β η ≤ 1/β w+ = w − η∇f(w)

f(w+) ≤ f(w*) + ∇f(w)⊤(w − w*) − η
2 ∥∇f(w)∥2

18

2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

= ∥w − w*∥2 − ∥w − w*∥2 + 2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

= ∥w − w*∥2 − [∥w − w*∥2 − 2η∇f(w)⊤(w − w*) + η2∥∇f(w)∥2]
= ∥w − w*∥2 − ∥(w − w*) − η∇f(w)∥2

= ∥w − w*∥2 − ∥w+ − w*∥2

Plugging back in, f(w+) ≤ f(w*) + 1
2η (∥w − w*∥2 − ∥w+ − w*∥2)

 is convex, is -Lipschitz, learning rate ;

Have
f ∇f β η ≤ 1/β w+ = w − η∇f(w)

f(w+) ≤ f(w*) + ∇f(w)⊤(w − w*) − η
2 ∥∇f(w)∥2

18

2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

= ∥w − w*∥2 − ∥w − w*∥2 + 2η∇f(w)⊤(w − w*) − η2∥∇f(w)∥2

= ∥w − w*∥2 − [∥w − w*∥2 − 2η∇f(w)⊤(w − w*) + η2∥∇f(w)∥2]
= ∥w − w*∥2 − ∥(w − w*) − η∇f(w)∥2

= ∥w − w*∥2 − ∥w+ − w*∥2

Plugging back in, f(w+) ≤ f(w*) + 1
2η (∥w − w*∥2 − ∥w+ − w*∥2)

and so f(w(k)) − f(w*) ≤ 1
2η (∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)

 is convex, is -Lipschitz, learning rate ; f ∇f β η ≤ 1/β w+ = w − η∇f(w)

19

now know f(w(k)) − f(w*) ≤ 1
2η (∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)

 is convex, is -Lipschitz, learning rate ; f ∇f β η ≤ 1/β w+ = w − η∇f(w)

19

now know f(w(k)) − f(w*) ≤ 1
2η (∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)

f(w(T)) − f(w*) ≤ 1
T

T

∑
k=1

(f(w(k)) − f(w*)) (because of the descent lemma)

 is convex, is -Lipschitz, learning rate ; f ∇f β η ≤ 1/β w+ = w − η∇f(w)

19

now know f(w(k)) − f(w*) ≤ 1
2η (∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)

≤ 1
2ηT

T

∑
k=1

(∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)

f(w(T)) − f(w*) ≤ 1
T

T

∑
k=1

(f(w(k)) − f(w*)) (because of the descent lemma)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

 is convex, is -Lipschitz, learning rate ; f ∇f β η ≤ 1/β w+ = w − η∇f(w)

19

now know f(w(k)) − f(w*) ≤ 1
2η (∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)

≤ 1
2ηT

T

∑
k=1

(∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)
= 1

2ηT (∥w(0) − w*∥2 − ∥w(T) − w*∥2)

f(w(T)) − f(w*) ≤ 1
T

T

∑
k=1

(f(w(k)) − f(w*)) (because of the descent lemma)

 is convex, is -Lipschitz, learning rate ; f ∇f β η ≤ 1/β w+ = w − η∇f(w)

19

now know f(w(k)) − f(w*) ≤ 1
2η (∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)

≤ 1
2ηT

T

∑
k=1

(∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)
= 1

2ηT (∥w(0) − w*∥2 − ∥w(T) − w*∥2)

≤ 1
2ηT

∥w(0) − w*∥2

f(w(T)) − f(w*) ≤ 1
T

T

∑
k=1

(f(w(k)) − f(w*)) (because of the descent lemma)

 is convex, is -Lipschitz, learning rate ; f ∇f β η ≤ 1/β w+ = w − η∇f(w)

19

now know f(w(k)) − f(w*) ≤ 1
2η (∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)

≤ 1
2ηT

T

∑
k=1

(∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)
= 1

2ηT (∥w(0) − w*∥2 − ∥w(T) − w*∥2)

≤ 1
2ηT

∥w(0) − w*∥2

f(w(T)) − f(w*) ≤ 1
T

T

∑
k=1

(f(w(k)) − f(w*))

 with ≤ Bβ
2T

η = 1
β

(because of the descent lemma)

 is convex, is -Lipschitz, learning rate ; f ∇f β η ≤ 1/β w+ = w − η∇f(w)

19

now know f(w(k)) − f(w*) ≤ 1
2η (∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)

≤ 1
2ηT

T

∑
k=1

(∥w(k−1) − w*∥2 − ∥w(k) − w*∥2)
= 1

2ηT (∥w(0) − w*∥2 − ∥w(T) − w*∥2)

≤ 1
2ηT

∥w(0) − w*∥2

f(w(T)) − f(w*) ≤ 1
T

T

∑
k=1

(f(w(k)) − f(w*))

note : same for average iteratef (1
T

T

∑
k=1

w(k)) ≤ 1
T

T

∑
k=1

f(w(k))

 with ≤ Bβ
2T

η = 1
β

(because of the descent lemma)

So what?
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded classes

• Will show they’re learnable; didn’t quite get there yet

20

https://arxiv.org/abs/1405.4980

So what?
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded classes

• Will show they’re learnable; didn’t quite get there yet

20

https://arxiv.org/abs/1405.4980

So what?
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded classes

• Will show they’re learnable; didn’t quite get there yet

• We can ~efficiently optimize empirical risk for Convex-Smooth-Bounded classes

• SSBD section 14.1 shows (worse) rate for Convex-Lipschitz-Bounded, avg iterate

• Turns out can get much faster rate if objective is strongly convex
• Don’t actually need differentiability everywhere: subgradient descent

• For more: check out Bubeck (Convex Optimization: Algorithms and Complexity),

Nocedal and Wright (Numerical Optimization), or take CPSC 536M

20

https://arxiv.org/abs/1405.4980

So what?
• Defined Convex-Lipschitz-Bounded and Convex-Smooth-Bounded classes

• Will show they’re learnable; didn’t quite get there yet

• We can ~efficiently optimize empirical risk for Convex-Smooth-Bounded classes

• SSBD section 14.1 shows (worse) rate for Convex-Lipschitz-Bounded, avg iterate

• Turns out can get much faster rate if objective is strongly convex
• Don’t actually need differentiability everywhere: subgradient descent

• For more: check out Bubeck (Convex Optimization: Algorithms and Complexity),

Nocedal and Wright (Numerical Optimization), or take CPSC 536M

• Next time:

• How to use this / related stuff for learning guarantees

• How to analyze classifiers (since 0-1 loss isn’t Lipschitz or smooth)

20

https://arxiv.org/abs/1405.4980

