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Admin

Hybrid mode starts next week, in DMP 101
Office hours still online-only this week

A2 Is up, due next Friday night
 Groups of up to three, allowed separate per question
* |f you don’t have a group and want one, post on Piazza

A1 grading: hopefully done this week



An analogy about MDL

» Minimum description length says to pick argmin, o, Lo(h) + f(| |, n, )



An analogy about MDL

» Minimum description length says to pick argmin, o, Lo(h) + f(| |, n, )
e But || isn’t “inherent” to a function A



An analogy about MDL

» Minimum description length says to pick argmin, o, Lo(h) + f(| |, n, )

e But || isn’t “inherent” to a function A
* Different ways to implement the same function



An analogy about MDL

» Minimum description length says to pick argmin, o, Lo(h) + f(| |, n, )

e But || isn’t “inherent” to a function A
* Different ways to implement the same function

« Can make up a language where any / you like has |h| = 1



An analogy about MDL

» Minimum description length says to pick argmin, o, Lo(h) + f(| |, n, )

e But || isn’t “inherent” to a function A
» Different ways to implement the same function

« Can make up a language where any / you like has |h| = 1

{0} CODE GOLF

& coding challenges me

Loopholes that are forbidden by default



An analogy about MDL

» Minimum description length says to pick argmin, o, Lo(h) + f(| |, n, )

e But || isn’t “inherent” to a function A
» Different ways to implement the same function

« Can make up a language where any / you like has |h| = 1

{g} CODE GOLF

& coding challenges meta

Loopholes that are forbidden by default

Using a made-up language specifically designed for the

313 challenge

This includes any language with commands that "do whatever | choose them to

do". Claiming that your answer is written in "MyOwnLanguage", where the

command x means "read a sequence of numbers, split them into groups of three,

and print the last numbers of those groups where the second number is less than

the first", was clever the first time it was done. That was a /long time ago. 3




An analogy about MDL

» Minimum description length says to pick argmin, o, Lo(h) + f(| |, n, )

e But || isn’t “inherent” to a function A
» Different ways to implement the same function

« Can make up a language where any / you like has |h| = 1

& coding challenges meta

{g} CODE GOLF HQ9+ is a joke language with four instructions:

e H: Print "hello, world"

e Q: Print the program's source code

Loopholes that are forbidden by default < 9: Printthe lyrics to 99 Bottles of Beer"

e +: Increment the accumulator

Using a made-up language specifically designed for the

313 challenge

This includes any language with commands that "do whatever | choose them to

do". Claiming that your answer is written in "MyOwnLanguage", where the

command x means "read a sequence of numbers, split them into groups of three,

and print the last numbers of those groups where the second number is less than

the first", was clever the first time it was done. That was a /long time ago. 3




An analogy about MDL

» Minimum description length says to pick argmin, o, Lo(h) + f(| |, n, )
e But || isn’t “inherent” to a function A

» Different ways to implement the same function

« Can make up a language where any / you like has |h| = 1

* But you have to do it ahead of time

0 CODE GOLF HQ9+ is a joke language with four instructions:
@ & coding challenges meta

e H: Print "hello, world"

e Q: Print the program's source code

Loopholes that are forbidden by default < o: Print the lyrics to "99 Bottles of Beer"

e +: Increment the accumulator

Using a made-up language specifically designed for the

313 challenge
This includes any language with commands that "do whatever | choose them to
do". Claiming that your answer is written in "MyOwnLanguage", where the | don't have any problem with made-up languages. But the language should already
command x means "read a sequence of numbers, split them into groups of three, exist when the challenge was posted. Never versions of the language are not allowed
and print the last numbers of those groups where the second number is less than (to prevent changing the language e.g adding an extra command to HQ9+).

the first", was clever the first time it was done. That was a /long time ago. 3 — Johannes Kuhn Mar 13 2014 at 15:27 /'




An analogy about MDL

» Minimum description length says to pick argmin, o, Lo(h) + f(| |, n, )

e But || isn’t “inherent” to a function A
» Different ways to implement the same function
« Can make up a language where any / you like has |h| = 1
* But you have to do it ahead of time

{g} CODE GOLF HQ9+ is a joke language with four instructions:

& coding challenges meta

e H: Print "hello, world"

Kolmogorov complexity

From Wikipedia, the free encyclopedia

e Q: Print the program's source code

Loopholes that are forbidden by default < o: Print the lyrics to "99 Bottles of Beer"
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« # nonuniformly learnable = SRM works on # = # is countable union of finite-VC sets
 New today: consistency

« Compete with any h € #Z on any &J; needed n depends on &, 0, h, and &
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Consistency

Let £ be some set of distributions over our domain £
A learning algorithm A is consistent w.r.t. #Z and & if

e foreverye, 0 >0, he #,I e P,
e as long as n is above some threshold nyc;ON (e,0,h, D),

. we have Pr (L@(A(S)) < Lg(h) + 8) >1-0
S~P"

Means that A eventually works as well as any hypothesis in #Z,
if the truth is anything in &

A is universally consistent w.r.t. Z
if it is consistent wrt #Z for the set of all distributions on Z£
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~ Memorization
* Asilly learning algorithm:

o To train: just save § = ((Xl,y1), oy (X yn))

 Jo predict on x: if x = Xx;, return y;, else return O

* This is universally consistent for binary 0-1 loss wrt the set of all binary predictors, if
A is countable

« Example of countable 2: {0,1}%*, the set of binary strings of any length
* Proof: SSBD exercise 6.6

» Making an inconsistent algorithm A consistent:
o To train: save S = ((xl,yl), e (X yn)) and learn h = A(S)
 To predict on Xx: if X = X;, return y;, else return h(x)

« Even so, can be interesting to compare n;;ON for different sub-classes of &
0
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Goals of studying learnability

How good is my particular learned /17?
 Usual best answer (next, today): check a validation set

How many samples will | need to be as good as anything in Z°?
 PAC-type bounds can give good (if conservative) answers

« Nonuniform learning, consistency don’t, since we don’t know /*

What’s learnable, and what’s inherently hard to learn”? What principles work?
 PAC-type bounds can be more informative
* Plain “consistent or not” doesn’t say much

Lots of work (unlike SSBD) ask about learning given some assumptions on &

o Of SSBD’s models of learning, only consistency really allows this
3
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Model selection In practice

e Say we want to fit a decision tree,

and are not sure how deep we should let it be

Last time: pick &, as depth-k trees, run SRM

» But still need to pick weights...
« MDL is one way

* Not always best I
» Bounds can be conservative -4 L5 AN - =
» Not always computationally feasible memmim s o= S mme
& B SHEmas Bl =hem =Es e =&
FEEEESEHEEE =5 6 e SdsEEn
What if we want to fit e B me snannm
el t her a d ec | S | on tree = _...=: :_3; ;:” o5 -..-.—% i: i = B 5@
or a linear classifier ot iy
or a neural network ii:i from jotterbach.github.io

A
Pie0s ) [gmecana

or...?
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https://jotterbach.github.io/content/posts/recursive_partitioning/2016-12-10-RecursivePartitioning/

The CPSC 340 solution
(i.e., what people actually do)

Validation Error

How do we decide decision tree depth?
We care about test error.

But we can’t look at test data.

One answer: Use part of the training data to approximate test error.

Split training examples into training set and validation set:
— Train model based on the training data. LS(h)
— Test model based on the validation data. Lv(h)

11



The CPSC 340 solution
(i.e., what people actually do)

Validation Error

™ B
] — g “ffq{n“
A= A

4 v/ A ,iéq*ion“
e S

—

St | s Training  podel = Frain (X frqf,,)\/,w) e.g. argmin,|Ld(h)

gjfc'o 7\ 1S 0)reJ;L‘IH\qI 9 pot ffed'lCT(MOc(.el >( el s)
TS oy Avaleale
Shf 5 is \la"(}q*@' error = Sum ()’ :7'1 y\/a/iclafe> LV(h)

No]le \'F e;cqu’e) Aar? ore\ﬂlacl) Sfjl% SL\OVI/J be far\JOM.
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9| 41 vii, v, The GPSC 340 solution
(i.e., what people actually do)

Notation: Parameters and Hyper-Parameters

 The decision tree rule values are called “parameters”.

— Parameters control how well we fit a dataset.
— We “train” a model by trying to find the best parameters on training data.

* The decision tree depth is a called a “hyper-parameter”.

— Hyper-parameters control how complex our model is.

— We can’t “train” a hyper-parameter.
* You can always fit training data better by making the model more complicated.

— We “validate” a hyper-parameter using a validation score.

* (“Hyper-parameter” is sometimes used for parameters “not fit with data”.)

13
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The CPSC 340 solution
(i.e., what people actually do)

Choosing Hyper-Parameters with Validation Set

* So to choose a good value of depth (“hyper-parameter”), we could:
— Try a depth-1 decision tree, compute validation error. I:al = ERM%I(S)
— Try a depth-2 decision tree, compute validation error. /1, = ERM%(S)
— Try a depth-3 decision tree, compute validation error. /1, = ERM%(S)

— Try a depth-20 decision tree, compute validation error. izzo = ERMg, (S)

— Return the depth with the lowest validation error. . A
k = argminy L, (/)

e After you choose the hyper-parameter, we usually h = ERMg, (S} U\l)
re-train on the full training set with the chosen hyper-parameter.

or just take argmin, izk

14
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The CPSC 340 solution
(i.e., what people actually do)

Digression: Optimization Bias

* Another name for overfitting is “optimization bias”:
— How biased is an “error” that we optimized over many possibilities?

* Optimization bias of parameter learning: (all of Z)
— During learning, we could search over tons of different decision trees.

— So we can get “lucky” and find one with low training error by chance.
e “Overfitting of the training error”.

e Optimization bias of hyper-parameter tuning: Just {hl’ hz, ‘oo hz()}
— Here, we might optimize the validation error over 20 values of “depth”.

— One of the 20 trees might have low validation error by chance.
* “Overfitting of the validation error”.

15



The CPSC 340 solution
(i.e., what people actually do)

Digression: Example of Optimization Bias

* Consider a multiple-choice (a,b.c.d) “test” with 10 questions:

— If you choose answers randomly, expected grade is 25% (no bias).
— If you fill out two tests randomly and pick the best, expected grade is 33%.

e Optimization bias of ~8%.
— If you take the best among 10 random tests, expected grade is ~47%.
— If you take the best among 100, expected grade is ~62%.  1NT LS(h) shrinks with Z
— If you take the best among 1,000, expected grade is ~73%. heZ

— |f you take the best among 10,000, expected grade is ~82%.
* You have so many “chances” that you expect to do well.

here Lg,(h) is constant
 But on new questions the “random choice” accuracy is still 25%.

16 so sup Lg,(h) — L(h) grows



The CPSC 340 solution
(i.e., what people actually do)

Overfitting to the Validation Set?

Validation error usually has lower optimization bias than training error.
— Might optimize over 20 values of “depth”, instead of millions+ of possible trees.

But we can still overfit to the validation error (common in practice):
— Validation error is only an unbiased approximation if you use it once.
— Once you start optimizing it, you start to overfit to the validation set.

This is most important when the validation set is “small”:
— The optimization bias decreases as the number of validation examples increases.

Remember, our goal is still to do well on the test set (hew data),
not the validation set (where we already know the labels).

17



The CPSC 340 thought process

Should you trust them? Should you trust them? Should you trust them?
* Scenario 1: * Scenario 2: e Scenario 3:
— “| built a model based on the data you gave me.” — “I built a model based on half of the data you gave me.” — “I built 10 models based on half of the data you gave me.”
— “It classified your data with 98% accuracy.” — “It classified the other half of the data with 98% accuracy.” — “One of them classified the other half of the data with 98% accuracy.
— “It should get 98% accuracy on the rest of your data.” — “It should get 98% accuracy on the rest of your data.” — “It should get 98% accuracy on the rest of your data.”
* Probably not: + Probably: * Probably:

— They are reporting training error.
— This might have nothing to do with test error.

— E.g., they could have fit a very deep decision tree.
« Why ‘probably’? — Trust them if you believe they didn’t violate the golden rule.

— They computed the validation error once. — They computed the validation error a small number of times.

— This is an unbiased approximation of the test error. — Maximizing over these errors is a biased approximation of test error.

— But they only maximized it over 10 models, so bias is probably small.

— They probably know about the golden rule.
— If they only tried a few very simple models, the 98% might be reliable.

— E.g., they only considered decision stumps with simple 1-variable rules.

Should you trust them? Should you trust them?

e Scenario 5:

* Scenario 4: — “I built 1 billion models based on the first third of the data you gave me.”
— “I built 1 billion models based on half of the data you gave me.” — “One of them classified the second third of the data with 98% accuracy.”
— “One of them classified the other half of the data with 98% accuracy.” — “It also classified the last third of the data with 98% accuracy.”
— “It should get 98% accuracy on the rest of your data.” — “It should get 98% accuracy on the rest of your data.”
* Probably:

* Probably not:
— They computed the first validation error a huge number of times.

— But they had a second validation set that they only looked at once.
— The second validation set gives unbiased test error approximation.
* Why ‘probably’? — This is ideal, as long as they didn’t violate golden rule on the last third.

------------------

— If the 1 billion models were all extremely simple, 98% might be reliable. — And assuming you are using |ID data in the first place.

18

— They computed the validation error a huge number of times.
— They tried so many models, one of them is likely to work by chance.



Hold-out set accuracy, quantitatively

o |f Vis independent of choosing £, for loss in [0,B], immediately have

Ly(h) — Loy()| < By [ 5~

loo 2
v 08

» No dependence on #, A, etc; doesn’t matter how we picked h
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Hold-out set accuracy, quantitatively

o |f Vis independent of choosing £, for loss in [0,B], immediately have

Ly(h) = Lo(h)| < By 5= -log 2

» No dependence on #, A, etc; doesn’t matter how we picked h

A\

. Find Z = {ill, Cees h‘%} based on a set S. For an independent V,

o JE4
neJ ‘LV(h) Lc@(h)‘ 2\V\1 e
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Validation set vs SRM

SRM\sY = ABmh L (m+£ (151, e, 8

e éﬁRMﬂF\Sij ( he 94
Say we have |S| = nand |V| = Lh"l’(‘ . arsmé (oY £ (15|, Wi S)

Decompose # into # U # , U ---; consider SRM with weights 6/ (7°k?)
Val(é’, ) takes argmin, (ERM(S)) LV(h)

Can show (MRT prop 4.3: union bound + Hoeffding) that

Lo, (ERM,, (8)) — L (ERM%(S))‘ Vo log %+ /= logk

Implies (MRT thm 4.4)

[ 1 [ 1 4

e |.e. not too much worse than SRM with part of the data
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Fold [

VALIDATION

Er'rOr"' 0,

CV error estimaqle

Cross-Validation (CV)

Fold 2 Fold 3

VALIDATION

TRAIN

Ewor ’ 0 Pl
b

7% ()

VALIDATION

Grr()r " 09\
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Fold Y-

TRAIN

VALIDATION

Error 0.

Foll 6

VALIDATION

Er‘rorf OR

é pe~"Puranie f@y‘;MGQq(cﬂr{o/S): Olé

We'll come back to analyze cross-validation soon (based on stability analyses)



Summary

 Models of learnability
* Realizable PAC, Agnostic PAC
 Nonuniform learning
 Consistency

e Silly to talk about whether consistent or not,
but comparing sample complexities makes sense

* Picking models In practice
e \alidation sets
e Simple bounds based on how many times you look at the val set
 Hoeffding + union bound

e Can prove: not too much worse than SRM (which ignores the val set)
 More practical than SRM, usually
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