CPSC 532S: Modern Statistical Learning Theory 7 February 2022 <u>cs.ubc.ca/~dsuth/532S/22/</u>

Admin

- On Zoom today (obviously)
- Also on Wednesday mostly better now, but playing it safe
- Hybrid mode starts next week, in DMP 101
- Office hours still online-only this week

- A2 is up, due next Friday night
 - Groups of up to three, allowed separate per question
 - Piazza "search for teammates" thing if you want
- A1 grading: hopefully done this week (sorry)

er now, but playing it safe DMP 101 veek

separate per question thing if you want eek (sorry)

The course so far

- - (agnostic realizable) PAC learning
 - uniform convergence property
 - VC dimension of \mathcal{H}
 - Rademacher complexity of \mathcal{H}

- We've talked about learning binary classifiers in a fixed hypothesis class ${\mathscr H}$

The course so far

- - (agnostic realizable) PAC learning
 - uniform convergence property
 - VC dimension of \mathcal{H}
 - Rademacher complexity of \mathcal{H}
- Also a little bit about regression, based on Rademacher complexity

- We've talked about learning binary classifiers in a fixed hypothesis class ${\mathscr H}$

The course so far

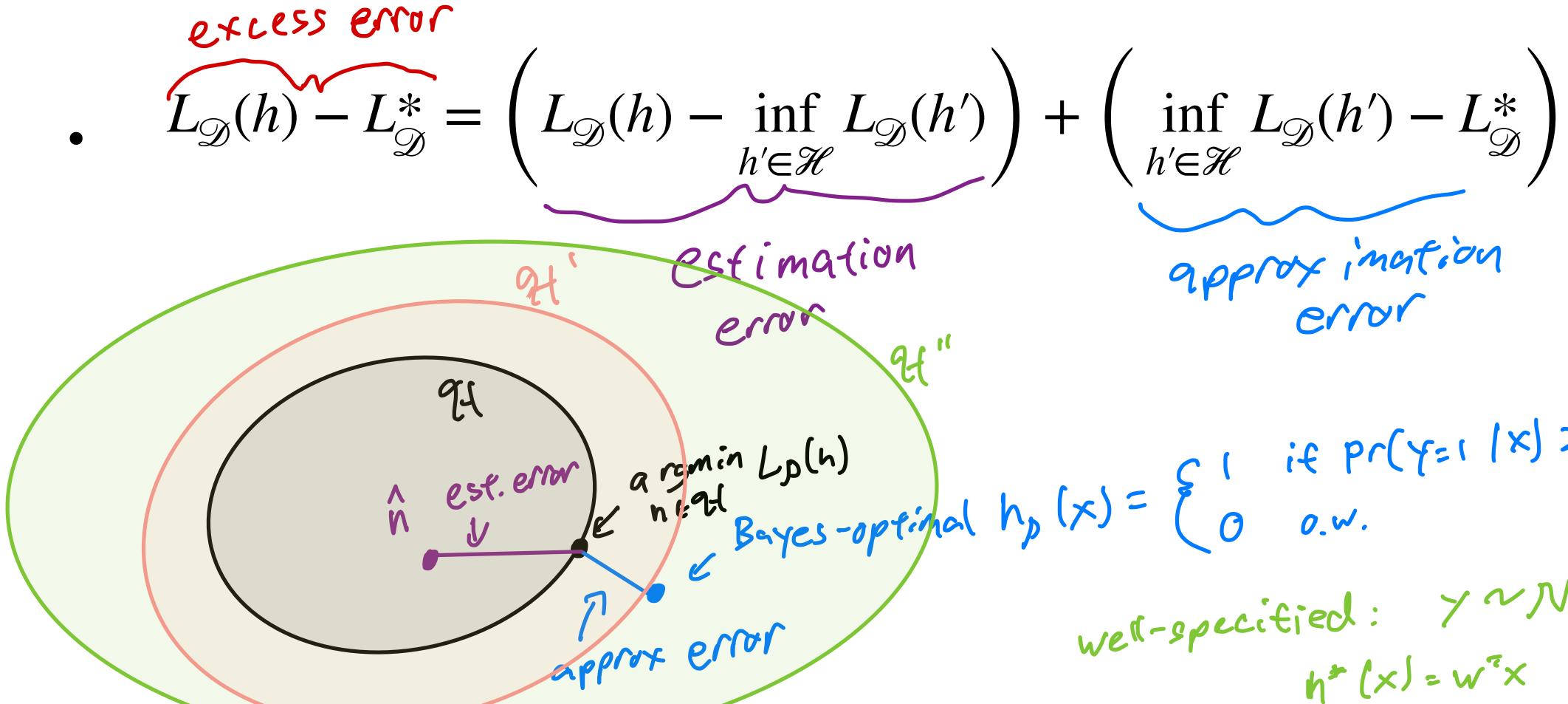
- We've talked about learning binary classifiers in a fixed hypothesis class \mathscr{H}
 - (agnostic realizable) PAC learning
 - uniform convergence property
 - VC dimension of \mathcal{H}
 - Rademacher complexity of \mathcal{H}
- Also a little bit about regression, based on Rademacher complexity

Proved bounds like $\Pr\left(\sup_{h \in \mathcal{H}} L_{\mathscr{D}}(h)\right)$ • Imply ERM works: $L_{\mathscr{D}}(\hat{h}_S) \leq L_S(\hat{h}_S)$

$$h) - L_S(h) > \varepsilon \bigg) \le \delta$$

$$(h_S) + \varepsilon \leq L_S(h) + \varepsilon \leq L_{\mathscr{D}}(h) + 2\varepsilon$$
 for all $L_S(h) = \varepsilon$

• Can't PAC-learn \mathcal{H} if it has infinite VC dimension: no free lunch

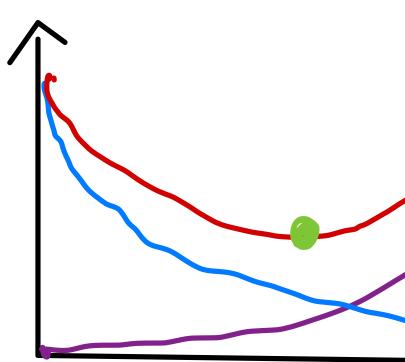


approximation error $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}{} est. error \\
\end{array}{} v \\
\end{array} \\
\begin{array}{c}
\end{array}{} est. error \\
\end{array}{} error \\
\end{array} \\
\begin{array}{c}
\end{array}{} est. error \\
\end{array}{} error \\
\end{array} \\
\begin{array}{c}
\end{array}{} est. error \\
\end{array}{} error \\
\end{array} \\
\begin{array}{c}
\end{array}{} est. error \\
\end{array}{} error \\
\end{array} \\
\begin{array}{c}
\end{array}{} est. error \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array}{} est. error \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array}{} est. error \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array}{} est. error \\
\end{array}$ well-specified: YN(WX, 02) $h^{*}(x) = w^{*}x \qquad L_{D}(h^{*}) = 0^{2}$ Square 1095 4

Importance of choosing *H*

• Can't PAC-learn \mathcal{H} if it has infinite VC dimension: no free lunch

$$L_{\mathcal{D}}(h) - L_{\mathcal{D}}^* = \left(L_{\mathcal{D}}(h) - \inf_{\substack{h' \in \mathcal{P} \\ est}} \right)$$



"size" of H Can bound/estimate the estimation error; generally can't really estimate the approximation error

52Rn(9f)+ J= 695 $\inf_{\mathcal{H}} L_{\mathcal{D}}(h') + \left(\inf_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') - L_{\mathcal{D}}^* \right)$ approx

Importance of choosing \mathcal{X}

• Can't PAC-learn \mathscr{H} if it has infinite VC dimension: no free lunch

$$L_{\mathcal{D}}(h) - L_{\mathcal{D}}^* = \left(L_{\mathcal{D}}(h) - \inf_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') \right) + \left(\inf_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') - L_{\mathcal{D}}^* \right)$$

- Can bound/estimate the estimation error; generally can't really estimate the approximation error
- So...how to pick?

- Idea: let ${\mathscr H}$ be really really big

- Idea: let \mathcal{H} be really really big
 - Approximation error $\inf L_{\mathscr{D}}(h) L^*$ is small, maybe zero $h \in \mathcal{H}$

- Idea: let ${\mathscr H}$ be really really big
 - . Approximation error $\inf_{h\in \mathcal{H}} L_{\mathcal{D}}(h) L^*$ is small, maybe zero
 - So maybe $\operatorname{VCdim}(\mathscr{H}) = \infty$, $\mathfrak{R}_n(\mathscr{H})$ is big, etc: bad estimation error

- Idea: let ${\mathscr H}$ be really really big
 - . Approximation error $\inf_{h\in \mathcal{H}} L_{\mathcal{D}}(h) L^*$ is small, maybe zero
 - So maybe $\operatorname{VCdim}(\mathscr{H}) = \infty$, $\mathfrak{R}_n(\mathscr{H})$ is big, etc: bad estimation error
- But decompose it into $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_1$ $\mathcal{H}_1 \qquad \mathcal{H}_2$ $\mathcal{H}_1 \qquad \mathcal{H}_2$ $\mathcal{H}_2 \qquad \mathcal{H}_2$ \mathcal{H}_2 $\mathcal{H}_2 \qquad \mathcal{H}_2$ \mathcal{H}_2 \mathcal{H}_2 \mathcal{H}_2

$$\mathcal{H}_{2} \cup \cdots = \bigcup \mathcal{H}_{k}$$

$$\cdots \quad \mathcal{H}_{\kappa}^{k \in \mathbb{N}}$$

$$depth \kappa$$

$$+ w^{T}x + b \geq 0)$$

$$degree - \kappa \quad polynomial$$

$$l|w|| \leq 10^{-5+\kappa}$$

- Idea: let ${\mathscr H}$ be really really big
 - . Approximation error $\inf_{h\in\mathcal{H}}L_{\mathscr{D}}(h)-L^*$ is small, maybe zero
 - So maybe $\operatorname{VCdim}(\mathscr{H}) = \infty$, $\mathfrak{R}_n(\mathscr{H})$ is big, etc: bad estimation error
 - But decompose it into $\mathscr{H} = \mathscr{H}_1 \cup \mathscr{H}_2$
 - Assume each \mathscr{H}_k has uniform convergence property: for all \mathscr{D} , $\sup_{h \in \mathscr{H}_k} \left| L_{\mathscr{D}}(h) L_S(h) \right| \leq \varepsilon_k(n, \delta)$ with prob at least 1δ over $S \sim \mathscr{D}^n$

$$\mathcal{H}_2\cup\cdots=\bigcup_{k\in\mathbb{N}}\mathcal{H}_k$$

- Idea: let ${\mathscr H}$ be really really big
 - . Approximation error $\inf_{h\in\mathcal{H}}L_{\mathscr{D}}(h)-L^*$ is small, maybe zero
 - So maybe $\operatorname{VCdim}(\mathscr{H}) = \infty$, $\mathfrak{R}_n(\mathscr{H})$ is big, etc: bad estimation error
 - But decompose it into $\mathscr{H} = \mathscr{H}_1 \cup \mathscr{H}_2$
 - Assume each \mathscr{H}_k has uniform convergence property: for all \mathscr{D} , $\sup_{h \in \mathscr{H}_k} \left| L_{\mathscr{D}}(h) - L_S(h) \right| \leq \varepsilon_k(n, \delta) \text{ with prob at least } 1 - \delta \text{ over } S \sim \mathscr{D}^n$

Choose weights $w_k \ge 0$ with $\sum w_k \le 1$

$$\mathcal{H}_2\cup\cdots=\bigcup_{k\in\mathbb{N}}\mathcal{H}_k$$

k=1

$$\begin{split} & \mathcal{S} \sim \mathcal{P} \Rightarrow \sup_{\substack{h \in \mathcal{H}_{k}}} \left[L_{\mathcal{P}}(h) - L_{s}(h) \right] \leq \mathcal{E}_{k}(n, \delta) \quad \forall l p \neq l \in \mathbb{N} \\ & \mathcal{H} = \bigcup_{k \in \mathbb{N}} \mathcal{H}_{k}, \text{ each } \mathcal{H}_{k} \text{ has uniform convergence with } \mathcal{E}_{k}(n, \delta), \text{ weights } \sum_{k \in \mathbb{N}}^{\infty} w_{k} \leq 1 \end{split}$$

• $\mathcal{H} = \bigcup \mathcal{H}_k$, each \mathcal{H}_k has uniform co $k \in \mathbb{N}$

$$\frac{1}{2}\left(\left|Xw-Y\right|\right|^{2} + 2\left|\left|w\right|\right|_{1} = n$$

$$\frac{1}{2}\left(\left|w\right|\right| + 2\left|\left|w\right|\right|_{1} = n$$

onvergence with
$$\varepsilon_k(n, \delta)$$
, weights $\sum_{k=1}^{\infty} w_k \leq 1$

• Theorem: For any \mathcal{D} , with probability at least $1 - \delta$ over choice of $S \sim \mathcal{D}^n$, we have

min $L_{S}(w)$ $W: \|w\|_{1} \leq B$

• $\mathcal{H} = \bigcup \mathcal{H}_k$, each \mathcal{H}_k has uniform co $k \in \mathbb{N}$

• For all k simultaneously, $\sup_{k \to \infty} \left| L_{\mathcal{D}}(h) - L_{S}(h) \right| \leq \varepsilon_{k}(n, \delta w_{k})$ $h \in \mathcal{H}_{k}$

onvergence with
$$\varepsilon_k(n, \delta)$$
, weights $\sum_{k=1}^{\infty} w_k \leq 1$

• Theorem: For any \mathcal{D} , with probability at least $1 - \delta$ over choice of $S \sim \mathcal{D}^n$, we have

• $\mathscr{H} = \bigcup_{k \in \mathbb{N}} \mathscr{H}_k$, each \mathscr{H}_k has uniform co

- Theorem: For any \mathcal{D} , with probability at least 1δ over choice of $S \sim \mathcal{D}^n$, we have • For all k simultaneously, $\sup_{h \in \mathcal{H}_k} \left| L_{\mathcal{D}}(h) - L_S(h) \right| \leq \varepsilon_k(n, \delta w_k)$
 - Thus for all $h \in \mathcal{H}$ simultaneously,

onvergence with
$$\varepsilon_k(n, \delta)$$
, weights $\sum_{k=1}^{\infty} w_k \leq 1$

$L_{\mathcal{D}}(h) \leq L_{S}(h) + \min_{\substack{k:h \in \mathcal{H}_{k}}} \varepsilon_{k}(n, \delta w_{k})$

$\mathcal{H} = \bigcup \mathcal{H}_k$, each \mathcal{H}_k has uniform co $k \in \mathbb{N}$

- Theorem: For any \mathcal{D} , with probability at least 1δ over choice of $S \sim \mathcal{D}^n$, we have • For all k simultaneously, sup $\left|L_{\mathcal{D}}(h) - L_{S}(h)\right| \leq \varepsilon_{k}(n, \delta w_{k})$ $h \in \mathcal{H}_{l}$
 - Thus for all $h \in \mathcal{H}$ simultaneously,

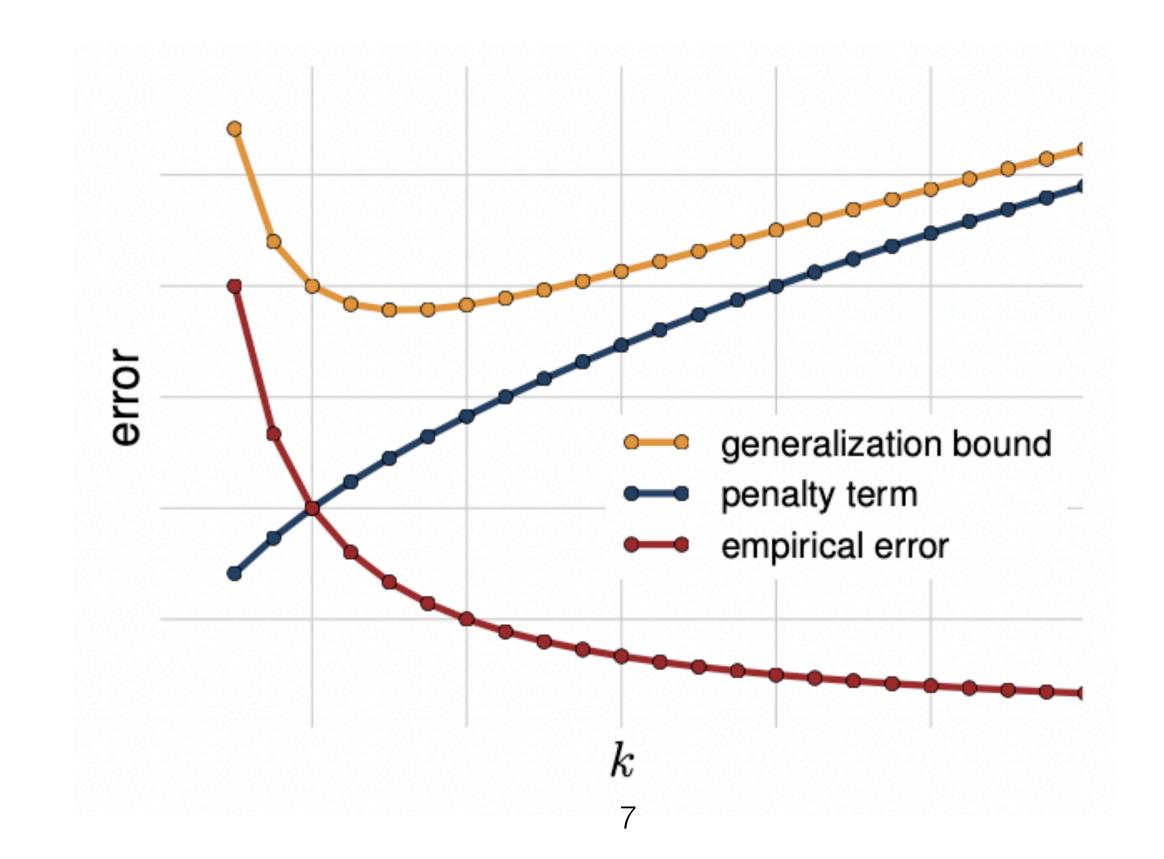
onvergence with
$$\varepsilon_k(n, \delta)$$
, weights $\sum_{k=1}^{\infty} w_k \leq 1$

$L_{\mathcal{D}}(h) \leq L_{S}(h) + \min_{\substack{k:h \in \mathcal{H}_{k}}} \varepsilon_{k}(n, \delta w_{k})$

• Proof: union bound over convergence in each \mathcal{H}_k , giving probability δw_k to each

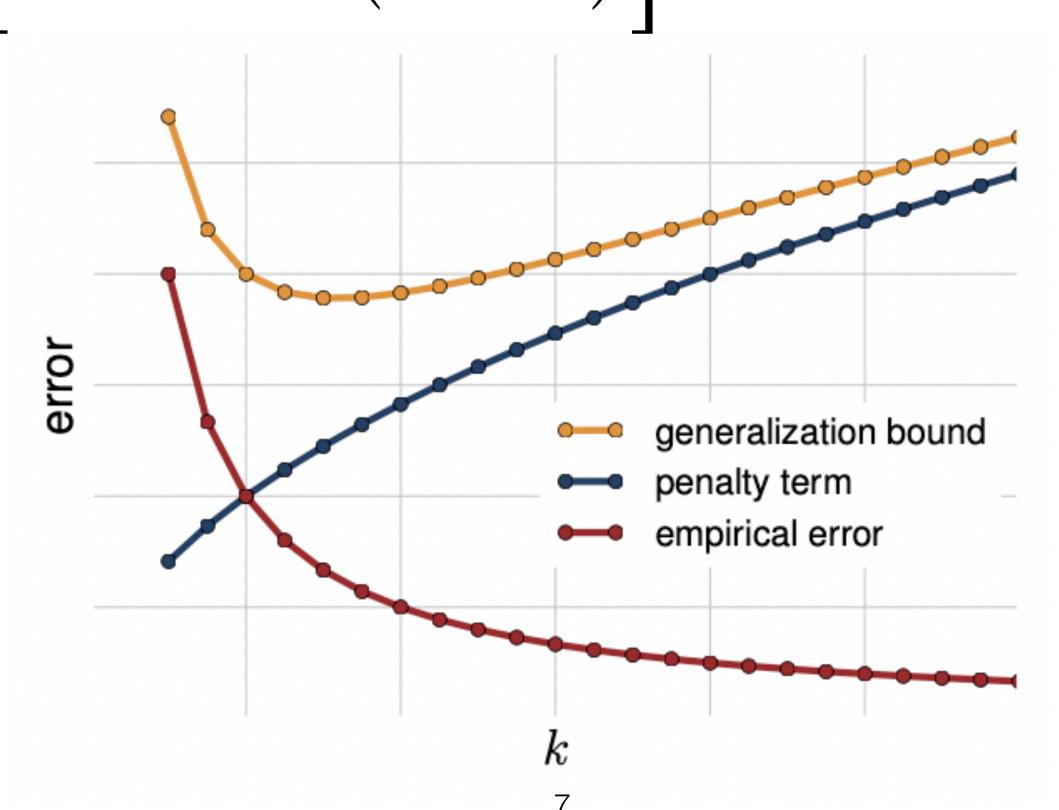
Bound Minimization • What we really want is an h minimizing $L_{\mathscr{D}}(h)$, but we don't know $L_{\mathscr{D}}(h)$

- SRM algorithm minimizes an upper bound on $L_{\mathcal{D}}(h)$:



- What we really want is an h minimizing $L_{\mathscr{D}}(h)$, but we don't know $L_{\mathscr{D}}(h)$
- SRM algorithm minimizes an upper bound on $L_{\mathcal{D}}(h)$:

$$h \in \operatorname{argmin}_{h \in \mathscr{H}} \left| L_{S}(h) + \varepsilon_{k_{h}} \left(n, \delta w_{k_{h}} \right) \right|$$



where $k_h = \min\{k : h \in \mathcal{H}_k\}$

- What we really want is an h minimizing $L_{\mathscr{D}}(h)$, but we don't know $L_{\mathscr{D}}(h)$
- SRM algorithm minimizes an upper bound on $L_{\mathscr{D}}(h)$:

•
$$h \in \operatorname{argmin}_{h \in \mathscr{H}} \left[L_{S}(h) + \varepsilon_{k_{h}} \left(n, \delta \right) \right]$$

g $L_{\mathscr{D}}(h)$, but we don't know $L_{\mathscr{D}}(h)$ ound on $L_{\mathscr{D}}(h)$:

 $\left[\delta w_{k_h}\right]$ where $k_h = \min\{k : h \in \mathcal{H}_k\}$

- What we really want is an h minimizing $L_{\mathscr{D}}(h)$, but we don't know $L_{\mathscr{D}}(h)$
- SRM algorithm minimizes an upper bound on $L_{\mathcal{D}}(h)$:

$$h \in \operatorname{argmin}_{h \in \mathscr{H}} \left[L_{S}(h) + \varepsilon_{k_{h}} \left(n, \delta w_{k_{h}} \right) \right]$$

• Can implement (with an "ERM oracle") as:

where
$$k_h = \min\{k : h \in \mathcal{H}_k\}$$

- What we really want is an h minimizing $L_{\mathcal{D}}(h)$, but we don't know $L_{\mathcal{D}}(h)$
- SRM algorithm minimizes an upper bound on $L_{\mathcal{D}}(h)$:

$$h \in \operatorname{argmin}_{h \in \mathscr{H}} \left[L_{S}(h) + \varepsilon_{k_{h}} \left(n, \delta \right) \right]$$

- Can implement (with an "ERM oracle") as:
 - best_loss = ∞
 - for k = 1, 2, ...
 - cand = ERM(\mathcal{H}_k); cand_loss = $L_S(\text{cand}) + \varepsilon_k(n, w_k\delta)$

 $\delta w_{k_h} \bigg) \bigg| \quad \text{where } k_h = \min\{k : h \in \mathcal{H}_k\}$

- What we really want is an h minimizing $L_{\mathscr{D}}(h)$, but we don't know $L_{\mathscr{D}}(h)$
- SRM algorithm minimizes an upper bound on $L_{\mathscr{D}}(h)$:

$$h \in \operatorname{argmin}_{h \in \mathscr{H}} \left[L_{S}(h) + \varepsilon_{k_{h}} \left(n, \delta \right) \right]$$

- Can implement (with an "ERM oracle") as:
 - best_loss = ∞
 - for k = 1, 2, ...
 - cand = $\text{ERM}(\mathcal{H}_k)$; cand_loss
 - if (cand_loss < best_loss) { best_loss

g $L_{\mathscr{D}}(h)$, but we don't know $L_{\mathscr{D}}(h)$ ound on $L_{\mathscr{D}}(h)$:

 δw_{k_h}) where $k_h = \min\{k : h \in \mathcal{H}_k\}$

=
$$L_S(\text{cand}) + \varepsilon_k(n, w_k\delta)$$

st = cand; best_loss = cand_loss; }

- What we really want is an h minimizing $L_{\mathscr{D}}(h)$, but we don't know $L_{\mathscr{D}}(h)$
- SRM algorithm minimizes an upper bound on $L_{\mathcal{D}}(h)$:

$$h \in \operatorname{argmin}_{h \in \mathscr{H}} \left[L_{S}(h) + \varepsilon_{k_{h}} \left(n, \delta \right) \right]$$

- Can implement (with an "ERM oracle") as:
 - best_loss = ∞
 - for k = 1, 2, ...
 - cand = ERM(\mathcal{H}_k); cand_loss = $L_S(\text{cand}) + \varepsilon_k(n, w_k\delta)$

 - if $(\min \varepsilon_k(n, \delta) > \text{best_loss}) \{ \text{break}; \}$ *k*′>*k*

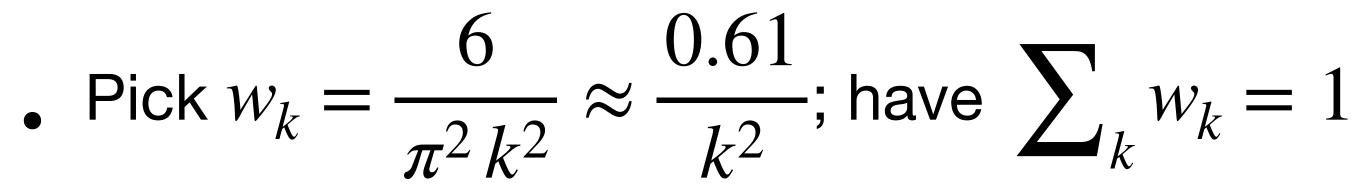
 $\delta w_{k_h} \bigg) \qquad \text{where } k_h = \min\{k : h \in \mathcal{H}_k\}$

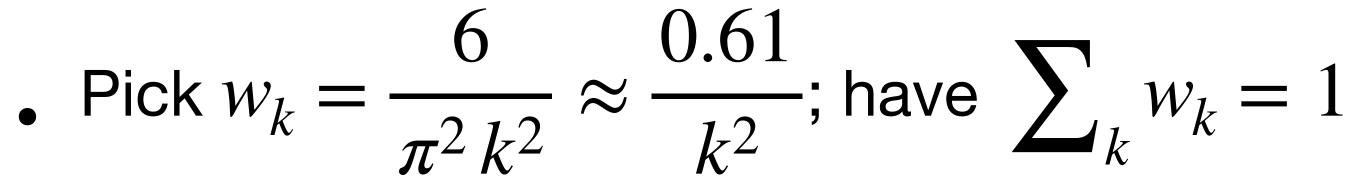
if (cand_loss < best_loss) { best = cand; best_loss = cand_loss; }

- ERM is a special case of SRM with one k:
 - $\operatorname{argmin}_{h \in \mathcal{H}} L_{S}(h) = \operatorname{argmin}_{h \in \mathcal{H}} \left[L_{S}(h) + \varepsilon(n, \delta) \right]$
- also the same as ERM
- What happens more generally?

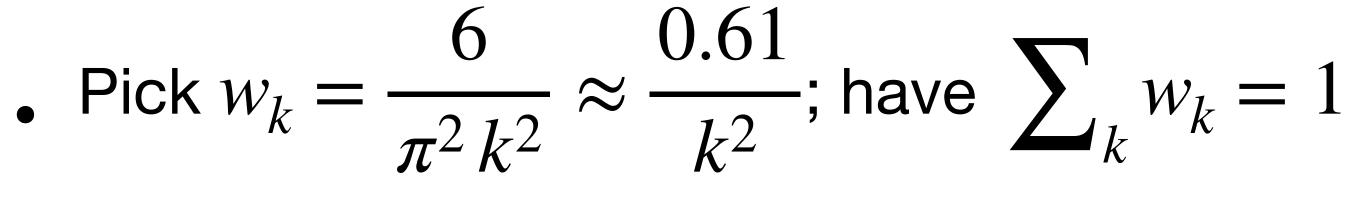
SRM D ERM $\mathcal{E}_{n}(n,\delta) = \mathcal{E}_{n}(n,\delta)$ $\mathcal{H} = \mathcal{H}_{n} \cup \mathcal{H}_{2}$ $\mathcal{L}_{n}(M) + \mathcal{E}_{n}(n, \frac{\delta}{2})$ $\mathcal{L}_{n}(M) + \mathcal{E}_{2}(n, \frac{\delta}{2})$ $\mathcal{L}_{n}(M) + \mathcal{E}_{2}(n, \frac{\delta}{2})$

• If we split \mathcal{H} into K parts of equal "size" (same ε function) and same weight,



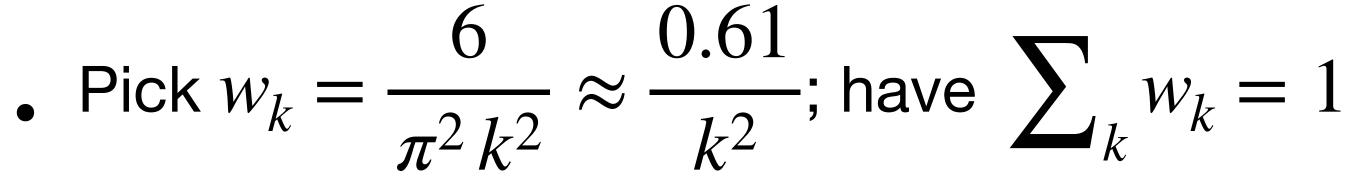


• By prev theorem, $L_{\mathcal{D}}(h) \leq L_{S}(h) + \varepsilon_{k_{h}}(n, w_{k_{h}}\delta)$ for all $h \in \mathcal{H}$



- So $L_{\mathcal{D}}(\hat{h}) \leq L_{S}(\hat{h}) + \varepsilon_{k_{\hat{h}}}(n, w_{k_{\hat{h}}}\delta)$ for \hat{h} the SRM solution

- By prev theorem, $L_{\mathscr{D}}(h) \leq L_S(h) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for all $h \in \mathscr{H}$



- By prev theorem, $L_{\mathcal{D}}(h) \leq L_S(h) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for all $h \in \mathscr{H}$
- So $L_{\mathcal{D}}(\hat{h}) \leq L_{S}(\hat{h}) + \varepsilon_{k_{\hat{h}}}(n, w_{k_{\hat{h}}}\delta)$ for \hat{h} the SRM solution

$\leq L_{S}(h) + \varepsilon_{k_{h}}(n, w_{k_{h}}\delta)$ for any h, by def of SRM

• Pick
$$w_k = \frac{6}{\pi^2 k^2} \approx \frac{0.61}{k^2}$$
; have \sum
• By prev theorem, $L_{\emptyset}(h) \leq L_S(h)$

• So
$$L_{\mathcal{D}}(\hat{h}) \leq L_{S}(\hat{h}) + \varepsilon_{k_{\hat{h}}}(n, w_{k_{\hat{h}}}\delta)$$

$$\leq L_{S}(h) + \varepsilon_{k_{h}}(n, w_{k_{h}}\delta)$$

$$\leq L_{D}(h) + 2\varepsilon_{k_{h}}(n, w_{k_{h}}\delta)$$

In class, I said this was wrong That's not true: the slides as written

 $w_k = 1$ n, $L_{\mathcal{D}}(h) \leq L_{S}(h) + \varepsilon_{k_{h}}(n, w_{k_{h}}\delta)$ for all $h \in \mathcal{H}$ for \hat{h} the SRM solution for any h, by def of SRM $\delta)$ using uniform convergence

and you needed
$$E_{kh} + E_{kh}$$
.
ritten are correct.



- By prev theorem, $L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h)$
- So $L_{\mathcal{D}}(\hat{h}) \leq L_{S}(\hat{h}) + \varepsilon_{k_{\hat{h}}}(n, w_{k_{\hat{h}}}\delta)$
 - $\leq L_{S}(h) + \varepsilon_{k_{h}}(n, w_{k_{h}}\delta)$ $\leq L_{D}(h) + 2\varepsilon_{k_{h}}(n, w_{k_{h}}\delta)$
 - $\leq L_{\mathcal{D}}(h) + \varepsilon$

$$\begin{aligned} & \int_{k} w_{k} = 1 \\ & + \varepsilon_{k_{h}}(n, w_{k_{h}}\delta) \text{ for all } h \in \mathscr{H} \\ & \text{ for } \hat{h} \text{ the SRM solution} \\ & \text{ for } any \ h, \text{ by def of SRM} \\ & \delta) & \text{ using uniform convergence} \\ & \text{ if } n \geq n_{\mathscr{H}_{k_{h}}}^{UC} \left(\frac{\varepsilon}{2}, \frac{6\delta}{\pi^{2}k_{h}^{2}}\right) \end{aligned}$$

• Pick
$$w_k = \frac{6}{\pi^2 k^2} \approx \frac{0.61}{k^2}$$
; have $\sum_k w_k = 1$
• By prev theorem, $L_{\mathcal{D}}(h) \leq L_S(h) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for all $h \in \mathcal{H}$
• So $L_{\mathcal{D}}(\hat{h}) \leq L_S(\hat{h}) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for \hat{h} the SRM solution
 $\leq L_S(h) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for any h , by def of SRM
 $\leq L_{\mathcal{D}}(h) + 2\varepsilon_{k_h}(n, w_{k_h}\delta)$ using uniform convergence
 $\leq L_{\mathcal{D}}(h) + \varepsilon$ if $n \geq n_{\mathcal{H}_{k_h}}^{UC}\left(\frac{\varepsilon}{2}, \frac{6\delta}{\pi^2 k_h^2}\right)$
• We say that \hat{h} (ε, δ)-competes with h for $L_{\mathcal{D}}(\hat{h}) \geq L_{\mathcal{D}}(h) + \varepsilon$ w/ prob $1 - \delta$

$$\leq L_{\mathcal{D}}(h) + \varepsilon$$

• Pick
$$w_k = \frac{6}{\pi^2 k^2} \approx \frac{0.61}{k^2}$$
; have $\sum_k w_k = 1$
• By prev theorem, $L_{\mathcal{D}}(h) \leq L_S(h) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for all $h \in \mathscr{H}$
• So $L_{\mathcal{D}}(\hat{h}) \leq L_S(\hat{h}) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for \hat{h} the SRM solution
 $\leq L_S(h) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for any h , by def of SRM
 $\leq L_{\mathcal{D}}(h) + 2\varepsilon_{k_h}(n, w_{k_h}\delta)$ using uniform convergence
 $\leq L_{\mathcal{D}}(h) + \varepsilon$ if $n \geq n_{\mathscr{H}_{k_h}}^{UC}\left(\frac{\varepsilon}{2}, \frac{6\delta}{\pi^2 k_h^2}\right)$
• We say that \hat{h} (ε, δ)-competes with h for $L_{\mathcal{D}}(\hat{h}) \geq L_{\mathcal{D}}(h) + \varepsilon$ w/ prob $1 - \delta$
• An algorithm $A(S)$ nonuniformly learns \mathscr{H} if for all $\varepsilon, \delta \in (0,1)$ and $h \in \mathscr{H}$, for any \mathscr{D} , if $n \geq n_{\mathscr{H}}^{NUL}(\varepsilon, \delta, h)$, then $A(S)$ (ε, δ)-competes with h

Pick
$$w_k = \frac{0}{\pi^2 k^2} \approx \frac{0.01}{k^2}$$
; have $\sum_k w_k = 1$
• By prev theorem, $L_{\mathcal{D}}(h) \leq L_S(h) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for all $h \in \mathcal{H}$
• So $L_{\mathcal{D}}(\hat{h}) \leq L_S(\hat{h}) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for \hat{h} the SRM solution
 $\leq L_S(h) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for any h , by def of SRM
 $\leq L_{\mathcal{D}}(h) + 2\varepsilon_{k_h}(n, w_{k_h}\delta)$ using uniform convergence
 $\leq L_{\mathcal{D}}(h) + \varepsilon$ if $n \geq n_{\mathcal{H}_k}^{UC}\left(\frac{\varepsilon}{2}, \frac{6\delta}{\pi^2 k_h^2}\right)$
We say that $\hat{h}(\varepsilon, \delta)$ -competes with h for $L_{\mathcal{D}}(\hat{h}) \geq L_{\mathcal{D}}(h) + \varepsilon$ w/ prob $1 - \varepsilon$
An algorithm $A(S)$ nonuniformly learns \mathcal{H} if for all $\varepsilon, \delta \in (0,1)$ and $h \in \mathcal{H}$,
for any \mathcal{D} , if $n \geq n_{\mathcal{H}}^{NUL}(\varepsilon, \delta, h)$, then $A(S)(\varepsilon, \delta)$ -competes with h

$$\frac{1}{2^{2}k^{2}} \approx \frac{0.01}{k^{2}}; \text{ have } \sum_{k} w_{k} = 1$$

Heorem, $L_{\mathcal{D}}(h) \leq L_{S}(h) + \varepsilon_{k_{h}}(n, w_{k_{h}}\delta) \text{ for all } h \in \mathcal{H}$

$$\leq L_{S}(\hat{h}) + \varepsilon_{k_{h}}(n, w_{k_{h}}\delta) \text{ for } \hat{h} \text{ the SRM solution}$$

$$\leq L_{S}(h) + \varepsilon_{k_{h}}(n, w_{k_{h}}\delta) \text{ for } any h, \text{ by def of SRM}$$

$$\leq L_{\mathcal{D}}(h) + 2\varepsilon_{k_{h}}(n, w_{k_{h}}\delta) \text{ using uniform convergence}$$

$$\leq L_{\mathcal{D}}(h) + \varepsilon \text{ if } n \geq n_{\mathcal{H}_{k_{h}}}^{UC}\left(\frac{\varepsilon}{2}, \frac{6\delta}{\pi^{2}k_{h}^{2}}\right)$$

$$\hat{h}(\varepsilon, \delta)\text{-competes with } h \text{ for } L_{\mathcal{D}}(\hat{h}) \geq L_{\mathcal{D}}(h) + \varepsilon \text{ w/ prob } 1 - \varepsilon$$

$$A(S) \text{ nonuniformly learns } \mathcal{H} \text{ if for all } \varepsilon, \delta \in (0,1) \text{ and } h \in \mathcal{H},$$

$$n \geq n_{\mathcal{H}}^{NUL}(\varepsilon, \delta, h), \text{ then } A(S)(\varepsilon, \delta)\text{-competes with } h$$

$$\leq L_{\mathcal{D}}(h) + \varepsilon$$

• Pick
$$w_k = \frac{6}{\pi^2 k^2} \approx \frac{0.61}{k^2}$$
; have $\sum_k w_k = 1$
• By prev theorem, $L_{\mathfrak{D}}(h) \leq L_S(h) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for all $h \in \mathscr{H}$
• So $L_{\mathfrak{D}}(\hat{h}) \leq L_S(\hat{h}) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for \hat{h} the SRM solution
 $\leq L_S(h) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for any h , by def of SRM
 $\leq L_{\mathfrak{D}}(h) + 2\varepsilon_{k_h}(n, w_{k_h}\delta)$ using uniform convergence
 $\leq L_{\mathfrak{D}}(h) + \varepsilon$ if $n \geq n_{\mathscr{H}_k}^{UC}\left(\frac{\varepsilon}{2}, \frac{6\delta}{\pi^2 k_h^2}\right)$
• We say that $\hat{h}(\varepsilon, \delta)$ -competes with h for $L_{\mathfrak{D}}(\hat{h}) \geq L_{\mathfrak{D}}(h) + \varepsilon$ w/ prob $1 - \delta$
• An algorithm $A(S)$ nonuniformly learns \mathscr{H} if for all $\varepsilon, \delta \in (0,1)$ and $h \in \mathscr{H}$,
for any \mathfrak{D} , if $n \geq n_{\mathscr{H}}^{NUL}(\varepsilon, \delta, h)$, then $A(S)(\varepsilon, \delta)$ -competes with h

Pick
$$w_k = \frac{0}{\pi^2 k^2} \approx \frac{0.01}{k^2}$$
; have $\sum_k w_k = 1$
• By prev theorem, $L_{\mathcal{D}}(h) \leq L_S(h) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for all $h \in \mathcal{H}$
• So $L_{\mathcal{D}}(\hat{h}) \leq L_S(\hat{h}) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for \hat{h} the SRM solution
 $\leq L_S(h) + \varepsilon_{k_h}(n, w_{k_h}\delta)$ for any h , by def of SRM
 $\leq L_{\mathcal{D}}(h) + 2\varepsilon_{k_h}(n, w_{k_h}\delta)$ using uniform convergence
 $\leq L_{\mathcal{D}}(h) + \varepsilon$ if $n \geq n_{\mathcal{H}_{k_h}}^{UC}\left(\frac{\varepsilon}{2}, \frac{6\delta}{\pi^2 k_h^2}\right)$
We say that \hat{h} (ε, δ)-competes with h for $L_{\mathcal{D}}(\hat{h}) \geq L_{\mathcal{D}}(h) + \varepsilon$ w/ prob $1 - \delta$
An algorithm $A(S)$ nonuniformly learns \mathcal{H} if for all $\varepsilon, \delta \in (0,1)$ and $h \in \mathcal{H}$,
for any \mathcal{D} , if $n \geq n_{\mathcal{H}}^{NUL}(\varepsilon, \delta, h)$, then $A(S)$ (ε, δ)-competes with h

$$\frac{1}{2^{2}k^{2}} \approx \frac{0.01}{k^{2}}; \text{ have } \sum_{k} w_{k} = 1$$

eorem, $L_{\mathfrak{D}}(h) \leq L_{S}(h) + \varepsilon_{k_{h}}(n, w_{k_{h}}\delta) \text{ for all } h \in \mathscr{H}$
 $\leq L_{S}(\hat{h}) + \varepsilon_{k_{h}}(n, w_{k_{h}}\delta) \text{ for } \hat{h} \text{ the SRM solution}$
 $\leq L_{S}(h) + \varepsilon_{k_{h}}(n, w_{k_{h}}\delta) \text{ for any } h, \text{ by def of SRM}$
 $\leq L_{\mathfrak{D}}(h) + 2\varepsilon_{k_{h}}(n, w_{k_{h}}\delta) \text{ using uniform convergence}$
 $\leq L_{\mathfrak{D}}(h) + \varepsilon \text{ if } n \geq n_{\mathscr{H}_{k_{h}}}^{UC}\left(\frac{\varepsilon}{2}, \frac{6\delta}{\pi^{2}k_{h}^{2}}\right)$
 $\hat{h}(\varepsilon, \delta)\text{-competes with } h \text{ for } L_{\mathfrak{D}}(\hat{h}) \geq L_{\mathfrak{D}}(h) + \varepsilon \text{ w/ prob } 1 - \delta$
 $A(S) \text{ nonuniformly learns } \mathscr{H} \text{ if for all } \varepsilon, \delta \in (0,1) \text{ and } h \in \mathscr{H}, n \geq n_{\mathscr{H}}^{NUL}(\varepsilon, \delta, h), \text{ then } A(S)(\varepsilon, \delta)\text{-competes with } h$

$$\leq L_{\mathcal{D}}(h) + \varepsilon$$

that decomposes into a countable sum of things with finite VC dimension 10

• If \mathcal{H} is nonuniformly learnable, it's a countable union of agnostic PAC-learnable \mathcal{H}_k :

- Let $\mathscr{H}_k = \left\{ h \in \mathscr{H} : n_{\mathscr{H}}^{NUL}\left(\frac{1}{8}, \frac{1}{7}, h\right) \leq k \right\}$

• If \mathscr{H} is nonuniformly learnable, it's a countable union of agnostic PAC-learnable \mathscr{H}_k :

- Let $\mathscr{H}_k = \left\{ h \in \mathscr{H} : n_{\mathscr{H}}^{NUL}\left(\frac{1}{8}, \frac{1}{7}, h\right) \le k \right\}$ • Have $\mathcal{H} = \bigcup_{k>1} \mathcal{H}_k$

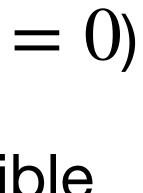
• If \mathcal{H} is nonuniformly learnable, it's a countable union of agnostic PAC-learnable \mathcal{H}_k :

- If \mathscr{H} is nonuniformly learnable, it's a countable union of agnostic PAC-learnable \mathscr{H}_k : • Let $\mathscr{H}_k = \left\{ h \in \mathscr{H} : n_{\mathscr{H}}^{NUL}\left(\frac{1}{8}, \frac{1}{7}, h\right) \le k \right\}$
 - Have $\mathcal{H} = \bigcup_{k>1} \mathcal{H}_k$
 - For any realizable \mathscr{D} wrt \mathscr{H}_k , implies

$$\operatorname{es} \Pr_{S} \left(L_{\mathscr{D}}(\hat{h}_{S}) \leq \frac{1}{8} \right) \geq \frac{6}{7} \quad (\operatorname{since} L_{\mathscr{D}}(h))$$

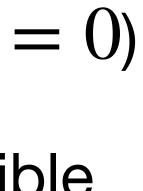
- If \mathscr{H} is nonuniformly learnable, it's a countable union of agnostic PAC-learnable \mathscr{H}_k : • Let $\mathscr{H}_k = \left\{ h \in \mathscr{H} : n_{\mathscr{H}}^{NUL}\left(\frac{1}{8}, \frac{1}{7}, h\right) \leq k \right\}$
 - Have $\mathscr{H} = \bigcup_{k>1} \mathscr{H}_k$

 - For any realizable \mathscr{D} wrt \mathscr{H}_k , implies $\Pr_{\mathcal{S}}\left(L_{\mathscr{D}}(\hat{h}_S) \leq \frac{1}{8}\right) \geq \frac{6}{7}$ (since $L_{\mathscr{D}}(h) = 0$) • But no free lunch theorem implies: if $VCdim(\mathcal{H}_k) = \infty$, this would be impossible



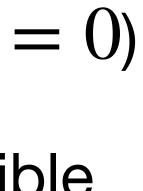
- If \mathscr{H} is nonuniformly learnable, it's a countable union of agnostic PAC-learnable \mathscr{H}_k : • Let $\mathscr{H}_k = \left\{ h \in \mathscr{H} : n_{\mathscr{H}}^{NUL}\left(\frac{1}{8}, \frac{1}{7}, h\right) \leq k \right\}$
 - Have $\mathscr{H} = \bigcup_{k>1} \mathscr{H}_k$

 - For any realizable \mathscr{D} wrt \mathscr{H}_k , implies $\Pr_{\mathcal{S}}\left(L_{\mathscr{D}}(\hat{h}_S) \leq \frac{1}{8}\right) \geq \frac{6}{7}$ (since $L_{\mathscr{D}}(h) = 0$) • But no free lunch theorem implies: if $VCdim(\mathcal{H}_k) = \infty$, this would be impossible
 - So \mathcal{H}_k has finite VC dim, so is agnostic PAC-learnable



- If \mathscr{H} is nonuniformly learnable, it's a countable union of agnostic PAC-learnable \mathscr{H}_k : • Let $\mathscr{H}_k = \left\{ h \in \mathscr{H} : n_{\mathscr{H}}^{NUL}\left(\frac{1}{8}, \frac{1}{7}, h\right) \leq k \right\}$
 - Have $\mathscr{H} = \bigcup_{k>1} \mathscr{H}_k$

- For any realizable \mathscr{D} wrt \mathscr{H}_k , implies $\Pr_{\mathcal{S}}\left(L_{\mathscr{D}}(\hat{h}_S) \leq \frac{1}{8}\right) \geq \frac{6}{7}$ (since $L_{\mathscr{D}}(h) = 0$) • But no free lunch theorem implies: if $VCdim(\mathcal{H}_k) = \infty$, this would be impossible
- So \mathcal{H}_k has finite VC dim, so is agnostic PAC-learnable
- Set of all measurable \mathcal{H} is **not** a countable union of finite-VC classes



SRM with Rademacher $\text{Recall that for 0-1 loss, } \mathscr{H} \text{ to } \pm 1, \ \sup_{h \in \mathscr{H}_k} L_{\mathscr{D}}(h) - L_S(h) \leq \Re_n(\mathscr{H}_k) + \sqrt{\frac{1}{2n}\log\frac{1}{\delta}}$

 $h \in \mathcal{H}_{k}$

 $L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \mathfrak{R}_{n}(\mathcal{H})$

SRM with Rademacher Recall that for 0-1 loss, \mathscr{H} to ± 1 , $\sup_{k \to \infty} L_{\mathscr{D}}(h) - L_{S}(h) \leq \Re_{n}(\mathscr{H}_{k}) + \sqrt{\frac{1}{2n}\log\frac{1}{\delta}}$

Implies (as before, but dropping abs value) that, simultaneously for all $h \in \mathcal{H}$,

$$\mathcal{P}_{k_h}$$
) + $\sqrt{\frac{1}{2n}\log\frac{1}{w_{k_h}\delta}}$

Recall that for 0-1 loss, \mathscr{H} to ± 1 , $\sup_{h \in \mathscr{H}_k} L_{\mathscr{D}}(h) - L_S(h) \leq \Re_n(\mathscr{H}_k) + \sqrt{\frac{1}{2n} \log \frac{1}{\delta}}$

$$L_{\mathcal{D}}(h) \leq L_{S}(h) + \Re_{n}(\mathscr{H}_{k_{h}}) + \sqrt{\frac{1}{2n}\log\frac{1}{w_{k_{h}}\delta}}$$

• Pick (as before) $w_k = 6/(\pi^2 k^2)$

SRM with Rademacher

Implies (as before, but dropping abs value) that, simultaneously for all $h \in \mathcal{H}$,

$$L_{\mathcal{D}}(h) \leq L_{S}(h) + \Re_{n}(\mathcal{H}_{k_{h}}) + \sqrt{\frac{1}{2n}\log\frac{1}{w_{k_{h}}\delta}}$$

• Pick (as before) $w_k = 6/(\pi^2 k^2)$

SRM with Rademacher Recall that for 0-1 loss, \mathscr{H} to ± 1 , $\sup_{h \in \mathscr{H}_k} L_{\mathscr{D}}(h) - L_S(h) \leq \Re_n(\mathscr{H}_k) + \sqrt{\frac{1}{2n} \log \frac{1}{\delta}}$

Implies (as before, but dropping abs value) that, simultaneously for all $h \in \mathcal{H}$,

 $\log \frac{1}{w_k \delta} = \log \frac{1}{2w_k} + \log \frac{2}{\delta} = \log \frac{\pi^2 k^2}{12} + \log \frac{2}{\delta} \le 2\log k + \log \frac{2}{\delta}$

 $h \in \mathcal{H}_{L}$

$$L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \mathfrak{R}_{n}(\mathcal{A})$$

• Pick (as before) $w_k = 6/(\pi^2 k^2)$ $\log \frac{1}{w_k \delta} = \log \frac{1}{2w_k} + \log \frac{2}{\delta} =$ • $\sqrt{\frac{1}{2n}\log\frac{1}{w_{k_h}\delta}} \le \sqrt{\frac{1}{n}\log k_h} + \frac{1}{2n}$

SRM with Rademacher Recall that for 0-1 loss, \mathscr{H} to ± 1 , $\sup_{k \to \infty} L_{\mathscr{D}}(k) - L_{\mathcal{S}}(k) \le \Re_n(\mathscr{H}_k) + \sqrt{\frac{1}{2n}\log\frac{1}{\delta}}$

Implies (as before, but dropping abs value) that, simultaneously for all $h \in \mathcal{H}$, \mathcal{H}_{k_h}) + $\sqrt{\frac{1}{2n}\log\frac{1}{w_{k_h}\delta}}$

$$\log \frac{\pi^2 k^2}{12} + \log \frac{2}{\delta} \le 2\log k + \log \frac{2}{\delta}$$
$$\frac{1}{\log \frac{2}{\delta}} \le \sqrt{\frac{1}{n}\log k_h} + \sqrt{\frac{1}{2n}\log \frac{2}{\delta}}$$

 $h \in \mathcal{H}_{L}$

$$L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \mathfrak{R}_{n}(\mathcal{A})$$

- Pick (as before) $w_k = 6/(\pi^2 k^2)$ $\log \frac{1}{w_k \delta} = \log \frac{1}{2w_k} + \log \frac{2}{\delta} =$ • $\sqrt{\frac{1}{2n}\log\frac{1}{w_{k_h}\delta}} \le \sqrt{\frac{1}{n}\log k_h} + \frac{1}{2n}$
- $L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \mathfrak{R}_{n}(\mathcal{J})$ • So

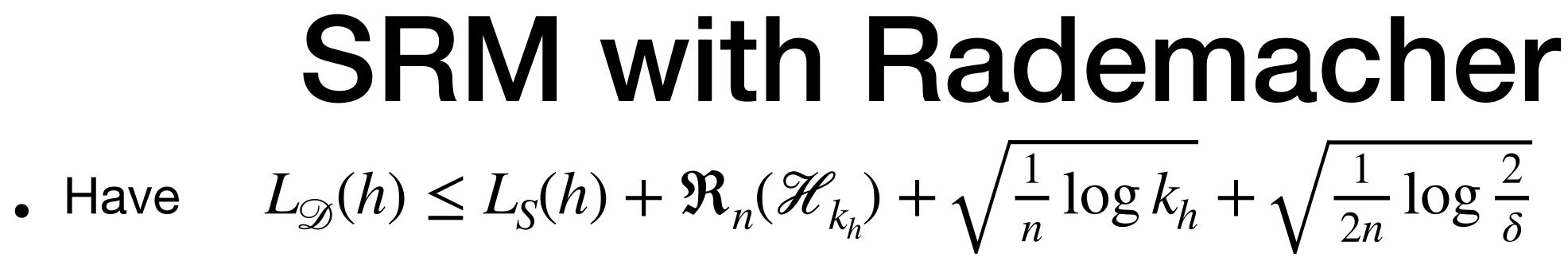
SRM with Rademacher Recall that for 0-1 loss, \mathscr{H} to ± 1 , $\sup_{k \to \infty} L_{\mathscr{D}}(k) - L_{\mathcal{S}}(k) \le \Re_n(\mathscr{H}_k) + \sqrt{\frac{1}{2n}\log\frac{1}{\delta}}$

Implies (as before, but dropping abs value) that, simultaneously for all $h \in \mathcal{H}$, \mathcal{H}_{k_h}) + $\sqrt{\frac{1}{2n}\log\frac{1}{w_{k_h}\delta}}$

$$\log \frac{\pi^2 k^2}{12} + \log \frac{2}{\delta} \le 2 \log k + \log \frac{2}{\delta}$$

$$\log \frac{2}{\delta} \le \sqrt{\frac{1}{n} \log k_h} + \sqrt{\frac{1}{2n} \log \frac{2}{\delta}}$$

$$\mathscr{H}_{k_h} + \sqrt{\frac{1}{n} \log k_h} + \sqrt{\frac{1}{2n} \log \frac{2}{\delta}}$$



SRM with Rademacher • Have $L_{\mathcal{D}}(h) \leq L_{S}(h) + \Re_{n}(\mathscr{H}_{k_{h}}) + \sqrt{\frac{1}{n}\log k_{h}} + \sqrt{\frac{1}{2n}\log \frac{2}{\delta}}$ • SRM algorithm minimizes $L_S(h) + \Re_n(\mathscr{H}_{k_h}) + \sqrt{\frac{1}{n}\log k_h}$

- Have $L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \mathfrak{R}_{n}(\mathcal{H}_{k_{h}})$
- SRM algorithm minimizes $L_{S}(h)$ -
- Plugging in uniform convergence twice, can get

$$L_{\mathcal{D}}(\hat{h}) \leq \inf_{h \in \mathcal{H}} \left[L_{\mathcal{D}}(h) + 2\Re_n(\mathcal{H}_{k_h}) + \sqrt{\frac{1}{n}\log k_h} \right] + \sqrt{\frac{2}{n}\log \frac{3}{\delta}}$$

SRM with Rademacher

$$) + \sqrt{\frac{1}{n}\log k_h} + \sqrt{\frac{1}{2n}\log \frac{2}{\delta}} + \Re_n(\mathcal{H}_{k_h}) + \sqrt{\frac{1}{n}\log k_h}$$

- Have $L_{\mathscr{D}}(h) \leq L_{\mathcal{S}}(h) + \Re_n(\mathscr{H}_{k_h}) + \sqrt{\frac{1}{n}\log k_h} + \sqrt{\frac{1}{2n}\log \frac{2}{\delta}}$
- SRM algorithm minimizes $L_S(h) + \Re_n(\mathscr{H}_{k_h}) + \sqrt{\frac{1}{n}\log k_h}$
- Plugging in uniform convergence twice, can get $L_{\mathcal{D}}(\hat{h}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + 2\mathfrak{R}_n(\mathcal{H})$
- If there's an optimal h^* , then the $\sqrt{\frac{1}{n}\log k_{h^*}}$ term is the only thing worse than just learning directly in \mathcal{H}_{k^*} in the first place

SRM with Rademacher

$$\mathscr{H}_{k_h}$$
) + $\sqrt{\frac{1}{n}\log k_h}$] + $\sqrt{\frac{2}{n}\log \frac{3}{\delta}}$

- Have $L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \Re_n(\mathscr{H}_{k_h}) + \sqrt{\frac{1}{n}\log k_h} + \sqrt{\frac{1}{2n}\log \frac{2}{s}}$
- SRM algorithm minimizes $L_{S}(h)$ -
- Plugging in uniform convergence twice, can get $L_{\mathcal{D}}(\hat{h}) \leq \inf_{h \in \mathscr{H}} L_{\mathcal{D}}(h) + 2\mathfrak{R}_n(\mathscr{H})$
- just learning directly in \mathscr{H}_{k^*} in the first place
 - Not usually a big deal, especially if we order the \mathcal{H}_k reasonably!

SRM with Rademacher

$$+ \sqrt{\frac{1}{n} \log k_h} + \sqrt{\frac{1}{2n} \log k_h} + \Re_n(\mathcal{H}_{k_h}) + \sqrt{\frac{1}{n} \log k_h}$$

$$\mathscr{H}_{k_h}$$
) + $\sqrt{\frac{1}{n}\log k_h}$] + $\sqrt{\frac{2}{n}\log \frac{3}{\delta}}$

• If there's an optimal h^* , then the $\sqrt{\frac{1}{n}\log k_{h^*}}$ term is the only thing worse than

SRM with singleton classes

- If \mathcal{H} is countable, we can number the elements and take $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \{h_n\}$ • "Uniform" convergence on $\{h_n\}$ via Hoeffding: $\varepsilon_k(n, \delta) = \sqrt{\frac{1}{2n}\log\frac{2}{\delta}}$ • SRM is $\operatorname{argmin}_{h \in \mathscr{H}} \left[L_{S}(h) + \sqrt{\frac{1}{2n} \left[-\log w_{h} + \log \frac{2}{\delta} \right]} \right]$

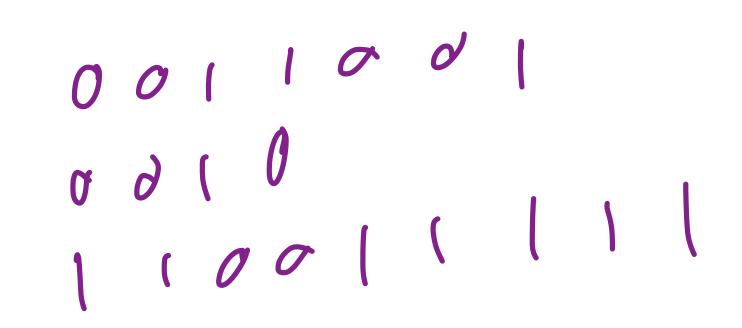
 - Entirely determined by our choice of "prior" w_h
 - How to choose a prior?

010000

• Come up with a prefix-free binary language $\mathcal{S} \subseteq \{0,1\}^*$ describing each h

unction implementing h)

- - Kraft Inequality: $\sum_{\sigma \in \mathcal{S}} 2^{-|\sigma|} \leq 1$



• Come up with a prefix-free binary language $\mathcal{S} \subseteq \{0,1\}^*$ describing each h

15

- Come up with a prefix-free binary language $\mathcal{S} \subseteq \{0,1\}^*$ describing each h • Kraft Inequality: $\sum_{\sigma \in \mathcal{S}} 2^{-|\sigma|} \leq 1$
- Let |h| be the "description length" of h using S

- Come up with a prefix-free binary language $\mathcal{S} \subseteq \{0,1\}^*$ describing each h • Kraft Inequality: $\sum_{\sigma \in \mathcal{S}} 2^{-|\sigma|} \leq 1$
- we know that $L_{\mathcal{D}}(h) \leq L_{S}(h) + \sqrt{\frac{1}{2n}} \left[|h| \log 2 + \log \frac{2}{\delta} \right]$ uniformly, and MDL principle minimizes the RHS
- Let |h| be the "description length" of h using \mathcal{S} • Then MDL is SRM with weights $w_h = 1/2^{|h|}$:

- Come up with a prefix-free binary language $\mathcal{S} \subseteq \{0,1\}^*$ describing each h • Kraft Inequality: $\sum_{\sigma \in \mathcal{S}} 2^{-|\sigma|} \leq 1$
- Let |h| be the "description length" of h using \mathcal{S} • Then MDL is SRM with weights $w_h = 1/2^{|h|}$: we know that $L_{\mathcal{D}}(h) \leq L_{S}(h) + \sqrt{\frac{1}{2n}} \left[|h| \log 2 + \log \frac{2}{\delta} \right]$ uniformly, and MDL principle minimizes the RHS

One formalization of Occam's Razor

- Come up with a prefix-free binary language $\mathcal{S} \subseteq \{0,1\}^*$ describing each h • Kraft Inequality: $\sum_{\sigma \in \mathcal{S}} 2^{-|\sigma|} \leq 1$
- Let |h| be the "description length" of h using \mathcal{S} • Then MDL is SRM with weights $w_h = 1/2^{|h|}$: we know that $L_{\mathcal{D}}(h) \leq L_{S}(h) + \sqrt{\frac{1}{2n}} \left[|h| \log 2 + \log \frac{2}{\delta} \right]$ uniformly, and MDL principle minimizes the RHS

- One formalization of Occam's Razor
- But "simplest" is not inherent; we're pre-committing to what we call "simple" based on our choice of \mathcal{S}

Problems with bound minimization

- Concentration inequalities are usually pretty conservative
 - Hold for all distributions that are, e.g., bounded
 - Symmetrization in Rademacher introduces a factor of 2 that's often not needed
- SRM is based on these worst-case assumptions
 - So, can't adapt to e.g. the fast 1/n rate if turns out to be realizable: will just operate assuming the slow $1/\sqrt{n}$ agnostic rate
- Performance of the algorithm fundamentally based on how good at analysis you are We'd usually prefer the algorithm work whether we're smart or not

Summary

- SRM allows learning over infinite-VC \mathcal{H}
 - We just learn slower if h is harder
- Need to choose a countable decomposition into \mathscr{H}_k

- Minimum Description Length is another, semi-universal way to divide
- Next time: choosing h using a validation set

• Often, little penalty vs if we knew which \mathscr{H}_k the optimal solution is in beforehand • Generic way to pick weights: $w_k = 6/(\pi^2 k^2)$; gives a log k term in Rademacher

