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Admin
• On Zoom today (obviously)

• Also on Wednesday – mostly better now, but playing it safe

• Hybrid mode starts next week, in DMP 101

• Office hours still online-only this week 

 

• A2 is up, due next Friday night

• Groups of up to three, allowed separate per question

• Piazza “search for teammates” thing if you want


• A1 grading: hopefully done this week (sorry)  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The course so far
• We’ve talked about learning binary classifiers in a fixed hypothesis class 

• (agnostic|realizable) PAC learning

• uniform convergence property

• VC dimension of 

• Rademacher complexity of 

ℋ

ℋ
ℋ
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The course so far
• We’ve talked about learning binary classifiers in a fixed hypothesis class 

• (agnostic|realizable) PAC learning

• uniform convergence property

• VC dimension of 

• Rademacher complexity of 

ℋ

ℋ
ℋ

• Also a little bit about regression, based on Rademacher complexity

• Proved bounds like    


• Imply ERM works:  for all 

Pr ( sup
h∈ℋ

L#(h) − LS(h) > ε) ≤ δ

L#(ĥS) ≤ LS(ĥS) + ε ≤ LS(h) + ε ≤ L#(h) + 2ε h
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Importance of choosing ℋ
• Can’t PAC-learn  if it has infinite VC dimension: no free lunch ℋ

•      

 
 
 
 
 

L#(h) − L*# = (L#(h) − inf
h′ ∈ℋ

L#(h′ )) + ( inf
h′ ∈ℋ

L#(h′ ) − L*#)
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Importance of choosing ℋ
• Can’t PAC-learn  if it has infinite VC dimension: no free lunch ℋ

•      

 
 
 
 
 

L#(h) − L*# = (L#(h) − inf
h′ ∈ℋ

L#(h′ )) + ( inf
h′ ∈ℋ

L#(h′ ) − L*#)

• Can bound/estimate the estimation error; 
generally can’t really estimate the approximation error
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Importance of choosing ℋ
• Can’t PAC-learn  if it has infinite VC dimension: no free lunch ℋ

•      

 
 
 
 
 

L#(h) − L*# = (L#(h) − inf
h′ ∈ℋ

L#(h′ )) + ( inf
h′ ∈ℋ

L#(h′ ) − L*#)

• Can bound/estimate the estimation error; 
generally can’t really estimate the approximation error

• So…how to pick?
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Structural Risk Minimization
• Idea: let  be really really bigℋ
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Structural Risk Minimization
• Idea: let  be really really bigℋ
• Approximation error  is small, maybe zeroinf

h∈ℋ
L#(h) − L*

• So maybe ,  is big, etc: bad estimation error VCdim(ℋ) = ∞ ℜn(ℋ)

• But decompose it into ℋ = ℋ1 ∪ ℋ2 ∪ ⋯ = ⋃
k∈ℕ

ℋk

• Assume each  has uniform convergence property: for all ,  
 with prob at least  over 

ℋk #
sup

h∈ℋk

L#(h) − LS(h) ≤ εk(n, δ) 1 − δ S ∼ #n
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Structural Risk Minimization
• Idea: let  be really really bigℋ
• Approximation error  is small, maybe zeroinf

h∈ℋ
L#(h) − L*

• So maybe ,  is big, etc: bad estimation error VCdim(ℋ) = ∞ ℜn(ℋ)

• But decompose it into ℋ = ℋ1 ∪ ℋ2 ∪ ⋯ = ⋃
k∈ℕ

ℋk

• Assume each  has uniform convergence property: for all ,  
 with prob at least  over 

ℋk #
sup

h∈ℋk

L#(h) − LS(h) ≤ εk(n, δ) 1 − δ S ∼ #n

• Choose weights  withwk ≥ 0
∞

∑
k=1

wk ≤ 1
5
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Structural Risk

• , each  has uniform convergence with , weights  ℋ = ⋃
k∈ℕ

ℋk ℋk εk(n, δ)
∞

∑
k=1

wk ≤ 1
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Structural Risk

• , each  has uniform convergence with , weights  ℋ = ⋃
k∈ℕ

ℋk ℋk εk(n, δ)
∞

∑
k=1

wk ≤ 1

• Theorem: For any , with probability at least  over choice of , we have# 1 − δ S ∼ #n
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ℋ = ⋃
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∞
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Structural Risk

• , each  has uniform convergence with , weights  ℋ = ⋃
k∈ℕ

ℋk ℋk εk(n, δ)
∞

∑
k=1

wk ≤ 1

• Theorem: For any , with probability at least  over choice of , we have# 1 − δ S ∼ #n

• For all  simultaneously,k sup
h∈ℋk

L#(h) − LS(h) ≤ εk(n, δwk)

• Thus for all  simultaneously, 
                                       

h ∈ ℋ
L#(h) ≤ LS(h) + min

k : h∈ℋk

εk(n, δwk)

• Proof: union bound over convergence in each , giving probability  to eachℋk δwk
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Bound Minimization
• What we really want is an  minimizing , but we don’t know h L#(h) L#(h)
• SRM algorithm minimizes an upper bound on :L#(h)

7



Bound Minimization
• What we really want is an  minimizing , but we don’t know h L#(h) L#(h)
• SRM algorithm minimizes an upper bound on :L#(h)

•       where h ∈ argminh∈ℋ [LS(h) + εkh (n, δwkh)] kh = min{k : h ∈ ℋk}

7



Bound Minimization
• What we really want is an  minimizing , but we don’t know h L#(h) L#(h)
• SRM algorithm minimizes an upper bound on :L#(h)

•       where h ∈ argminh∈ℋ [LS(h) + εkh (n, δwkh)] kh = min{k : h ∈ ℋk}

8



Bound Minimization
• What we really want is an  minimizing , but we don’t know h L#(h) L#(h)
• SRM algorithm minimizes an upper bound on :L#(h)

•       where h ∈ argminh∈ℋ [LS(h) + εkh (n, δwkh)] kh = min{k : h ∈ ℋk}

• Can implement (with an “ERM oracle”) as:

8



Bound Minimization
• What we really want is an  minimizing , but we don’t know h L#(h) L#(h)
• SRM algorithm minimizes an upper bound on :L#(h)

•       where h ∈ argminh∈ℋ [LS(h) + εkh (n, δwkh)] kh = min{k : h ∈ ℋk}

• Can implement (with an “ERM oracle”) as:
• best_loss = ∞
• for k = 1,2,…
• cand = ; cand_loss = ERM(ℋk) LS(cand) + εk(n, wkδ)

8



Bound Minimization
• What we really want is an  minimizing , but we don’t know h L#(h) L#(h)
• SRM algorithm minimizes an upper bound on :L#(h)

•       where h ∈ argminh∈ℋ [LS(h) + εkh (n, δwkh)] kh = min{k : h ∈ ℋk}

• Can implement (with an “ERM oracle”) as:
• best_loss = ∞
• for k = 1,2,…
• cand = ; cand_loss = ERM(ℋk) LS(cand) + εk(n, wkδ)
• if (cand_loss < best_loss) { best = cand; best_loss = cand_loss; }
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Bound Minimization
• What we really want is an  minimizing , but we don’t know h L#(h) L#(h)
• SRM algorithm minimizes an upper bound on :L#(h)

•       where h ∈ argminh∈ℋ [LS(h) + εkh (n, δwkh)] kh = min{k : h ∈ ℋk}

• Can implement (with an “ERM oracle”) as:
• best_loss = ∞
• for k = 1,2,…
• cand = ; cand_loss = ERM(ℋk) LS(cand) + εk(n, wkδ)
• if (cand_loss < best_loss) { best = cand; best_loss = cand_loss; }

• if (  > best_loss) { break; }min
k′ >k

εk(n, δ)
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SRM  ERM⊃

• ERM is a special case of SRM with one :

•  

• If we split  into  parts of equal “size” (same  function) and same weight,  
also the same as ERM 

• What happens more generally?

k
argminh∈ℋ LS(h) = argminh∈ℋ [LS(h) + ε(n, δ)]

ℋ K ε
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• Pick ; have wk = 6
π2 k2 ≈ 0.61

k2 ∑k
wk = 1
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10



• Pick ; have wk = 6
π2 k2 ≈ 0.61

k2 ∑k
wk = 1

• By prev theorem,  for all L#(h) ≤ LS(h) + εkh
(n, wkh

δ) h ∈ ℋ
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δ) ĥ
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• Pick ; have wk = 6
π2 k2 ≈ 0.61

k2 ∑k
wk = 1

• By prev theorem,  for all L#(h) ≤ LS(h) + εkh
(n, wkh

δ) h ∈ ℋ
• So           for  the SRM solution 

 
 
 
 
 

L#(ĥ) ≤ LS(ĥ) + εkĥ
(n, wkĥ

δ) ĥ

10

          for any , by def of SRM≤ LS(h) + εkh
(n, wkh

δ) h
       using uniform convergence≤ L#(h) + 2εkh

(n, wkh
δ)
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10

          for any , by def of SRM≤ LS(h) + εkh
(n, wkh

δ) h
       using uniform convergence≤ L#(h) + 2εkh

(n, wkh
δ)

                         if  ≤ L#(h) + ε n ≥ nUC
ℋkh ( ε

2 , 6δ
π2k2

h )



• Pick ; have wk = 6
π2 k2 ≈ 0.61

k2 ∑k
wk = 1

• By prev theorem,  for all L#(h) ≤ LS(h) + εkh
(n, wkh

δ) h ∈ ℋ
• So           for  the SRM solution 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(n, wkĥ
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8 ) ≥ 6
7 L#(h) = 0

• But no free lunch theorem implies: if , this would be impossibleVCdim(ℋk) = ∞
• So  has finite VC dim, so is agnostic PAC-learnable ℋk

• Set of all measurable  is not a countable union of finite-VC classesℋ
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L#(ĥ) ≤ inf
h∈ℋ [L#(h) + 2ℜn(ℋkh

) + 1
n log kh] + 2

n log 3
δ

• If there’s an optimal , then the  term is the only thing worse than 

just learning directly in  in the first place 

h* 1
n log kh*

ℋk*

• Not usually a big deal, especially if we order the  reasonably!ℋk
13



SRM with singleton classes

• If  is countable, we can number the elements and take 


• “Uniform” convergence on  via Hoeffding: 


• SRM is     


• Entirely determined by our choice of “prior” 

• How to choose a prior?

ℋ ℋ = ∪n∈ℕ {hn}
{hn} εk(n, δ) = 1

2n log 2
δ

argminh∈ℋ [LS(h) + 1
2n [−log wh + log 2

δ ]]
wh

14



Minimum Description Length
• Come up with a prefix-free binary language  describing each 1 ⊆ {0,1}* h
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    we know that  uniformly,  

    and MDL principle minimizes the RHS  

wh = 1/2|h|

L#(h) ≤ LS(h) + 1
2n [|h| log 2 + log 2

δ ]

• One formalization of Occam’s Razor
• But “simplest” is not inherent; we’re pre-committing to what we call 

“simple” based on our choice of 1
15



Problems with bound minimization
• Concentration inequalities are usually pretty conservative

• Hold for all distributions that are, e.g., bounded

• Symmetrization in Rademacher introduces a factor of 2 that’s often not needed  

• SRM is based on these worst-case assumptions

• So, can’t adapt to e.g. the fast  rate if turns out to be realizable:  

will just operate assuming the slow  agnostic rate  

• Performance of the algorithm fundamentally based on how good at analysis you are

• We’d usually prefer the algorithm work whether we’re smart or not 

1/n
1/ n

16



Summary

• SRM allows learning over infinite-VC 

• We just learn slower if  is harder


• Need to choose a countable decomposition into 

• Often, little penalty vs if we knew which  the optimal solution is in beforehand

• Generic way to pick weights: ; gives a  term in Rademacher

• Minimum Description Length is another, semi-universal way to divide  

• Next time: choosing  using a validation set

ℋ
h

ℋk
ℋk

wk = 6/(π2k2) log k

h
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